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ABSTRACT

SNAPPI-DB, a high performance database of
Structures, iNterfaces and Alignments of Protein-
Protein Interactions, and its associated Java
Application Programming Interface (API) is
described. SNAPPI-DB contains structural data,
down to the level of atom co-ordinates, for each
structure in the Protein Data Bank (PDB) together with
associated data including SCOP, CATH, Pfam,
SWISSPROT, InterPro, GO terms, Protein Quaternary
Structures (PQS) and secondary structure informa-
tion. Domain—-domain interactions are stored for
multiple domain definitions and are classified by
their Superfamily/Family pair and interaction inter-
face. Each set of classified domain—-domain interac-
tions has an associated multiple structure alignment
for each partner. The API facilitates data access via
PDB entries, domains and domain—-domain interac-
tions. Rapid development, fast database access and
the ability to perform advanced queries without the
requirement for complex SQL statements are pro-
vided via an object oriented database and the Java
Data Objects (JDO) API. SNAPPI-DB contains many
features which are not available in other databases of
structural protein—protein interactions. It has been
applied in three studies on the properties of protein—
protein interactions and is currently being employed
to train a protein—protein interaction predictor and a
functional residue predictor. The database, APl and
manual are available for download at: http://www.
compbio.dundee.ac.uk/SNAPPI/downloads.jsp.

INTRODUCTION

Protein—protein interactions are fundamental to understanding
biological networks and cellular processes. Accordingly, many
experimental (1-3) and computational (4-10) techniques have

been developed to probe and predict interacting protein
partners. There are several databases of protein interactions
which store the information generated from high throughput
experimental methods and literature curation, for example,
GRID (11), the IntAct Project (12), BIND (13), MINT (14),
DIP (15-17) and the HPRD (18). STRING (19) also contains
data derived from database and literature mining and high-
throughput experimental data, but in addition contains predic-
tions based on genomic context analysis.

These computational and experimental techniques can
yield significant information about possible interactions but
they do not provide information about the structure of the
interfaces at the atomic level. High-resolution X-ray and
NMR structures can provide an atomic level of detail
and have therefore been utilised for both investigation
and prediction of protein—protein interactions. Analyses of
interaction sites from 3-D structures have identified a
number of properties that distinguish interaction sites from
other areas of protein surfaces, including: residue conserva-
tion across species; a tendency to be polar, uncharged
and hydrophobic; a planar protruding shape and a higher
solvent accessible area (20-25). These properties have
been exploited to predict interaction surfaces on protein
structures (26-28).

Predictions of protein—protein interactions using structural
data have been based on the hypothesis that if two proteins
are seen to interact in a known 3-D structure, their homo-
logues will interact in a similar fashion (29,30). A multimeric
threading method has been used to extend this approach to
distantly related homologous and analogous pairs (31). Struc-
tural data for interfaces has also been used to create templates
that capture the essential features of interactions sites and
which are employed to screen protein structures for the pres-
ence of interaction sites (32). Methods of protein—protein
interaction prediction have been extensively reviewed by
Szilagyi et al. (33).

The advantages of structural data have motivated the cre-
ation of several databases of protein-protein interactions
and interfaces including 3did (database of 3-D inter-
acting domains) (34), PIBASE (structurally defined protein
interfaces) (35), SCOPPI (a structural classification of
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protein—protein interfaces) (36), PSIBase (Protein Structural
Interactome map) (37) and PRISM (PRotein Interactions by
Structural Matching) (38).

In this paper, a system is presented which provides a
foundation for analysis and prediction of structural data with
an emphasis on domain—-domain interactions. This system
consists of SNAPPI-DB, a database of Structures, iNterfaces
and Alignments of Protein—Protein Interactions, and its asso-
ciated Application Programming Interface (API). SNAPPI-
DB, a high performance, object oriented database provides
consistent, enhanced quality structural data, enriched with
additional data such as multiple domain classifications, quater-
nary structures and domain-domain interactions. The API
facilitates rapid development, is extensible, allows easy access
to the data and circumvents the need to write complex SQL
queries.

The contents and creation of SNAPPI-DB are discussed,
followed by an overview of the API. The system is then com-
pared to other databases of protein—protein interactions
observed in structural data. Finally, the unique features of
the system and its applications are discussed.

CONTENT AND CREATION

SNAPPI-DB is currently a 38 GB database containing 31 136
Protein Data Bank (PDB) structures and associated data
including:

e Atomic level PDB data (39,40).

e SCOP (41-43), CATH (44-46) and Pfam (47-49) domains.

e Domains classified to different levels of similarity based on
the SCOP and CATH hierarchical classification system and
Family level for Pfam.

e Domain—domain interactions determined for SCOP, CATH
and Pfam domains down to the level of which atoms
interact.

e Domain—domain interactions classified to different levels
of similarity based on the SCOP and CATH hierarchical
classification system and Family level for Pfam.

e Domain—domain interactions classified by their interact-
ing interfaces (orientation in which the domains are
interacting).

e Multiple structural alignments of domain interactions from
each Family/Superfamily pair for each unique orientation
for SCOP, CATH and Pfam domain definitions.

e Biological units from Protein Quaternary Structures
(PQS) (50).

e Unique identifiers to link to the MSD data warehouse
(51,52).

e Interpro (53) regions/domains.

e GO (54) terms.

e SWISSPROT (55) identifiers and numbering.

MSD as the data source

The macromolecular structure database (MSD) (51,52) devel-
oped at the European Bioinformatics Institute (EBI) was
chosen as the raw data source for SNAPPI-DB as it contains
the complete contents of the PDB (39,40) together with
substantial complementary data pertaining to domains, func-
tional sites, protein families and sequences from other
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databases. These data include SCOP (41-43), CATH
(44-46), Pfam (47-49), SWISSPROT (55), InterPro (53),
GO terms (54), PQS (50), secondary structure information
and detailed ligand properties. In addition, a key feature
of the MSD is the improved consistency compared to PDB
flat files.

The design of SNAPPI-DB

The MSD is an extremely useful database that has been key
to the development of SNAPPI-DB; however, it was found
that the speed of the MSD was not sufficient for high perfor-
mance analysis at the atom level. In addition, the structure of
the MSD is not optimised for analysis at the level of domains
and does not contain the additional information stored by
SNAPPI-DB on domain—domain interactions and structural
multiple alignments of domain—domain interactions classified
by their interface.

In order to increase performance and to allow complex
analysis with a high degree of abstraction the data relevant
to SNAPPI-DB were migrated to an object-oriented database
developed with Java Data Objects (JDO) technology. JDO
is a persistence framework for the Java language that allows
the storage, retrieval and querying of objects. SNAPPI-DB
employs the FastObjects community edition JDO imple-
mentation (http://www.versant.net/index.html). The applica-
tion of JDO to storing biological has been described by
Srdanovic et al. (56).

In essence, JDO provides an automatic mapping between a
data-store and Java objects. This approach has many benefits.
Firstly, JDO reduces development time as performing com-
plex queries using this technology is easier than accessing a
relational database directly via SQL. Secondly, employing
JDO removes the complications inherent in mapping objects
to a relational database, a difficulty commonly known as the
‘object-relational impedance mismatch’ problem (57). This
feature greatly facilitates handling of biological data which
often fits the object model. Finally, the JDO specification is
intentionally data-store agnostic and so the JDO interface is
the same regardless of the database back-end. Possible
data-stores include relational databases, object databases
and XML files. The choice of data-store will depend upon
the user requirements. For example, a relational database is
preferable if queries are to be performed by another applica-
tion. In the case of high performance data mining an object-
oriented data-store has many advantages over other data-store
mechanisms such as lack of SQL overhead, speed, easy stor-
age of polymorphic entities and direct two way references
(56) and hence was choosen for SNAPPI-DB. However, if
required the data could be ported to a relational database
and the same API used.

Generation of domain-domain Interactions

Multiple domain definitions. Analysis of protein—protein inter-
actions is usually performed at the level of domains rather
than proteins since domains are often considered to be the
fundamental functional and structural units. Domains can
be assigned differently depending on the domain definition.
As some domains in one domain classification do not
have corresponding domains in another classification, some
domain—domain interactions may not be found if only one of
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the classifications is used. SNAPPI-DB was employed to anal-
yse the increase in the number of non-redundant domain—
domain interactions provided by employing both SCOP and
CATH domain definitions. It was observed that the use of
both CATH and SCOP domain assignments increases the num-
ber of non-redundant interacting domains by between 23.6 and
37.3%. Therefore, it is advantageous to employ both sets of
domain classifications simultaneously to investigate interac-
tions at the domain level. Accordingly, both SCOP and
CATH domain definitions are included in SNAPPI-DB.
Pfam (47-49) was also included as this is a widely used
sequence based domain definition which may be utilised to
link to proteins which do not have a solved structure.

In addition to these three domain definitions, InterPro (53)
domains, GO terms (54) and SWISSPROT (55) indexes are
all stored.

Probable quaternary structures. The coordinates that appear
in PDB files are those of the asymmetric unit (ASU) which
is the fraction of the crystallographic unit cell that has no
crystallographic symmetry. This may not be the biologically
relevant unit of structure, and so may lack some key protein—
protein interactions. In addition, some of the interactions seen
in the ASU of the crystal may be artefacts of crystallisation
and may not be biologically relevant (58,59).

There are two main sources of quaternary states: the state
suggested by the authors of the structure (for all structures
deposited since 1999) and computer predictions which
apply all relevant symmetry operations and then discriminate
between crystal packing artefacts and likely functional
protein—protein interactions. The true quaternary state of a
complex is not always straightforward to determine and
errors are made by both the authors of the structure and
in silico predictive methods. PQS (50) was chosen as the
source of quaternary structure since although the initial
assignments of biological units made by PQS are done by a
computer program, they are hand-curated for each structure
and errors and inconsistencies in the PQS database are cor-
rected and updates made continuously.

Previously, SNAPPI-DB was used to investigate the addi-
tional non-redundant domain—domain interaction interfaces
which are observed in the PQS predicted biological units
in comparison to the ASUs seen in PDB files (60). It was
determined that using PQS instead of the PDB increases
the number of additional non-redundant interaction inter-
faces observed in structural data by 34.5% (1455 inter-
faces). PQS also removes 2981 interactions from the data
set which it classifies as crystal packing artefacts. Therefore,
the domain—domain interactions used in SNAPPI-DB are
those observed in PQS biological units instead of the
ASUs. The interactions which are seen in ASUs and not
considered valid by PQS are also available to search in
the database if required.

Defining an interaction. Interactions between domains are
determined based on distance. Atoms are considered to inter-
act if the distance between them was less than the sum of
their van der Waals radii (61) +0.5 A. Two domains are con-
sidered to be interacting if there are =10 interacting residue
pairs between the domains. The threshold of 10 residues was
chosen based on inspection of interaction sites and study of

relevant literature. However, since an object-oriented design
is adopted this behaviour can be over-ridden by users.
For example, the distance based measure could be replaced
by solvent accessible area.

Clustering of interactions by Family/Superfamily
and interface

When analysing domain—domain interactions it is often nec-
essary to classify them into pairwise Families/Superfamilies
(e.g. in order to deal with redundancy in structural data).
The term ‘pairwise Family’ is used to describe the classifica-
tion of a domain—domain interaction based on the Family
classification of each of the interacting domains. Similarly,
the term ‘pairwise Superfamily’ is used to describe the
classification of a domain—domain interaction based on the
Superfamily classification of each of the interacting domains.
The database contains domain—domain interactions classified
to different levels of similarity (from Class through to
Family) based on the SCOP and CATH hierarchical classi-
fication system and Family level for Pfam. The first step in
Figure 1 shows an example of this process for the SCOP
domain classification system to the Superfamily level of
similarity.

SNAPPI-DB not only classifies interactions by their
domain classification but also by the interface with which
they are contacting. The second step in Figure 1 shows an
example of classification of domain—domain interactions by
their interface.

Method of clustering by different interaction interfaces. In
order to classify interactions by their interaction interface,
the relative orientation of the interacting pair was determined
using an implementation of the iRMSD (interaction root—
mean—square deviation) method described by Aloy et al.
(62). This method determines if two interacting domains
are at the same orientation as another pair of interacting
domains and thus if they are interacting with the same inter-
faces. An iRMSD cut-off of <10 A was applied to distinguish
interactions between pairs that have a similar orientation and
those that do not.

Structural alignments and positions of interacting residues.
Once the interactions are classified by Superfamily/Family
and by orientation, structural alignments are generated by
STAMP (63). The structural alignments are used to generate
a pair of alignments for each set of classified interactions as
shown in the final step in Figure 1. SNAPPI-DB contains
each of these alignments, the positions of the interacting resi-
dues at the surface as well as the transformation matrix
required for superposition.

Generation of the data

The downloadable version of SNAPPI-DB contains the data
generated after all of these steps have been performed. How-
ever, should the user have a local copy of the MSD Oracle
relational database they may wish to generate SNAPPI-DB
themselves. The system is designed so that this can be done
in four easy steps each of which can be customised to allow
flexibility.
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Figure 1. The classification of domain—domain interactions. The first step shows clustering by pairwise SCOP domain classification system at the Superfamily
level of similarity. Clustering is also performed for the CATH and Pfam classification systems and at all levels of similarity. The second step shows an example
of classification of domain—domain interactions by their interface. This classification is determined by the relative orientation of the interacting pair using an
implementation of the iRMSD (interaction root-mean square deviation) method described by Aloy et al. (62). The final step shows the generation of a pair of
multiple structure alignments, one from each partner of the interaction. These alignments are generated by STAMP (63).

THE APPLICATION PROGRAMMING INTERFACE

To efficiently deal with the complex and varied nature of the
data contained in SNAPPI-DB an easy to use Java API has
been developed. The API enables rapid development at a
high level of abstraction without any requirement for com-
plex SQL queries. In particular, specific design attention
was paid in providing a natural model of protein—protein
interaction data and the way bioinformaticians analyse such
data. For example, as most analysis is done on the level of
domains rather than chains, navigation via domains and
domain—domain interactions is as seamless as via PDB ent-
ries, and dealing with redundancy in structural data is a
core component of the API.

Java 5 is employed since it provides many features that are
not available in previous versions of Java such as generics,
enhanced ‘for’ loops and autoboxing/unboxing. The same
naming convention as the MSD is employed so that users
familiar with the MSD can rapidly learn the SNAPPI APIL
The same unique identifiers are also used so that structures
can be mapped back to the MSD.

Figure 2 shows a simplified UML diagram of the structure of
the API. As the database is object-oriented there is no differ-
ence between the relationships of the objects seen in the
UML diagram of the API and the way that the objects are stored

in the database. Although there are many different ways of
navigating through the data in SNAPPI-DB, the database is
optimised for searching either from (i) ‘Domains’ class: single
domains classified by Family, (ii) ‘DomainInteractions’ class:
domain—domain interactions classified by Family pair,
(iii) ‘OrientationSimilarInteractions’ class: domain—domain
interactions classified by orientation of interaction and
(iv) ‘Entries’ class: collection of structures. These four key
ways to access the data can be seen at the top of the UML dia-
gram and are summarised below along with pseudo-code.

Navigation via Domains

The ‘Domains’ singleton (sole instance of a class) contains a
list of domains classified by their domain Family. Domains
can be easily accessed by their domain classification to any
level of the domain hierarchy for SCOP and CATH and at
the Family level for Pfam. For example, for the SCOP
domain definition at the Family level of similarity there is a
map which stores the name of the SCOP Family (e.g. a.1.1.1)
as the key and a list of all of the domains with this classifica-
tion as the value. In the pseudo-code in Figure 3, the (Scop.-
class, 4) is used to denote the Family level of similarity in the
SCOP hierarchy. If this analysis was performed at the super-
family level (e.g. a.1.1) then this number would be 3.
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Figure 2. Simplified UML diagram of the structure of the SNAPPI-DB API. There are four main points of entry to the data in SNAPPI-DB: (i) ‘Domains’ class:
single domains classified by Family, (ii) ‘Domainlnteractions’ class: domain—domain interactions classified by Family pair, (iii) ‘OrientationSimilarInteractions’
class: domain—domain interactions classified by orientation of interaction and (iv) ‘Entries’ class: collection of structures.

One of the key aspects when working with structural data
is the problem of redundancy within the data set. The API
deals with this explicitly by having the option to select
only one domain from a set of domains classified to any
level of the domain hierarchy. For example, if the similarity
of the domains was set to be the SCOP Family level of simi-
larity then the API would return one domain to represent each
Family. If a more stringent level of similarity was set, for
example, at the Superfamily level of similarity, then the
API would return one domain to represent each Superfamily.
Which domain is selected to represent the group is deter-
mined by a (user overridable) strategy object passed in.
Implementations could, for example, return the highest res-
olution domain or a randomly selected domain.

Navigation via DomainInteractions

The ‘Domainlnteractions’ singleton contains a list of
domain—domain interactions grouped by their pairwise
domain classification. Each pair of interacting domains can
be accessed by their pairwise domain classification to any
level of the domain hierarchy for SCOP and CATH and at
the Family level for Pfam. For example, for the SCOP
domain definition at the Family level of similarity there is a

map which stores the name of the pairwise SCOP Family
(e.g. a.1.1.1-b.1.2.3) as the key and a list of all of the domain
interactions with this classification as the value. In a similar
way to Domains, a non-redundant set of domain—domain
interactions can easily be generated. Example psuedo-code
is shown in Figure 4.

Navigation via OrientatedDomlInts

The ‘OrientationSimilarInteractions’ singleton contains a list
of domain—domain interactions classified by their inter-
face orientation. In a similar way to the DomainInteractions
above, each domain—domain interaction is classified by their
Family pair but in addition to this they are then further classi-
fied by the orientation of the interaction giving a collection
of lists of domain—domain interactions for each pairwise
Family. For example, there is a map with pairwise SCOP
Family (e.g. a.1.1.1-b.1.4.7) as the key and a collection of
lists of all of the domain—domain interactions with this pairwise
Family classification and classified by orientation as the value.
Rather than storing DomainInteraction objects in these lists
OrientatedDomlInt objects are stored. An OrientatedDomInt
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/[This gets the Domains classified by their Scop family (denoted by 4) class

Map<Family,Collection<Domain>>domainsHashedByFamily
=Domains.getDomainsHashedByFamily(Scop.class, 4);

for (Map.Entry<Family, Collection<Domain>> map : domainsHashedByFamily.entrySet())

{

/[The Domain Family Classification is obtained by map.getKey() e.g. scop family a.1.2.3,
System.out.printin("Scop Family =" + map.getKey());

/[This iterates through all the Domains with the same family classification

for (Domain domain : map.getValue())

{

/[This iterates through all of the Residues within a Domain

for (Residue r : c.getResidues())

{

/[This iterates through all of the Atoms within a Residue

for (Atom a : r.getAtoms())

/[This gets the coordinates for an Atom

float[] coordinates = a.getCoordinates();

/[This prints out the coordinates for an Atom
System.out.printin(coordinates[0] + "," + coordinates[1] + "," + coordinates[2]);

}

Figure 3. Psuedo-code for navigation via Domains.

Pseudo-code

/[This gets the Domain-Domain Interactions classified by their Scop family pair class

Map<Pair<Family>,Collection<Domaininteraction>>domIntsHashedByFamilyPair
=Domainlinteractions.getDomainlinteractionsHashedByFamilyPair(Scop.class, 4)

for (Map.Entry<Pair<Family>,Collection<Domaininteraction>> map : domIntsHashedByFamilyPair.entrySet())

{
,*

The domain interaction family classification is obtained by map.getKey()

e.g. scop pairwise family a.1.2.3 interacting

*/

System.out.printin("Scop pairwise family =" + map.getKey());

/[This iterates through all the Domain Interactions with the same family classification
for (Domaininteraction domaininteraction : map.getValue())

/IDo Something

}
}

Figure 4. Psuedo-code for navigation via DomainInteractions.

contains a Domainlnteraction and additional information
regarding the transform and alignment of the DomainInterac-
tion. Example psuedo-code is shown in Figure 5.

Navigation via Entries

The ‘Entries’ singleton contains a list of PDB Entries. Navi-
gation through each PDB Entry is straightforward as the data
are stored in a hierarchal structure as shown in Figure 2.

Each Entry contains one or more Assemblies (PQS predicted
structures), each Assembly contains one or more Chains.
Each Chain contains one or more Residues and each Residue
contains one or more Atoms. Each level of the hierarchy also
contains other information relevant to the item. For example,
each Atom contains the co-ordinate positions of the Atom.
The Assemblies also contain domains and domain interactions
of SCOP, CATH and Pfam. Example psuedo-code is shown
in Figure 6.
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Pseudo-code

/[This gets the Domain-Domain Interactions classified by their pairwise Scop Family class and orientation
Map<Pair<Family>, Collection<Collection<OrientatedDomInt>>> domainlinteractionsHashedByFamilyPair

= OrientationSimilarinteractions.getDomaininteractionsHashedByFamilyPair(Scop.class, 4);
for (Map.Entry<Pair<Family>, Collection<Collection<OrientatedDomInt>>> mapEntry :
domaininteractionsHashedByFamilyPair.entrySet())

{
System.out.printin("mapEntry.getKey() = " + mapEntry.getKey());
for (Collection<OrientatedDomint> orientatedDomlInts : mapEntry.getValue())
{
for (OrientatedDomint orientatedDomlnt : orientatedDomints)
{
System.out.printin(");
for (Character character : orientatedDomInt.getAlignmentA())
{
System.out.print(character);
}
System.out.printin(");
for (Character character : orientatedDomInt.getAlignmentB())
{
System.out.print(character);
}
System.out.printin(");
}
}
}

Figure 5. Psuedo-code for navigation via OrientatedDomlInts.

Pseudo-code

/[This iterates through all of the PDB entries stored in the database
for (Entry e : Entries.getEntries())

{
/[This iterates through all of the PQS Assemblies within an Entry
for (Assembly ass : e.getAssemblies())
{
/[This iterates through all of the Chains within an Assembly
for (Chain c : ass.getChains())
/[This iterates through all of the Residues within a Chain
for (Residue r : c.getResidues())
/[This iterates through all of the Atoms within a Residue
for (Atom a : r.getAtoms())
{
/[This gets the coordinates for an Atom
float[] coordinates = a.getCoordinates();
/[This prints out the coordinates for an Atom
System.out.printin(coordinates[0] + "," + coordinates[1] + "," + coordinates[2]);
}
}
}
}
}

Figure 6. Psuedo-code for navigation via Entries.



UTILITY AND DISCUSSION

Databases of structural domain—domain interactions

When the development of SNAPPI-DB began there were no
extensive domain—domain interaction databases based on
structural data; however, recently, there have been several
databases made available. The fact that so many have been
developed shows the timely aspect of investigation of
domain—domain interactions using structural data. SNAPPI-
DB and its associated API has several features which set it
apart from other databases.

SNAPPI-DB contains different forms of derived data,
including multiple domain definitions, PQS, GO terms, Inter-
pro, and SWISSPROT and secondary structure information.
The database uses the same unique identifiers as the full
MSD data warehouse and so extra information required
which is contained within the MSD but is not in SNAPPI-
DB can easily be obtained. SNAPPI-DB classifies inter-
actions based on the different interfaces with which they
interact and provides information about which residues and
atoms are in contact. A key advantage of SNAPPI-DB is
that each set of classified domain—domain interactions has
an associated multiple structural alignment for each partner.
These alignments can be used for many tasks such as analysis
of conservation patterns for domain—domain interactions or
to train protein—protein interaction predictors.

The use of the JDO technology has several advantages
(as discussed in depth in the ‘Construction’ Section). One
important advantage is that the JDO interface is data store
agnostic and so the database could be stored as either a rela-
tional database or an object-oriented database. Another key
advantage is the high performance nature of SNAPPI-DB.
Srdanovic et al. (56) found that the Fast Object Community
Edition implementation of JDO had faster performance than
the relational database implementation. The authors of the
PSIBase system (37) developed a new algorithm (64) for deter-
mining interacting domains at the atomic level on the grounds
that this task would take months using existing methods. In
contrast, determining the interacting domains at the atomic
level for 31 136 structures takes ~3 h on a standard desktop
machine (3 GHz PIV, 1 GB RAM) using SNAPPI-DB.

The main advantage of the system comes when the data-
base is used in conjunction with the API. As far as we are
aware no other databases come with an associated API and
therefore they can not be used at the higher level of abstrac-
tion that is provided by this system.

Applicability

SNAPPI-DB has been employed in three different investiga-
tions already: an investigation into biological units and their
effect upon the properties and prediction of protein—protein
interactions (60), a comparison of comparison of SCOP
and CATH with respect to domain—domain interactions and
investigation into the orientation at which proteins interact.
In addition SNAPPI-DB is currently being used to train
both a functional residue predictor and a protein—protein
interaction predictor. These methods demonstrate the wide
applicability of this system in investigations and predictions
of protein—protein interactions using structural data.
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FUTURE DEVELOPMENTS

It is intended to expand SNAPPI-DB in several ways. At the
moment it is not easy to update SNAPPI-DB to take into
account new entries being added to the MSD. This problem
will be resolved by providing update scripts and by offering
multiple versions of SNAPPI-DB and the API for download.
As JDO allows storage of the data in any form a relational
database form of SNAPPI-DB will also be created so that
users that prefer not to access the data via the API can do
so. In addition, HMM profiles of the multiple structural align-
ments will be generated for matching to sequences of putative
interacting proteins.

A web interface to SNAPPI-DB, SNAPPI-View, is under
development and is currently available to perform simple
searches of the database (www.compbio.dundee.co.uk/
SNAPPI/search.jsp). SNAPPI-View will be extended to pro-
vide functions such as viewing the domain-domain interac-
tion alignments, the structures of the interacting domains
and protein interaction networks. As the functionality of the
full SNAPPI-View interface is extensive, the web interface
will be presented elsewhere.

CONCLUSIONS

In summary, a database of Structures, iNterfaces and Align-
ments of Protein—Protein Interactions (SNAPPI-DB) and
corresponding API has been created. The main features of
SNAPPI-DB are:

e The API is specifically designed for analysis at the level of
domains and domain—domain interactions in addition to
PDB entries.

e The core data are derived from a consistent and high
quality data source, the MSD data warehouse.

e The JDO technology provides abstraction from complex
SQL queries and allows fast development time.

e The object-oriented data store allows high performance and
provides a more appropriate model for biological data than
does a relational database schema.

e SNAPPI-DB uses multiple domain definitions and PQS-
generated biological structures.

e SNAPPI-DB uses the same unique identifiers as the MSD
to facilitate interoperability with the MSD warehouse.

e SNAPPI-DB contains many forms of derived data such as
SCOP, CATH, Pfam, InterPro, SWISSPROT, GO terms,
PQS and secondary structure information.

e The domain—domain interfaces are classified at every level
of the CATH and SCOP hierarchies and and by interaction
interface type.

e Multiple structural alignments are provided for
domain—domain interactions classified by interface
orientation.

AVAILABILITY AND REQUIREMENTS

The SNAPPI package includes the Java 5 API, Ant tasks to
generate the compiled code, XML files which contain the
details of the objects to be stored, a properties file which stores
the file locations and connection details specific to the user, a
manual, source code and documentation and of course
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SNAPPI-DB. The documentation comes in the form of anno-
tated JavaDocs and an in-depth manual. The source code
contains many classes of example code.

The SNAPPI-DB package is available for download from
www.compbio.dundee.ac.uk/SNAPPI/downloads.jsp. For any
help or queries contact emily @compbio.dundee.ac.uk.

SNAPPI-DB and the API are available for both Linux and
Windows operating systems and the database will work in
parallel for read access. The system will be updated approxi-
mately every 6 months, while changes to the derived data
such as SCOP and CATH releases will parallel the changes
made to the MSD.

The system is distributed under the GPL licence. For alter-
native non-exclusive licensing options email geoff @compbio.
dundee.ac.uk.
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