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ABSTRACT: The phase behavior is investigated for systems
composed of a large number of macromolecular components N,
with N ≥ 2. Liquid−liquid phase separation is modeled using a
virial expansion up to the second order of the concentrations of the
components. Formal analytical expressions for the spinodal
manifolds in N dimensions are derived, which simplify their
calculation (by transforming the original problem into inequalities
that can be evaluated numerically using linear programming
techniques). In addition, a new expression is obtained to calculate
the critical manifold and composition of the coexisting phases. The
present analytical procedure complements previous attempts to
handle spinodal decomposition for many components using a
statistical approach based on random matrix theory. The results are
relevant for predicting the effects of polydispersity on phase behavior in fields like polymer or food science and liquid−liquid phase
separation in the cytosol of living cells.

■ INTRODUCTION
Phase separation in mixtures of molecules is a phenomenon
leading to the formation of distinct domains on a meso- and/or
macroscopic scale, which differ in molecular composition. This
phenomenon is described in terms of the equilibrium
thermodynamics of the system and may occur at sufficiently
high concentrations of the components. Phase separation plays
a role in classical fields as diverse as polymer and food
technology, hematology, wastewater treatment, archeology,
and forensics. Considerable effort was invested in experimental
and computational work on multicomponent mixtures.1−9 In
addition to the abovementioned areas of interest, phase
separation in living soft matter is currently a highly active field
of research, in particular, in relation to the cytosol of cells
containing complex mixtures of thousands of compo-
nents.10−14

When describing such mixtures, one might ignore the
complexity of the problem by assuming that complex mixtures
can be approximated by a mixture of a small number of
monodisperse components, each with distinct physical proper-
ties. This approach is often taken for binary or ternary mixtures
of polydisperse polymers.15

Alternatively, one may embrace the full complexity of the
system and treat every component as unique (either in terms
of its chemical or physical properties). This last route requires
an approach that addresses mixtures of many components and
involves solving a large set of nonlinear algebraic equations
simultaneously. However, the numerical evaluation of such sets
of equations is far from trivial, which has resulted in the

introduction of alternative methodologies. The first such
methodology was presented two decades ago by Sear and
Cuesta16 and was based on random matrix theory (RMT).17

This seminal work, valid for mixtures of a very large number of
components, prompted various alternative approaches for
describing the phase behavior of complex mixtures, culminat-
ing in a field that was reviewed recently by Jacobs18 and Pappu
et al.19 As will be shown in the Results section, RMT requires
that the number of components fulfills N ≳ 103. This identifies
a gap in the numerical approaches for a low number of
components and RMT, where the latter is only valid for a very
high number of components.

An approach for moderately large numbers of components
(typically 2 ≤ N ≲ 103) is to generalize previously obtained
(mostly) analytical results for the key characteristics of the
phase diagrams for binary20−24 and ternary mixtures25 toward
mixtures containing N components. Although this seems
challenging, surprisingly, this is found to be a viable route, as
discussed in the remainder of this paper. The present analysis
for N-component mixtures is simplified by introducing three
sets of parameters. One set of parameters can be related to the
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tangents to the critical manifold, another set to the slopes of
the tie-lines connecting the coexisting phases, and the third set
can be considered as free parameters. The analysis gives formal
analytical expressions for the spinodal manifold without being
restricted to N ≳ 103, thus closing the aforementioned gap
between the existing methods for low and very high numbers
of components. Two additional advantages of the approach in
this paper are that it demonstrates a route to determine the
critical manifolds and the compositions of coexisting phases for
any number N of components.

The present paper focuses mainly on developing the
methods involved in establishing the phase behavior for
mixtures of many components and less on performing
extensive numerical calculations.

■ METHODS: THEORY
Coexistence Equations for N Components and P

Phases. For N components and two phases (P = 2), the
expression for the Helmholtz free energy F (J) can be
approximated by a virial expansion in terms of molar
concentrations including terms up to the second order in
molar concentration as
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where ni (mol) is the number of moles and ci = ni/V is the
molar concentration of component i, T (K) is the absolute
temperature, R (J·K−1·mol−1) is the gas constant, V (m3) is the
total volume of the system, Bii (m3·mol−1) is the second virial
coefficient of polymer i (i = 1, 2, ..., N), and Bij is the second
cross-virial coefficient for polymers i and j (i, j = 1, 2, ..., N; i ≠
j), which can be any real number. These equations form the
basis for the thermodynamic description of phase behavior. In
the present analysis, each of the N ≥ 2 components is regarded
as a macromolecular component, where the solvent is
integrated out. Alternatively, it is possible to add the solvent
explicitly as an additional component (cf. ref 26), provided that
the interactions are correctly taken into account via the second
virial coefficients. Without loss of generality, the discussion can
be limited to the case of two separated phases in
thermodynamic equilibrium, I and II, where the osmotic
pressure and all N chemical potentials need to be the same in
each phase
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Using eqs 2 and 3, the explicit expressions are given by
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For mixtures where P > 2, the equalities in eqs 4 and 5
should be extended to include more phases, identified by III,
IV, etc. The maximum value for P is determined by the Gibbs
phase rule. Following an earlier approach,23 it is convenient to
introduce the parameter Sm,ij, the slope of a tie-line in the (i, j)
plane multiplied by −1, defined by
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where (c1I , c2I , ..., cNI ) and (c1II, c2II, ..., cNII) are the compositions of
the two coexisting phases. Sm,ij may vary in the range ⟨−∞,
∞⟩. The third term in eq 8 can be confirmed by substituting
the definition for the parameters Sm,jk and Sm,ki. Note that in the
case of segregative phase separation, each phase is enriched in
one of the components and therefore Sm,ij > 0. Oppositely for
associative phase separation, where one of the phases is
enriched and the other phase is depleted in both components,
Sm,ij < 0. In addition, there are N parameters Sm,ij in eq 8, of
which (N − 1) parameters can be chosen freely because Sm,ii=
−1 is fixed. Equations 6 and 7 consist of (N + 1) equations
with 2N unknowns. This leads to a set of 2N equations with
2N unknowns. Substituting eq 8 in eqs 6 and 7, results in
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Defining the constants ci,s as
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allows writing eq 9 as
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and eq 10 as
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with�by definition�the solutions21,23,25
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where W refers to the Lambert-W function.27 The expressions
in eq 11 normalize the coordinates in eqs 12 and 13. Equation
14 links the concentration of each component i in phase I to
that in phase II. For real arguments, the Lambert-W function
has zero, one, or two solutions, corresponding to isotropic
mixing, the location of the critical points, and (segregative
and/or associative) phase separation, respectively. This makes
the Lambert-W function eminently suited to describe solutions
to phase separation problems. In the case of two solutions, the
solution for each component i in phases I and II is located
either on the W−1-branch or W0-branch of the Lambert-W
function. The W−1-branch represents high concentrations,
whereas the W0-branch represents low concentrations. In the
case of segregative phase separation (where one phase is
enriched in component i and the other phase is enriched in
component j and Sm,ij > 0), the coexisting phases for
components i and j correspond to (ciI, cjI) = (W−1, W0) and
(ciII, cjII) = (W0, W−1), where the arguments of the Lambert-W
functions (different for each coordinate i or j) were omitted for
clarity. In the case of associative phase separation or
condensation (where one phase is enriched and the other
phase is depleted in both components i and j, and Sm,ij < 0), the
coexisting phases correspond to (ciI, cjI) = (W0, W0) and (ciII, cjII)
= (W−1, W−1). The Sm,ij can be any real number but note that
the physically relevant non-negativity of coordinates ci,s for a
specific choice of Bij and Sm,ij in eq 11 needs to be confirmed
separately. Equation 8 can be written as
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and can be combined with eq 12 to create a matrix equation
(see Appendix A)
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with the elements of the i-th row and j-th column of the N×N
matrix V defined as
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with δij being the Kronecker delta (δij = 1 for i = j and δij = 0
for i ≠ j). The binodal manifold can be calculated from eqs 16
and 17 together with eq 14 (cf. refs 23 and 25) and has
dimension (N − 1) (in line with the number of Sm,ij that can be
chosen freely). The expressions have been simplified from 2N

concentrations ciI and ciII (eqs 6, 7) to N concentrations ciI plus
(N − 1) parameters Sm,ij (because Sm,ii = −1), effectively
reducing the number of equations from 2N to 2N − 1. For N =
3, eqs 16 and 17 reduce to eq 52 in ref 25. For N = 2, eq 48 in
ref 23 was written for different coordinate vectors, but this
expression can be shown to be equivalent to eqs 16 and 17.

The composition of P coexisting phases for N components
can be obtained from the Lambert-W functions (cf eq 14).
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As noted earlier, this allows for several solutions per
component, potentially located either on the same branch or
on two different branches of the Lambert-W function, where
the physically relevant solution fulfills eqs 4 and 5 and all
concentrations are positive.
Spinodal Manifolds for N Components. The local

curvature of the Helmholtz free energy F manifold is given by
the Hessian matrix M1 and characterizes the local stability of a
mixture against phase separation. Element
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with δij being the Kronecker delta and Bij � Bji, making M1
symmetrical. Based on previous results for N = 2 and N =
3,23,25 it is possible to find an analytical expression for the
coordinates ci,sp of the spinodal manifold for N components
(the index “sp” refers to spinodal):
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where Ssp,ji is a parameter satisfying the relation
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eq 21 has the same form as eq 8. It is shown in Appendix B
that eq 20 indeed satisfies the requirement for the spinodal,28

i.e., Det M1 = 0 (where Det refers to the determinant), when
eqs 20 and 21 are substituted in matrix M1 (eq 19). It follows
that eq 20 represents the coordinates for the (N − 1)
dimensional spinodal manifold, characterized by the (N − 1)
free parameters Ssp,ji (with i ≠ j) and one fixed parameter Ssp,ii
� −1. Note that the fixed value of parameter Ssp,ii warrants
that the spinodal manifold has a dimension of (N − 1),
preventing that every point in composition space could be
written as a point on the spinodal. The non-negativity of
coordinates ci,sp for a specific choice of Bij and Ssp,ji in eq 20
needs to be checked separately as the existence of such
unphysical solutions is inherent to the mathematical model (cf.
Figure 1 in ref 21 for binary mixtures). The procedure to check
for non-negativity will be illustrated in the Results section. It is
noted that spinodal manifolds obtained via Det M1 = 0 do not
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always separate unstable from (meta-) stable regions29 (cf.
Figure 2f in ref 25). For N = 3, eq 20 reduces to the previously
obtained spinodal manifold for ternary mixtures25 (See also
Table 1). For N = 2, the parameter Ssp in ref 23 is related to
Ssp,21 in the present paper by √Ssp = (B12Ssp,21 − B11)/(B12 −
B22Ssp,21) on the spinodal and, therefore, to Ssp = Ssp,21 in the
critical point.
Critical Manifolds for N Components. The standard

procedure to evaluate the critical manifold involves solving Det
M1 = 0 ∧ Det M2 = 0,28 where matrix M2 is constructed by
replacing the bottom row (or any other row for this matter) of
matrix M1 by28,30,31
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and the following relation was made for Sc,ji: the tangent to the
spinodal manifold at the location of the binodal manifold in
the (i, j) plane multiplied by −1,
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for phase I → phase II (i.e., the two phases merge as the
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with δij being the Kronecker delta. Analogous to the case for
the spinodal manifold, an expression for the coordinates ci,c of
the critical manifold (“c” stands for critical (manifold)) is
conjectured, based on eq 11 and earlier results for N = 2 and N
= 3, as
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It can be seen that the structure of the expressions for the
coordinates ci,c (eq 26), ci,sp (eq 20), and ci,s (eq 11) is identical
and the difference comes from the requirements for the
associated parameters Sc,i1, Ssp,i1 and Sm,i1 (eq 29 for the critical
manifold and eqs 8 and 12 for the manifold defined by ci,s).
However, the role of the ci,s differs from that of the ci,sp and ci,c,
in the sense that the latter two represent real objects in the
phase diagram, whereas the former one represents auxiliary
coordinates (on the spinodal manifold) that allow us to
calculate the coordinates ciI and ciII on the binodal manifold.
Note that the non-negativity of coordinates ci,c for a specific
choice of Bij and Sc,ij in eq 26 needs to be checked separately.
The substitution of eq 26 in eq 25 leads to

Table 1. Comparison between the Model Results Obtained for N = 2, 3, and Na
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aNote that Bij � Bji. The Table above describes the case for two separate phases I and II (P = 2) but can be extended easily to include more phases
by adding expressions for phases III, IV, etc. The function W refers to the Lambert-W function,27 which can be calculated straightforwardly using
modern software packages
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where a relationship between minors of the determinant of the
Hessian matrix M1 was used (eq 28, see Appendix C).
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where M1
(i,j) is the minor of M1 relative to the element (i, j). As

a result, Det M1 = 0 ∧ Det M2 = 0, provided that
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It is noted that eq 29 states an extra requirement for the critical
points compared to the requirements for the points defining
the spinodal manifold (see eq 26 and Table 1). In other words,
all points on the critical manifold lie on the spinodal manifold
but not the other way around. It is possible to substitute eq 26
in eq 29, but the present expression is simpler and, therefore,
more insightful. The combination of eqs 26 and 29 represents
an (N − 2) dimensional manifold (a critical point for N = 2, a
critical curve for N = 3, etc). As expected, eqs 26 and 29 reduce
to the previously obtained results for binary23 and ternary
mixtures25 (see Table 1). Again, it is noted that the existence
of solutions for the critical point(s) for negative concentration
coordinates is a property of the model (cf. Figure 1 in ref 21).
Other Generalizations of Results for Binary and

Ternary Mixtures. Finally, it is possible to generalize a
number of results obtained previously for ternary mixtures.25

To obtain N phases, the phase separation criterion > 1
B

B B
ij

ii jj

2

should be satisfied for (N − 1) binary combinations. In the
case that N phases segregate, one can conclude from the
behavior of binary mixtures at high concentrations that the N
coexisting phases are located in the hyperplane defined by

=
=

B c c
i

N

ii i
1

0
(30)

with c1, c2, ..., cN → ∞, leading to c0 ≫ 0 (mol1/2·m−1/2) (cf.
Equation 55 in ref 25). Note that this expression does not
contain the cross-virial coefficients Bij because, in this limit,
each of the N phases is composed of essentially pure
components 1, 2, ..., N.

Another straightforward generalization of results obtained
for binary and ternary mixtures (cf. Equation 11 in ref 24 and
eq 56 in ref 25) for P = 2 yields
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using eqs 12 and 13. All solutions to the coexistence equation
fulfill eq 31 or the generalizations thereof for higher P. For
every additional phase, an additional equation is added of the
form
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Combining eqs 31 and/or 32 results in similar expressions
for any pair of phases. The remarkable aspect of eqs 31 and 32
is that they do not contain any of the virial coefficients. A
combination of concentration coordinates that does not fulfill
eqs 31 and 32 will not be a solution to the coexistence
equations for any combination of virial coefficients.

■ RESULTS: EXAMPLES
Simple Example for N = 3 and P = 2. Because it is not

customary to represent eqs 1−5 and their solutions in terms of
the parameters Sz,ji (where z can represent “sp”, “c”, or “m”, i.e.,
the parameters associated with the spinodal manifold, the
critical manifold, and the coordinates relevant to the tie-lines,
respectively), an explicit example will be discussed here. For N
= 3, there are two independent parameters Sz,ji. The example
will address a case for N = 3 to facilitate visualization, but the
same principles also apply to larger numbers of components.
Figure 1 displays potential combinations of Sz,21 and Sz,31 for a
given set of virial coefficients for N = 3 for a typical
combination of values for the second virial coefficients that
characterize polymer mixtures.32 Note that these calculations

Figure 1. Map of part of the (Sz,21, Sz,31) parameter space (with z =
“sp”, “c”, or “m”). The area indicated by dotted area depicts physically
relevant solutions, i.e., positive coordinates for the critical curve or the
spinodal surface (or the coordinates in eq 11). The area indicated by
white regions depicts unphysical parts of parameter space where not
all three coordinates ci,z (with i = 1, 2, 3) are positive. The lines
indicated by mangenta-dotted line depict lines for which 1/c1,z = 0, 1/
c2,z = 0, and 1/c3,z = 0 (cf. eq 33), which segment the parameter space
in physically relevant and unphysical regions. The green solid lines
depict relationships between Sc,21 and Sc,31 according to eq 29; and the
points indicated by green solid circles depict both physical and
unphysical solutions for the critical points for binary mixtures (for Sc,21
= 0.290, 1.191, 6.519 (not shown), or Sc,31 = 0.250, 0.718, 1.394),
which are located on the gray dash-dotted line that represents either
Sc,31 = 0 or Sc,21 = 0. Calculations have been performed for N = 3 with
virial coefficients B11 = 1.5, B22 = 1, B33 = 3, B12 = 2, B13 = 2.5, and B23
= 3.5 (m3/mol).
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go beyond those in ref 25, which were restricted to
“symmetric” mixtures, having equal pure second virial
coefficients Bii and equal cross second virial coefficients Bij.
The black-dotted regions correspond to combinations of
parameters Sz,ji, which give rise to physical solutions (i.e., non-
negative concentrations for all coordinates ci,z)

= =
=c

B S i N1
0 with 1, 2, ...,

i z j

N

ij z ji
, 1

,
(33)

where the rules from eqs 8, 21, and 24 apply, which interrelate
the parameters Sz,ji. Equation 33 represents a set of linear
inequalities defining a linear programming problem without an
optimalization objective.33 The white area corresponds to
regions in which at least one coordinate is negative and should,
therefore, be considered an unphysical solution. The
boundaries between the dotted and white areas are given by
the set of magenta dotted lines ∑j = 1

N BijSz,ji = 0 (one line for
every i = 1, 2, ..., N) and the Sz,j1 = 0 axes with j = 1, 2, ..., N),
where N = 3 in Figure 1. Green solid circles along the axes
where either Sc,21 or Sc,31 are zero reflect (both the physical and
unphysical) solutions associated with the critical points for N =
2 when eq 29 reduces to eq 3 in ref 24. The solid green curves
in Figure 1 correspond to the combinations of Sc,21 and Sc,31,
which fulfill eq 29, and the part of the solid curves in the black-
dotted areas represent the physical solutions for the critical
curve, eq 29.

Figure 1 illustrates that for N = 3, the regions of the (Sz,21,
Sz,31) parameter space that make up the physical solutions are
not necessarily interconnected, but the segmentation of
physical and unphysical solutions follows straightforward
rules. Substitution of any combination of (Ssp,21, Ssp,31) from
the dotted areas in eq 20 will lead to a valid spinodal point.
Similarly, any combination of (Sc,21, Sc,31) from the dotted area
that satisfies eq 29 will lead to a valid point on the critical
curve. This principle will still apply for higher values of N,
although keeping track of the rules that distinguish physical
and unphysical solutions becomes more complicated.

Although the information in Figure 1 is conceptually
sufficient to calculate the spinodal and critical curve, the
need to evaluate the (Sz,21, Sz,31) parameter space in the range
⟨−∞, ∞⟩ for either parameter makes this a less practical
approach. Fortunately, the relationships between the param-
eters in eqs 8, 21, and 24 are helpful here and can be used to
transform the parameter space in Figure 1 by splitting it into
three parameter subspaces consisting of the positive quadrants
of (Sz,21, Sz,31), (Sz,12, Sz,32), and (Sz,13, Sz,23), as is illustrated in
Figure 2. The physical solutions to the problem (black-dotted
area) can be found in a narrow strip in each of the quadrants
(gray and black-dotted area), which allows for a full but
straightforward numerical evaluation. Note that Figure 2 is
slightly more complicated than might appear at first sight as
the axes may reflect either Sz,ij or its inverse Sz,ji, depending on
the quadrant that is being considered. The approach described
here is also the first step toward the calculation of the binodal,
which is not discussed here as it involves a numerically more
complex procedure.

The identified combinations of parameters that give rise to
physical solutions in Figure 2 can be used to construct the
spinodal and the critical curves in a rather straightforward way
by substituting them in eq 20. The result is shown in Figure 3,
with the same diagram being shown from two different points
of view. To overcome the difficulty of showing a three-

dimensional shape in a two-dimensional image, a video
showing the diagram from multiple directions is provided in
the Supporting Information as well. Note that the criterion
used to calculate the spinodal includes solutions that separate
unstable areas, as, for example, shown in Figure 2f in ref 25
(constricting areas characterized by one negative eigenvalue of
the Hessian matrix M1 versus areas characterized by two
negative eigenvalues).
Complex Example. Although the prime focus of the

present paper is on N ≲ 103, the equations are also valid for N
≳ 103. Since RMT is valid typically for N ≳ 103, it is of interest
to make a comparison between both approaches. One should
keep in mind that RMT makes some assumptions on the
statistical properties of the second virial coefficients, which is
not the case for the approach described in the present work. A
recent paper by Thewes et al. will be used as a starting point
for discussing the results and assumptions related to RMT.26

This RMT approach allows for the calculation of the limit of
stability in mixtures of many components using (only)
averages and standard deviations of the second virial
coefficients of the components. The assumptions on the
statistical properties of the second virial coefficients simplify
the calculation of the limit of stability considerably. Table 2
shows the relationship between the various parameters in the
paper of Thewes et al. and the parameters used in the present
work.

Thewes et al.26 do not distinguish the pure second virial
coefficients from the cross second virial coefficients when
assigning values to them since they draw them from a single
assumed normal distribution, but they do respect the
symmetry requirement ϵαγ = ϵγα. The solvent molecules are
taken into account explicitly, while a cross-virial coefficient of
zero is assigned to the interactions of the solvent with the other

Figure 2. Same information as plotted in Figure 1 but now shown for
the positive quadrants of (Sz,21, Sz,31), (Sz,12, Sz,32), and (Sz,13, Sz,23)
(front-bottom, back-left, back-right, respectively). Note that Sz,ij = 1/
Sz,ji. Physical (black-dotted area) and unphysical (gray-dotted area)
solutions for the parameter space from which the spinodal surface (cf.
eq 20) and critical curve (cf. eqs 26 and 29) can be evaluated. The
area outside the strip that is numerically evaluated (white) represents
unphysical solutions too. Dotted mangenta lines represent the curves
for 1/c1,z = 0, 1/c2,z = 0, and 1/c3,z = 0 (cf. eq 33). Solid green curves
reflect the solutions for the parameters satisfying eq 29 that can be
used to determine the critical curve. Calculations were performed for
N = 3 with virial coefficients B11 = 1.5, B22 = 1, B33 = 3, B12 = 2, B13 =
2.5, and B23 = 3.5 (m3/mol).
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components in the mixture. In the present paper, this could be
achieved by replacing the equation for the osmotic pressure by
one for the chemical potential of the solvent.23

Thewes et al. distinguished between two main types of phase
separation: condensation (C) referring to changes in
concentration, which are similar for all components (in the
present paper: all Sm,ij < 0), and demixing (D) referring to

situations where some components are enriched in one phase
and depleted in other phase(s) (in the present paper: many
Sm,ij > 0 occur). Demixing is further subdivided into random
demixing (RD), localized demixing, and composition-driven
demixing (CD).

Next, Thewes et al. consider four regions in the phase
diagram and evaluate the character of phase separation in those
regions: (1) equal concentration of all components (previously
investigated already by Sear and Cuesta16), (2a) one
component dominates the mixture, (2b) two components
dominate the mixture (in their Supporting Information
section), and (3) a β distribution for the concentrations of
the components.

Condensation happens mostly at low concentrations, while
random and composition-driven demixing happens at higher
concentrations. Random demixing tends to occur in scenarios
where all components are present in the same amount, whereas
composition-driven demixing is more common for situations in
which the concentration of one of the components dominates.
In the localized demixing case, just a few components
dominate the phase behavior.

It is not possible to visualize the N-component case
addressed by Thewes et al.,26 but it would be useful to
identify the above regions of parameter space in terms of the
formalism in the present paper. For this purpose, a simpler N =
3 version of the special cases (1), (2a), and (2b) in the work
by Thewes et al. is considered. This N = 3 version is outside
the scope of the work by Thewes et al.26

Figure 3. (a, b) Spinodal surface and critical curve for the same parameter choice as shown in Figure 2 (N = 3 with virial coefficients B11 = 1.5, B22
= 1, B33 = 3, B12 = 2, B13 = 2.5, B23 = 3.5 (m3/mol)) from two different directions. Features plotted in black refer to physical solutions, and features
plotted in gray refer to unphysical solutions (at least one of the concentration coordinates is negative). Symbols: (.) spinodal surface; (green
asterisks) critical curve; (blue dotted lines) spinodal curve in the binary planes; (-.-.) axes (c1, c2) = (0,0) or (c2, c3) = (0, 0) or (c3, c1) = (0, 0). The
spinodal surface and critical curve in the left-top hand of panel (b) separates two unstable regions of the phase diagram (comparable to what is
shown in Figure 2f in ref 25). A video that reflects the three-dimensional aspects of this diagram more clearly is available in the Supporting
Information.

Table 2. Relations between the Variables Used in Ref 26 and
the Present Papera

description
Thewes et

al.26 present work

number of components M N
virial coefficient ϵαγ 2TBij

average virial coefficient b = −⟨ϵαγ⟩ −2T⟨Bij⟩
variance of virial coefficient (s2) s
normalized variance of the virial

coefficients =s s
M

total concentration = =
M

1 = =c ci
N

itot 1

average concentration =
M

=c c
N
tot

relative concentration =y c
c
i

solvent concentration ρ0

parameter, the slope of tie-line in the plane
(i, j)

−Sm,ij

parameter, the slope of the critical
manifold in the plane (i, j)

−Sc,ij

parameter to calculate the spinodal −Ssp,ij
aDespite playing the same role, the definition of the second virial
coefficients (ϵαγ, Bij) differs between both papers.
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The case of equal concentration of all components (example
1 in ref 26, previously investigated by Sear and Cuesta16)
requires

= = =c c c N i j N/ for all , 1, 2, ...,i j,sp ,sp tot (34)

corresponding to

=
= =( ) ( )B S B S

1

2

1

2k
N

ik ki k
N

jk kj1 sp, 1 sp, (35)

This condition is represented by the blue dot in Figure 4.

The case in which one of the components, e.g., ci,sp,
dominates the mixture (example 2 in ref 26) requires that the
denominator in eq 36

=
=( )

c
B S

1

2
i

k
N

ik ki
,sp

1 sp, (36)

is much smaller compared to the concentrations of the other
components for this point on the spinodal surface. In our
parameter space, this corresponds to parameter combinations
that are found close to the edge of the physical region (black-
dotted area) in Figure 1 or 2. This edge is indicated
qualitatively by red lines in Figure 4. In a similar way, two
dominant components (Supporting Information to their
paper) can be found close to the edge of the physical region
where two lines described by ∑k=1

N BikSsp,ki = 0 intersect. The
relevant locations are indicated qualitatively by three green
dots in Figure 4.
On the Applicability Window for the Present

Approach. The results in the present work are proposed to
complement the RMT approach, in case one is interested in
the spinodal manifolds. Again, the coexistence regions are not
addressed in RMT but are considered in our approach. In the

limit N → ∞, RMT is exact (under the assumption of
statistical independence of the virial coefficients and some
other assumptions underlying this theory) and likely more
efficient in calculating the spinodal when compared to the new
results in the present work�despite the fact that these results
are exact as well. On the other hand, RMT is expected to fail
for smaller N. This opens an applicability window for the
results of the present work.

Next, the question is addressed how small N needs to be to
have deviations from the exact result for N → ∞. RMT
calculates the eigenvalues of the Hessian matrix M1 and
determines the conditions under which the smallest of its
eigenvalues turns to zero, reflecting the boundary of the
spinodal area. One key property of RMT for large N is that the
distribution of eigenvalues of matrix M1 follows the so-called
Wigner’s semicircle law, with single outliers for lower and
higher values in case the average of the virial coefficients in M1
is lower or higher than zero (in the case of Example 1 in the
previous section, the requirement that ci,sp = ctot/N for all i only
leads to a shift in the overall eigenvalue spectrum of M1
compared to the eigenvalue spectrum of the matrix of second
virial coefficients B, with B(i, j) = Bij).

16 Deviations from the
semicircle law will occur at finite N, and the present section is
dedicated to find a qualitative estimate for which N, the
semicircle law, can still be considered a reasonable
approximation to the actual distribution. For that, the
eigenvalue distribution for a given set of virial coefficients Bij
was calculated, where the values of the virial coefficients were
drawn from a normal distribution.

In Figure 5, a number of eigenvalue distributions are shown
for different values of N, where the number of bins was chosen
to be (the rounded value of) √N to ensure a sufficient number
of eigenvalues per bin. The average value for the virial
coefficients is taken to be zero, and as a consequence, no
“outliers” (i.e., small peaks left or right of the distribution) are
observed. For N = 10 and N = 100, the distribution will
depend strongly on the specific draw of the virial coefficients,
but it can be shown that the semicircle law is satisfied if one
repeats the calculation thousands of times and adds each result
to the distribution. At N = 1000, the semicircle law starts to
become a fair representation of semicircle distribution,
although deviations between the actual distribution and the
semicircle law are still present. At N = 10,000, the semicircle
law gives a very accurate, although not exact, representation of
the calculated distribution. The value of N at which the
semicircle law is not satisfied anymore depends, of course, on
the specific criterion that is used to quantify the similarity, but
for now, an order-of-magnitude assessment suffices, indicating
that this occurs for N ≈ 103.

Thus, the results of the present work have a better validity
than the RMT for a rather large range of from N = 2 to ∼ 103.
In practice, the present theoretical approach can probably best
be used for mixtures of up to one or two dozen components.

■ DISCUSSION
In this paper, a generalization is presented of earlier work on
binary and ternary mixtures to mixtures of N macromolecular
components, with applications in mind for typically 2 ≤ N ≲
103. The model can be used in cases where the second virial
coefficients cannot be considered statistically independent.
Another potential application is in calculations on polydisperse
mixtures where the molecular weight distribution of the
components is approximated by binning specific molecular

Figure 4. Zoomed-in version of Figure 2, qualitatively indicating the
parameter regions for the examples discussed in the paper of Thewes
et al.26 but translated to the N = 3 case to facilitate visualization: (blue
dot) equal concentrations of all components as in their example 1;
(red lines) one dominant species as in their example 2�close to the
edges for the “physical” regions but away from intersections with
other edges; (green dots) two dominant species as in an example
described in their Supporting Information�at the intersection of two
edges. Black-dotted regions indicate physically relevant parameter
choices. The remaining lines have the same interpretation as in Figure
2. The second virial coefficients were chosen as B11 = 1.5, B22 = 1, B33
= 3, B12 = 2, B13 = 2.5, and B23 = 3.5 (m3/mol).
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weight ranges of the distribution as separate components (N
being dozens). Surprisingly, the model in eq 1 can be
reformulated in terms of the parameters characterizing the
spinodal and critical manifolds and coexisting phases. This is
not obvious at all when considering the governing eq 1. In
addition, the current approach allows us to determine the
critical manifolds and coexistence phases for small and large
numbers of components.

The first question that could be posed is whether the
expression for the Helmholtz free energy in eq 1 is the most
suitable for the challenge at hand. As an alternative, for
example, the Flory−Huggins model could be considered.
However, in ref 23, a comparison between the Flory−Huggins
model and the present model was made for N = 2, and it was
found that both models could be mapped onto each other up
to the second order of concentration. Both models can be
considered as mean-field theories, and their usefulness follow
from the insight that is provided, more than from exact
predictions. However, the model used in eq 1 is expected to
still give fair predictions (see e.g., ref 32, for examples for N =
2). The main challenge in the application of these models to
systems with many components comes from obtaining the
proper model parameters, such as Flory−Huggins parameters
or second virial coefficients. Random matrix theory gives direct

guidance on how the statistics of the second virial coefficient
distribution affects the predicted spinodal,16,26 which is an
advantage if one wants to choose a relevant set of values
without knowing each and every individual value.

In this paper, formal analytical expressions for spinodal
points in N dimensions are obtained in terms of the second-
order virial coefficients and a set of parameters Ssp,ij, Sc,ij, and
Sm,ij subject to well-defined product rules (see Table 1). The
expressions for binary23 and ternary25 mixtures were previously
derived, but in the present paper, these results are generalized
to N-component mixtures. The actual calculation involves a
choice for the values of each of the N(N + 1)/2 virial
coefficients Bij. This choice can either be based on the physical
properties of the components and determined experimentally
or estimated theoretically or alternatively be obtained through
a priori assumptions on the statistical distribution of the virial
coefficients.18 The present paper provides a procedure to
determine the spinodal and critical points using eqs 20 and 26,
where the calculation is achieved by choosing Sc,ij or Ssp,ij in the
range ⟨−∞,∞⟩ (although the transformation of the parameter
space strongly restricts these ranges, as illustrated for N = 3
and positive virial coefficients in the Results section). For
physically relevant solutions, the choices of Sc,ij or Ssp,ij should
lead to non-negative coordinates ci,c or ci,sp�something that

Figure 5. Eigenvalue spectrum of matrix B containing the virial coefficients Bij, for N = 10 (a), 100 (b), 1000 (c), and 10,000 (d). The solid line
represents the distribution according to Wigner’s semicircle law. In the case of example 1 in the work of Thewes et al.,26 the shape of the eigenvalue
distribution of B is the same as of M1 but only shif ted relative to the eigenvalue distribution of M1. The virial coefficients in the calculation were
drawn from a normal distribution with average 0 and variance 1. In cases for which the variance differs from unity, the horizontal axis of the
eigenvalue spectrum represents eigenvalue/variance.
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can be confirmed easily by substituting the selected Sc,ij or Ssp,ij
in eq 20. To calculate the critical points, additionally one of the
Sc,ij should be chosen in such a way that eq 29 is fulfilled also
(cf. Figure 1 for N = 3). Assuming Sc,j1 is the remaining
parameter to be chosen, the requirement from eq 29 leads to
an expression where the highest power in Sc,j1 is of the form
Sc,j1

3/cj,c2 (with 1/cj,c linear in Sc,j1), resulting in a fifth-order
polynomial in this remaining parameter Sc,j1. This polynomial
can be solved numerically.

One of the benefits of the present mathematical
representation of eqs 6 and 7 is that the signs of the chosen
Sm,ij make immediately clear if a solution represents segregative
or associative phase separation for the pair of components i
and j. Parameter choices with Sm,ij > 0 describe segregative
phase separation between components, whereas choices with
Sm,ij < 0 describe associative phase separation. As a
consequence, both phenomena need to occur in phase
diagrams for N ≥ 3, as previously inferred for ternary mixtures
(N = 3).25 The necessary existence of associative phase
separation (Sm,ij < 0) in some regions in the phase diagram,
even for systems with only positive virial coefficients (Bij > 0),
follows from the observation that a valid and physical
combination of two positive Sm,ik and Sm,kj can be combined
to a negative Sm,ij = −Sm,ik Sm,kj < 0. Note that Minton studied
associative phase separation for N = 2 for a slightly more
complicated version of the present model.34

Having chosen the virial coefficients, it is possible to sketch
an algorithm to calculate the phase diagrams. The first step is
to choose sets of (N − 1) values for the Ssp,ij. As indicated
above, the choices of Ssp,ij should lead to non-negative
coordinates ci,sp. This can be established a posteriori, but it
would be more efficient if an algorithm was identified that
ensured non-negative coordinates a priori as the fraction of
composition space with all coordinates being positive reduces
as 2−N for N components. For the N = 3 case, an effective
approach was demonstrated in the Results section, but for
larger N, a more general algorithm is required. A possible
strategy is to start from Sc,ij for a binary (sub)mixture
(obtaining one Sc,ij by solving eq 20 in ref 23 and choosing
the others zero, and systematically evaluating choices of Ssp,kl
(with (k, l) ≠ (i, j)) around this initial choice for Sc,ij and
repeat this for other binary (sub)mixtures in the N-component
mixture. It should be noted that this strategy will not
automatically provide all relevant solutions as regions leading
to non-negative coordinates in composition space are not
necessarily interconnected in the parameter space defined by
all Ssp,ij) (cf. Figure 1 for N = 3). The next step could be to
follow the hyperplanes defined by 1/ci,sp = 2(∑j=1

N BijSsp,ji) = 0
and explore the non-negativity of the coordinates around this
hyperplane. Only parameter choices resulting in all coordinates
ci,sp being non-negative need to be retained here. The solutions
derived this way circumvent the intermediate step of
calculating the eigenvalues of the Hessian matrix M1 that
features in approaches based on random matrix theory. In
addition, the present approach is applicable to all N ≥ 2, and
there are no requirements on the statistical properties of the
virial coefficients. It should be emphasized that the above
procedure to calculate the spinodal is an example of the
simplification that the method introduced in this paper has
brought.

The second step is to choose sets of (N − 2) values for Sc,ij.
This can be done by repeating the above steps but taking eq 29
into account. Possibly, a more efficient algorithm is to take the

parameter choices representing non-negative coordinates from
the previous steps and replace one of the parameters to ensure
that the set satisfies eq 29. This procedure will still produce
some parameter combinations representing negative coordi-
nates, but likely at a much lower frequency than if one starts
from a more random choice. Again, only parameter choices
resulting in all coordinates ci,c being non-negative need to be
retained here. Also, the calculation of the critical manifold has
become much simpler using the expressions described in this
paper.

The third step would start from the critical coordinates ci,c
and parameters Sc,ij identified in the previous steps and use
them as input for Sm,ij (and therefore ci,s) in the calculation of
the tie-lines. This will require a multidimensional optimization
procedure to systematically vary some of the coordinates on
the binodal and find consistent solutions for the parameters
Sm,ij (and therefore ci,s) and the coordinates for the binodal.
These solutions need to satisfy eqs 8, 11, 14, and 16
simultaneously. Although the techniques described in the
present paper provide more insight into the calculation of the
binodal for the present model, it should still be considered a
challenging numerical task.

Executing and optimizing the above sketch of an algorithm is
a daunting task and outside the scope of the present paper,
which had the aim to identify a possible route to do such
calculations for many components. If attempted, it is probably
wise to restrict oneself to a small part of the phase diagram
(e.g., the calculation of part of the spinodal) as it was found
previously that doing these calculations for the full phase
diagram and for a general choice of virial coefficients is not
straightforward, even for N = 3 (where the calculations in ref
25 were restricted to “symmetric” mixtures, with equal pure
second virial coefficients Bii and equal cross second virial
coefficients Bij).

Finally, it is noted that the phase separation criterion Bij
2 >

BiiBjj allows for negative second cross-virial coefficients Bij. The
critical point coordinates ci,c are non-negative when 1/ci,c =
∑j=1

N BijSc,ji ≥ 0 for all i (cf. eq 33) and where Bij is a symmetric
matrix, which is always satisfied when both the virial
coefficients and the tangents have the same sign and
sometimes satisfied if they have opposite signs. This allows
for the description of both segregative (Sm,ij > 0) and
associative (Sm,ij < 0) phase separation for N ≥ 3.

■ APPENDICES

Appendix A: Matrix Elements for the Coexistence Matrix
The derivation for the expressions of the elements of the
coexistence matrix in eqs 16 and 17 starts from eq 12 for the
osmotic pressure and eq 15 for the slopes of the tie-lines. The
aim is to eliminate all but one of the cjI for each of the rows in
the matrix equation. This can be achieved by rewriting the
expression for the slope as
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and rewriting the osmotic pressure equation as
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Substitution of eq 37 in eq 38 leads to
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Rearranging eq 39
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Multiplication by Sm,i1/ci,s leads to
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which can be rearranged as
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which defines the matrix elements of eq 17.

Appendix B: Derivation of Det M1 = 0

Here, it is shown that Det M1 = 0 when the coordinates of the

spinodal, eq 20, are substituted.
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In the first step, each i-th row is multiplied by Ssp,i1, and in the

next step, eq 21 is applied. Adding the sum of rows 2 to N to

the first row leads to
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as was to be demonstrated.
Appendix C: Proof for the Minor Rule
In Appendix B, it was shown that Det M1 = 0 when the
coordinates of the spinodal (cf. eq 20) are substituted. Now
consider the (Laplace) determinant expansion by minors along
the i-th row
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It follows that
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This must be true for all possible values of Bij, which can
only be achieved if (for fixed row i)
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The argument can be repeated for the determinant
expansion by minors along the j-th column, which leads (for
fixed column j) to
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By converting
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as was to be demonstrated.
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