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Abstract: Epoxy composite materials are widely used in power equipment. As the voltage level
increases, the requirement of material properties, including electrical, thermal, and mechanical, has
also increased. Introducing thermally conductive nanofiller to the epoxy/liquid rubber composites
system is an effective approach to improve heat performance, but the effects of thermally conductive
nanofillers on relaxation characteristics remain unclarified. In this paper, nano-alumina (nano-Al2O3)
and nano-boron nitride (nano-BN) have been employed to modify the epoxy/carboxyl-terminated
liquid nitrile–butadiene rubber (epoxy/CTBN) composites system. The thermal conductivity and
glass transition temperature of different formula systems have been measured. The effect of the
nanofillers on the relaxation behaviors of the resin matrix has been investigated. Results show
that the different kinds of nanofillers will introduce different relaxation processes into the matrix
and increase the conductivity at the same time. This study can provide a theoretical basis for the
synergistic improvement of multiple properties of epoxy resin composites.

Keywords: epoxy resin; liquid rubber; thermally conductive nanofiller; relaxation polarization

1. Introduction

The volume of power equipment enlarges with the rising voltage level. At the same time,
the requirements for mechanical, thermal, and insulation performances become higher [1,2].
Therefore, insulating materials with synergistically improved multi-performance have
become a hotspot [3–5]. Epoxy resin has wide application in power equipment, owing to
its better molding and impregnation performance.

As a typical brittle material, enhancing the toughness of epoxy resin is the key to improv-
ing the mechanical properties. The main toughening methods are adding liquid rubber or
thermoplastic material to the matrix [6,7]. There has been a lot of research on the epoxy/rubber
composites system (ERs) including covering morphology, kinetics, electricity, thermodynamic,
and mechanics [8–10], as well as relaxation behavior of dielectric [11–13]. However, the
improvement of thermal performance has been limited when solely considering the men-
tioned toughening method.

Based on the ERs, the addition of thermally conductive fillers can further enhance
the thermal performance of the copolymer. Commonly used thermally conductive fillers
contain metal, carbonaceous, and ceramic particles [14]. The ceramic particles, such as
boron nitride (BN), alumina (Al2O3), silicon dioxide (SiO2), aluminum nitride (AlN), and
silicon carbide (SiC), have excellent thermal conductivity but little effect on the electrical
properties, indicating a promising application prospect in insulation [15,16]. Better proper-
ties of thermal conductivity and breakdown strength were achieved in epoxy composites
enhancing by micro-BN and nano-Al2O3 together. The micro-BN constitutes an internal
heat conduction path, while nano-Al2O3 becomes a bridge connecting BN flaky [17].
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Through dual modification by liquid rubber and thermally conductive fillers, a joint
improvement of the crack resistance and thermal properties of epoxy resin has been
achieved in previous research. Besides, Gong and her co-authors find that the enhancement
of the breakdown strength in the ternary copolymer, consisting of epoxy resin, carboxyl-
terminated polybutadiene liquid rubber (CTPB), and hBN, is attributed to the accumulation
of the spatial charges at the interfacial boundary between the epoxy resin and hBN [4].
Additionally, in epoxy/BN composites toughened by carboxyl-terminated liquid nitrile–
butadiene rubber (CTBN), the breakdown strength increases when the content of CTBN
ranges from 10% to 15% [5]. However, the effects of thermally conductive fillers on
dielectric relaxation of the ERs remain unclarified. The polarization processes reveal the
microscopic mechanism of the filler on the electrical properties [18]. Therefore, further
study about relaxation polarization is necessary to carry out.

In this research, CTBN is chosen to toughen epoxy resin. Based on the epoxy/CTBN
composites system, nano-Al2O3 and nano-BN are introduced to perform the dual modifica-
tion, respectively. The thermal conductivity, glass transition temperature, and dielectric
spectrum are measured. Besides, the relaxation polarization processes are obtained through
peak splitting. By comparing these properties of epoxy resin modified by CTBN and
nanofillers, the effect and mechanism of two kinds of thermally conductive nanofillers on
cross-linking degree, relative permittivity, and dielectric loss of epoxy/CTBN composites
system are analyzed. The research results can provide a theoretical basis for the synergistic
improvement of multiple properties of epoxy resin.

2. Materials and Sample Preparation
2.1. Materials

The epoxy resin used in this study is diglycidyl ether of bisphenol A (DGEBP A)
with the epoxy value of 4.4 mmol/g produced by Nantong Xingchen Synthetic Material
Co., Ltd., Nantong, China. The curing agent is methyl-hexahydro phthalic anhydride
(MeHHPA) produced by Puyang Huicheng Electronic Materials Co., Ltd., Puyang, China.
The accelerator is 2-ethyl-4-methylimidazole (2,4-EMI) produced by Shanghai Chemical
Industry Development Co., Ltd., Shanghai, China. The carboxyl content of CTBN is
0.61 mmol/g, and the acrylonitrile content is 8.4%, supplied from Qilong Chemical Co.,
Ltd., Zibo, China. Hexagonal boron nitride (h-BN, 50 nm) was purchased from Dekedaojin
Technology Co., Ltd., Beijing, China. The particle size of the alumina is 200 nm produced
by Huiguang Metal Material Co., Ltd., Guangzhou, China. All reagents are used without
special treatment.

2.2. Sample Preparation

The sample preparation of Epoxy/CTBN, Epoxy/CTBN/Al2O3, and Epoxy/CTBN/
BN is as follows. Firstly, epoxy resin and CTBN are mixed in proportion and pre-crosslinked
at 150 ◦C for 1 h. CTBN content is 10 phr (per 100 g of epoxy resin) of epoxy resin. After
being pre-crosslinked, the nano-Al2O3 and nano-BN are introduced respectively with an
amount of 3 phr of epoxy resin, and the mixture is put into an ultrasonic mixer at 60 ◦C
for 1 h. Then, curing agent and accelerator are added with the proportion of 73.5 phr and
0.5 phr of epoxy resin, respectively. Vacuum degassing is carried out after mixing. The
mixture is then injected into the mold and put into the oven (Shanghai Keheng Industrial
Development Co., Ltd., Shanghai, China), and curing is carried out under in sequence at
60 ◦C /1 h, 80 ◦C /2 h, 120 ◦C /4 h, and 160 ◦C /4 h. After that, the sample is stepwise
cooled before being removed from the oven.

2.3. Performance Measurement

The samples are immersed in liquid nitrogen for 2 min and then broken by a clamp
into smaller pieces. Those sample pieces are coated with gold by ion sputtering for scanning
electron microscope (SEM) to observe their microstructure. The distribution of liquid rubber
and nanofillers in the resin matrix and the development of cracks could be observed. The
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SEM used in this manuscript is Merlin Compact (Zeiss Germany, Oberkochen, Germany),
in which the electron gun voltage is set to 20 kV.

METTLER DSC822e is used for differential scanning calorimetry (DSC) (Mettler
Toledo, Zurich, Switzerland). The measurement temperature is 30 ◦C to 200 ◦C with
a heating rate of 10 ◦C/min. NETZSCH LFA447 is used to measure the thermal con-
ductivity of the samples. The sample size is Φ12.7 mm with a thickness of 1 mm. The
measurement temperature is 25 ◦C to 225 ◦C with an interval of 25 ◦C.

The German Novocontrol company’s concept80 broadband dielectric spectroscopy
tester is used to measure the dielectric properties. The sample size is Φ40 mm with a
thickness of 1 mm. Both surfaces of the samples are coated with gold by the ion sputtering
with one side entirely coated, but the other within a circle region of Φ30 mm. The frequency
range is 10−1 to 106 Hz, and the test temperature is 25 ◦C.

3. Results and Discussion
3.1. Microstructure and Microcrack Development

The two-phase structure form by liquid rubber in the resin matrix has a multi-faceted
impact on the properties of the composites [19]. Under the synergistic modification of
thermally conductive nanofillers, the existence of the nanofillers and their interaction with
the rubber particles will further change the properties of composite materials. The SEM
cross-sectional photos of the three types of samples with a magnification of 1000 are shown
in Figure 1.
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Figure 1. SEM photographs of three kinds of composites system. (a) Epoxy/CTBN; (b) Epoxy/CTBN/Al2O3;
(c) Epoxy/CTBN/BN.

Without nanofillers, the section is composed of multiple non-penetrating cracks. The
white area in Figure 1a indicates that plastic deformation has occurred during fracture [20].
The liquid rubber is introduced to epoxy resin to form spherical-shaped rubber particles
in the cured samples, which hinders the cracks and enhances the toughness of the mate-
rial. For the sample with nano-Al2O3, the particles are uniformly dispersed in the resin
matrix, and the microscopic morphology of the section is consistent with the epoxy/CTBN
composites system. As a contrast, the length of the cracks in the samples with nano-BN
increased significantly, and part of the cracks penetrated the entire section, manifesting a
brittle fracture. From Figure 1c, the introduction of nano-BN reduces the precipitation of
rubber particles and weakens the toughening effect of the liquid rubber.

3.2. Thermal Properties Analysis
3.2.1. Glass Transition Temperature

The glass transition temperature (Tg) affects the application range of the material. The
Tg is determined by the heat flow curves obtained from DSC. As illustrated in Figure 2,
the baselines shift up nearby 140 ◦C in all heat flow curves, which is attributed to the
remarkable increment of the specific heat capacity after glass transition [21]. In this paper,
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the inflection point method is utilized to extract the Tg of different samples, and the results
are shown in Table 1.
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Table 1. Glass transition temperature of four kinds of samples.

Sample Type Epoxy Epoxy/CTBN Epoxy/CTBN/Al2O3 Epoxy/CTBN/BN

Tg /◦C 152.00 [12] 146.74 142.81 138.84

The Tg will decrease slightly in the ERs owing to the diluting effect of liquid rubber
on the resin matrix [22]. After the addition of nano-Al2O3 and nano-BN, the Tg is further
reduced, but the degradation is within 10 ◦C, which does not affect the application of epoxy
composites material. The formation of rubber particles in the resin matrix will reduce the
cross-linking degree. With the introduction of nanofillers, the cross-linking degree of the
resin matrix has been further reduced, so that the Tg tends to be lower in Table 1. Besides,
the morphology of nano-BN is flaky, and its influence on the cross-linking degree is bigger
than that of the granular nano-Al2O3. Thus, the Tg of the sample with nano-BN shows a
greater drop. Therefore, it can be seen that the morphology of the thermally conductive
nanofillers has a greater impact on the Tg of the composite material.

3.2.2. Thermal Conductivity

The thermal conductivity of insulating materials directly affects the temperature
and thermal stability of the power equipment. The temperature dependence of thermal
conductivity of the four kinds of samples is illustrated in Figure 3.
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The maximum thermal conductivity appears near the Tg in all samples. The thermal
conductivity increases with the increase of temperature before the Tg, while exhibiting
the opposite trend after the Tg. Except for the different trends near the Tg, the addition
of fillers makes the overall thermal conductivity increase. Besides, nano-BN has a more
significant increase in thermal conductivity than nano-Al2O3, which is mainly caused by
the difference in the structure of the two fillers. As a high thermal conductivity material,
the flaky structure of nano-BN makes it easier to form a thermally conductive network in
the resin matrix. Moreover, it has a bigger effect on thermal conductivity when the content
is low.

3.3. Dielectric Properties Analysis
3.3.1. AC Conductivity

The AC conductivity reflects the insulating properties under alternating electric fields.
According to the low-frequency region in Figure 4, different from the modified samples,
there are no obvious fluctuations in the pure epoxy resin. This is mainly because the
polarization of the pure epoxy resin is not drastic in the measurement range. For the
other three modified samples, the AC conductivity is consistent in the high-frequency
region. When behind 1000 Hz, the difference becomes apparent, and the most dramatic
change appears in the sample modified by nano-Al2O3. However, the variation of the AC
conductivity in the sample with nano-BN reaches the maximum when in the low-frequency
region. In the intermediate frequency region, the rapid variation of the AC conductivity
of nano-Al2O3 samples may be induced by the polarization process, which shows up
in a higher frequency. The curves in the low-frequency region indicate that the direct
current part of the conductivity in epoxy/CTBN/BN is higher than the two others at
room temperature.
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3.3.2. Relative Permittivity and Dielectric Loss

The relative permittivity (ε′) and dielectric loss (tanδ) are two important paraments
of the dielectric performance of the insulating material, which determine the potential
distribution and heating loss. The frequency spectrum of ε′ and tanδ of the samples are
plotted in Figure 5.

A declining trend of ε′ with the increase of frequency in all samples could be observed.
The curve of pure epoxy resin has a gentler decline and is significantly lower than the
modified samples. The other curves overlap when the frequency is greater than 100 Hz.
Compared to the unmodified sample, the distinct decrease step that occurs at the low-
frequency region of other curves represents a polarization process. According to the curve
of ε′, the relaxation strength of the aforementioned polarization in the sample modified
by nano-Al2O3 is greater than the sample only with CTBN. The distinct decrease step that
occurs in the low-frequency region is caused by both conduction loss and polarization
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loss. As indicated in Figure 4, the highest AC conductivity of the Epoxy/CTBN/BN
results in the dramatic decline of the ε′ of the sample modified by nano-BN. A two-phase
structure will form in the resin matrix after the addition of CTBN, which causes interfacial
polarization in the low-frequency region [12], and the introduction of nanofillers changes
the relaxation process.
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From the curve of tanδ in Figure 5b, the shape and location of the relaxation peak of
the interfacial polarization could be confirmed. Compared to the pure epoxy resin, the
newly introduced polarization process increases the dielectric loss of the modified samples.
In the low-frequency region, an obvious relaxation peak shows in the sample without
nanofillers and the sample enhanced by nano-Al2O3. In contrast, the tanδ of the sample
modified by nano-BN decreases with the increase of frequency. The peak value of tanδ will
result in a sharp increase in temperature, which should be avoided during formula design.
The tanδ curves of the modified samples are consistent during the high-frequency region
and are greater than the pure epoxy resin. The introduction of the fillers may increase the
branched, side chain, and micro-reactive functional groups in the matrix, which contribute
to the increased loss [23].

3.3.3. Dielectric Relaxation

The influence of nanofillers on the ε′ and tanδ is induced by the microscopic relaxation
processes. Therefore, the Havriliak–Negami equation (HN-equation) was employed to
analyze the relaxation behaviors of the samples, and the typical form of HN-equation is
as follows [23]:

ε∗HN(ω) = −i
(

σdc
ε0ω

)
+ ε∞ +

n

∑
k=1

∆εk

(1 + (iωτk)
βk )

γk
(1)

where ε*
HN(ω) is the complex permittivity, ε0 is the permittivity of the vacuum, ω is the

angular frequency, k represents the number of relaxations behaviors, ∆εk is the relaxation
strength, τk is the relaxation time, βk and γk describe the symmetric and asymmetric
broadening of the complex dielectric function, σdc is the DC-conductivity, and ε∞ is the
permittivity when f→+∞.

The differencing algorithm combined with the least square fitting is used to perform
nonlinear fitting on HN-equation [24], and the result obtained is shown in Figure 6. Peak1 rep-
resents the interfacial polarization induced by CTBN. With the introduction of nanofillers,
the relaxation strength and relaxation time of Peak1 have been changed. Besides, a new
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relaxation process (Peak3) emerges. The relaxation parameters fitted by the HN-equation
are summarized in Table 2.
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broadening of the complex dielectric function, σdc is the DC-conductivity, and ε∞ is the 
permittivity when f→+∞. 

The differencing algorithm combined with the least square fitting is used to perform 
nonlinear fitting on HN-equation [24], and the result obtained is shown in Figure 6. Peak1 
represents the interfacial polarization induced by CTBN. With the introduction of 
nanofillers, the relaxation strength and relaxation time of Peak1 have been changed. 
Besides, a new relaxation process (Peak3) emerges. The relaxation parameters fitted by the 
HN-equation are summarized in Table 2. 
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Figure 6. Peak-splitting results of the HN-equation of three kinds of samples at 25 ◦C. (a) Epoxy/CTBN;
(b) Epoxy/CTBN/Al2O3; (c) Epoxy/CTBN/BN.

Table 2. Relaxation parameters fitted by the HN-equation of three kinds of samples at 25 ◦C.

Relaxation Parameters Epoxy/CTBN Epoxy/CTBN/Al2O3 Epoxy/CTBN/BN

Relaxation
strength

Peak1 0.505 0.508 0.461
Peak2 1.282 2.803 2.814
Peak3 None 0.048 0.532

Relaxation time
Peak1 0.146 0.036 0.117
Peak2 8.94 × 10−10 1.67 × 10−8 1.43 × 10−7

Peak3 None 0.207 0.968

DC-conductivity 1.21 × 10−13

S·m−1 1.60 × 10−13 S·m−1 1.42 × 10−12

S·m−1

β
Peak1 0.974 0.936 0.873
Peak2 0.199 0.197 0.202
Peak3 None 1 0.839

γ
Peak1 0.877 1 1
Peak2 1 0.243 0.191
Peak3 None 0.95 1

According to the relaxation parameters of Peak1, the addition of nanofillers will
decrease the relaxation time of the interfacial polarization, and the effect of nano-Al2O3
nanofiller tends to be more evident. This change could be attributed to the variation of
permittivity and conductivity. The nano-Al2O3 nanoparticles could act as the nucleation
center of the rubber phase, which could decrease the relaxation time of the interfacial
polarization. Instead, the flaky morphology of nano-BN may weaken the nucleation effect
of CTBN to a certain extent, resulting in a slight decrease in the strength of Peak1.

After being modified by thermally conductive nanofillers, Peak3 was introduced into
the low-frequency region. The relaxation strength of the sample with nano-BN exhibits
higher under the same filler contents, while the relaxation time of Peak3 is lower in the
sample with nano-Al2O3. Due to the greater surface area of the BN film, the interface
between the BN and resin matrix is larger than the sample modified by nano-Al2O3, which
intensifies the relaxation strength of the Peak3. Furthermore, the DC conductivity increase
in the dual-modified samples. Compared with the other two samples, the flaky conductive
network is easier to form in the sample with nano-BN. Therefore, the DC conductivity of
epoxy/CTBN/BN increased by an order of magnitude.

The above analysis shows that the addition of nanofillers will introduce a new relax-
ation process, in which relaxation time is longer than the interface polarization between
the rubber particles and resin matrix. Besides, under the same additive content, the two-
dimensional nanomaterials have a higher specific surface area, which leads to a higher
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intensity of the relaxation peak. Meanwhile, the introduction of nanofillers will increase
the conductivity of the material, and the two-dimensional material is easier to construct a
conductive network, resulting in a greater increase of conductivity.

4. Conclusions

In this paper, nano-Al2O3 and nano-BN, two kinds of thermally conductive materials
with different dimensions, are employed to enhance the epoxy/CTBN composites system.
The thermal performance of the dual-modified composites system has been analyzed, and
the dielectric properties have been discussed. The conclusion is as follows:

(1) The addition of nano-Al2O3 and nano-BN both increases the thermal conductivity.
Compared to the granular nano-Al2O3, the flaky morphology of nano-BN facilitates the
formation of the thermal network, resulting in a higher increase of the thermal conductivity
after the glass transition temperature. Besides, the glass transition temperature of the
sample enhanced by nano-BN declines the most, which indicates that the two-dimensional
nanofiller has a greater impact on the cross-linking degree of the resin matrix. Based on this
formula system, further research can be applied to basin insulators used in Gas-insulator
Metal-enclosed Switchgear (GIS).

(2) A new relaxation polarization process, located in a lower frequency region than
interfacial polarization, has been induced by thermally conductive nanofillers. Besides, the
AC conductivity rises in the dual-modified composites. According to the larger surface
area of the BN-nanofiller, the new relaxation peak tends to have higher relaxation strength,
and the increase of the conduction is also the largest.
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