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Abstract
In oncology, two-dimensional in-vitro culture models are the standard test beds for the dis-

covery and development of cancer treatments, but in the last decades, evidence emerged

that such models have low predictive value for clinical efficacy. Therefore they are increas-

ingly complemented by more physiologically relevant 3D models, such as spheroid micro-

tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can

characterize the structure of such volumetric cultures and, for example, cell proliferation.

However, several issues hamper accurate analysis. In particular, signal attenuation within

the tissue of the spheroids prevents the acquisition of a complete image for spheroids over

100 micrometers in diameter. And quantitative analysis of large 3D image data sets is chal-

lenging, creating a need for methods which can be applied to large-scale experiments and

account for impeding factors. We present a robust, computationally inexpensive 2.5D

method for the segmentation of spheroid cultures and for counting proliferating cells within

them. The spheroids are assumed to be approximately ellipsoid in shape. They are identi-

fied from information present in the Maximum Intensity Projection (MIP) and the correspond-

ing height view, also known as Z-buffer. It alerts the user when potential bias-introducing

factors cannot be compensated for and includes a compensation for signal attenuation.

Introduction
Drug discovery and development in oncology has a success rate as low as 6% [1]. The tradi-
tional models used for oncology drug testing are monolayer cultures of tumor cells grown on
glass and plastic substrates. These models are very different from solid tumor behavior in vivo.
In comparison, 3D cultures are thought to more closely mimic the tumor microenvironment
[2], as they allow more complex interactions between cancer and stromal cells, and expose cells

PLOSONE | DOI:10.1371/journal.pone.0156942 June 15, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Barbier M, Jaensch S, Cornelissen F, Vidic
S, Gjerde K, de Hoogt R, et al. (2016) Ellipsoid
Segmentation Model for Analyzing Light-Attenuated
3D Confocal Image Stacks of Fluorescent Multi-
Cellular Spheroids. PLoS ONE 11(6): e0156942.
doi:10.1371/journal.pone.0156942

Editor: Thomas Abraham, Pennsylvania State
Hershey College of Medicine, UNITED STATES

Received: September 4, 2015

Accepted: May 23, 2016

Published: June 15, 2016

Copyright: © 2016 Barbier et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: S1 File is available as
supporting information. The described files Data_3,
Data_4, Data_5 and Data_6 are available from the
Dryad data repository (doi:10.5061/dryad.0m9n7).

Funding: Authors MB, SJ, FC, RH, RG, EG, and
YTC were funded by Janssen Pharmaceutical
Companies of Johnson & Johnson. Authors SV and
KG were supported by Innovative Medicines Initiative
Joint Undertaking under Grant agreement n° 115188,
the resources of which are composed of financial
contribution from the European Union’s Seventh
Framework Programme (FP7/2007–2013) and

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156942&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.0m9n7


to more realistic mechanic forces. Studies have demonstrated important differences in tran-
scription profiles [3] and drug sensitivity [4–8] between 2D and 3D cell culture systems. For a
recent review, see [9]. The PREDECT consortium aims to validate various 3D cell culture mod-
els by comparing their histology and protein expression with that found in patient samples
[10].

An important category of such models are spheroid microtumors grown in a matrix, such
as Matrigel1, with or without the presence of supporting stromal cells. Typically, cancer cells
are seeded in the extracellular matrix in each microtiterplate well, and over time multiple
spheroids of different sizes develop. These 3D multi-cellular spheroid models reflect more
closely the nutrient, oxygen and drug gradients that can be found in a tumor, reproducing hyp-
oxic, proliferative, apoptotic and necrotic regions [11, 12]. Suitable dyes or antibodies may be
applied to detect these regions/processes, but an accurate quantification of the spatial distribu-
tion within the 3D spheroid, in relation to spheroid size, is challenging.

Gross qualitative differences can be detected by visual assessment of micrographs. But accu-
rate and reproducible quantification of statistically significant differences requires automated
image analysis, especially in large-scale studies. To extract all spatial information from a 3D
sample, it is necessary to apply 3D image analysis, but this is a computationally expensive pro-
cess. Moreover, image resolution is much poorer along the axial direction, so there is a limited
information gain by treating the z axis as equivalent to the others. To circumvent this, many
methods apply a hybrid form known as 2.5D analysis [13, 14]. Typically, a 2D projection,
which by itself sacrifices all depth information, is combined with a method to extract and store
a limited amount of depth information. In order to get meaningful information out of 2.5D
image analysis, these methods then need to incorporate assumptions that permit extrapolation
back to three dimensions. Orthogonal validation, using independently generated "ground
truth" is essential to ensure that the analysis sufficiently represents the original data set.

Accurate extraction of quantitative features requires adequate quality images as a starting
point. Acquisition of such 3D image data sets is complicated by a number of issues that are less
important in, or absent from a 2D setting. These include spherical and chromatic aberrations
(which, for a limited sample thickness, are usually corrected for in objective design), poor axial
resolution, photobleaching and phototoxicity during long data acquisitions, and light absorp-
tion and scattering resulting in signal attenuation deeper into the sample. In this paper, we will
focus on how to address the experimental errors due to light attenuation.

In many applications, the effects of light attenuation can be reduced. Tissue samples can be
chemically cleared before imaging by using mounting media such as SeeDB [15], Clarity [16],
ClearT [17], or Scale [18]. As the effects of light scattering are reduced at longer wavelengths,
image quality is greatly improved by multiphoton microscopy, which uses infra-red excitation
light that penetrates deeper into tissue [19]. Light-sheet fluorescence microscopy reduces the
impact of light attenuation by illuminating and measuring a sample from multiple angles [20,
21]. However, most of these technologies are incompatible with medium and high throughput
experiments on hundreds or thousands of samples. These currently need to be performed
using standard high-content imagers and microtiter plates. This limits the options to spinning
disk confocal microscopy, the use of far-red dyes, and the application of software techniques to
correct for light attenuation after acquisition [22, 23].

Diverse tools for the analysis of fluorescent images of 3D spheroid cultures, such as the
quantification of proliferation markers used here, are available. General purpose image analysis
tools include both commercially available packages, such as, Imaris (Bitplane AG, Switzerland,
http://bitplane.com) and Volocity (PerkinElmer, Inc., USA), and freely available open source
software tools such as FIJI (ImageJ) [24] and ICY [25]. Moreover, in the context of multicellu-
lar spheroids and fluorescent spot detection, multiple tools compatible with high throughput
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analysis, and dedicated to specific tasks, exist: Amida (spheroid morphology) [26], AnaSP
(spheroid volume)[13], MINS (nuclear segmentation) [27], CellSegm (general segmentation)
[28], smart 3D-FISH (spot detection) [29], and goIFISH (spot detection) [30]. However, there
is no analysis tool to date that addresses spheroid signal attenuation, and can be used in a high
throughput fashion. In this paper, a 2.5D image analysis method for 3D spheroid cultures, suit-
able for Z-stack data acquired by confocal high-content imagers, is presented. Our method seg-
ments the entire 3D spheroid and detects the single labeled cells within. These cells are stained
with a specific marker, for example a marker for cell proliferation such as EdU. It is conve-
niently applicable to medium throughput experiments to assess cancer cell growth under vary-
ing culture and treatment conditions. The performance of the proposed approach is compared
with a simple 2D MIP analysis method, and a full 3D analysis executed using Bitplane Imaris.

Results and Discussion
The proposed analysis method consists of two major parts: the segmentation of the cancer
spheroids and the identification of positive cells, based on fluorescent labeling present in all
cancer cells and a specific marker, respectively. Both are explained in detail in the subsequent
sections. In our example data set, the cancer cells are labeled with RFP and the specific marker
is EdU, a marker for proliferating cells, as detailed in the Materials & Methods section. The
parameters and output features of the method are given in Tables 1 and 2.

Segmentation of multi-cellular spheroids
The first step is a 2D segmentation of the spheroids on maximum intensity projections (MIPs).
Subsequently, ellipses are fitted to the segmented 2D spheroid-masks. Finally, these ellipses are
extrapolated to 3D ellipsoids. The procedure assumes that the 3D image stacks are corrected
for uneven background illumination, to eliminate any systematic bias in the height view of the
background pixels, and the distance between two subsequent slices (often referred to as z-step)
should be less than the average diameter of a cell.

2D segmentation. Fig 1 illustrates the concepts of the MIP and corresponding height
view. At each (x,y) coordinate, we obtain the highest intensity value and z-coordinate of the
corresponding voxel. For the basic segmentation of the spheroids, which is illustrated in Fig 2,
we first select locally homogeneous regions from the height view (shown in 2(b)) [31]. Such
regions correspond to object (spheroid) pixels while background pixels tend to be more

Table 1. Input parameters of the algorithm.

Algorithm step Parameter Default value

General Average cell diameter: The expectation value of the cell diameter 12 μm

2D segmentation maxz-range: Threshold on the range-filtered height view Calculated from the histogram of the
range-filtered height view.

rrange: Neighborhood radius for the range filter 3 μm (one-fourth of the cell diameter)

minMIP: threshold on the mean intensity value of the spheroids Mean of the background intensity of the
MIP

3D ellipsoid
approximation

minradius: The z-dimension of spheroids with radii below this threshold is put to the
mean radius in the plane instead of determined from the 3D signal.

24 μm

Attenuation Intensity attenuation percentage (threshold): The minimal percentage of the signal
that has to be retained to be analyzable

50%

Spot detection Maximal spot radius: Maximal expected spot radius, larger spots are split 8 μm (average nucleus diameter)

Average spot radius: Scale for the spot detection Optimal scale calculated from the LoG
of the MIP

doi:10.1371/journal.pone.0156942.t001
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Table 2. Output features of the algorithm.

Feature Description

Spheroid center The coordinates of the 3D ellipsoid center of the spheroid

Ellipsoid axes The axes and their dimensions of the fitted ellipsoid

Spheroid mean intensity The mean intensity of the 2D spheroid mask

# spots per spheroid The number of positive cells detected in a spheroid

Spot center The coordinates of the center of a detected positive cell

Spot intensity The intensity in the original image of the spot

Circularity A Podzceck-shape factor determining the resemblance of the spheroid
contour to a circle

Roundness class of the
spheroid

Elliptical or non-elliptical

Attenuation class of the
spheroid

Full, half, or not analyzable spheroid

Spheroid area Area of the 2D spheroid mask

Spheroid volume Volume of the 3D ellipsoid

doi:10.1371/journal.pone.0156942.t002

Fig 1. MIP and corresponding height view. The Maximum Intensity Projection (MIP) and the height view of an image are shown (a-b) and for a single xz-
plane from the image (c) it is indicated (by red/white squares) where the pixels originated from, that is, which z-coordinates resulted in the highest intensity.
The corresponding z-values get mapped to the height view, while the pixel intensities are mapped to the MIP. When two spheroids are overlapping in the
lateral direction, the MIP will show the spheroid with the highest intensity.

doi:10.1371/journal.pone.0156942.g001
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random in z-coordinate. By applying a range filter, which calculates for every pixel the maximal
intensity difference of the neighboring pixels within a radius rrange, a measure for the local
inhomogeneity is obtained, as shown in Fig 2(C). Fig 2(E) shows the histogram of height differ-
ences in Fig 2(C), indicating that the large number of pixels at the lower values belong to the
spheroid regions. Applying a threshold maxz-range on the image in Fig 2(C), a value determined
by the extent of the first peak in the histogram, gives rise to separation of objects from back-
ground. Finally, the resulting foreground objects are identified using connected-component
labeling. Another threshold minMIP, determined by the mean of the background MIP intensity,
is applied on the mean intensity of each object in the MIP to ensure that the detected objects
have an expected minimal fluorescence intensity, characteristic for the spheroids. Applying
such a threshold prevents the detection of spurious objects.

Fitting of ellipses to 2D spheroid-masks. The fitting of ellipses to the spheroids seg-
mented in 2D is done by minimizing the mean square error of the difference with the seg-
mented 2D mask. During this step, we assume that the elliptical spheroids are verified by
measuring the circularity of the 2D segmentation masks of the spheroids. Spheroid-masks with
low 2D circularity do not have a 2D ellipse shape, and will not give rise to a satisfying 3D ellip-
soid fit. There may be multiple reasons, beyond actual irregularity in spheroid shape, that can

Fig 2. Segmentation of the spheroids in 2D. (a): Part of the maximum intensity projection image of the RFP channel of a 3D image stack, (b):
corresponding height view, (c): After applying a range filter on the height view, giving the local variance in the z-depth, where bright (dark) pixels indicate
background (spheroid) regions, (d): histogram of (a), showing that the foreground cannot distinguished clearly, (e): histogram of (c), showing that separation
between foreground and background is possible. (f) after segmentation.

doi:10.1371/journal.pone.0156942.g002
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contribute to the production of irregular 2D masks. These include spheroids which are not
fully visible in the MIP because they are obscured by other brighter spheroids, and spheroids
that were incorrectly segmented during the 2D segmentation step, for example, by merging
two spheroids. Since these spheroids would give rise to an incorrect 3D segmentation mask,
they are filtered out based on their 2D circularity.

3D ellipsoid approximation. Next, a 3D ellipsoid is fit to each of the 2D ellipses. In
employing this procedure, we assume that the spheroid has an ellipsoidal shape, which is either
nearly spherical, or satisfies the less stringent condition that two of the ellipsoid axes are ori-
ented in the xy-plane. The former case is applicable to spheroids cultivated in a homogenous
matrix, and the latter case can occur for spheroid cultures seeded in a layer sandwiched
between two matrices. As we assume that the 3rd ellipsoid axis is along the z-axis, the ellipsoid
center position and length of the 3rd axis has to be estimated. The (x,y)-coordinates of the cen-
ter of the ellipsoid in 3D are assumed to be the (x,y)-coordinates of the center of the 2D ellipse,
the z-coordinate of the center and the 3rd ellipsoid axis length are derived from the intensity
profile along the vertical axis. Fig 3 shows the resulting fitted ellipsoids for an image stack of a
3D spheroid culture. The spheroid volume can now also be estimated.

Determination of the analyzable ellipsoid region. There is a decreasing intensity gradi-
ent from the surface towards the center of a spheroid. Therefore, cells can be incorrectly identi-
fied. This issue is illustrated in Fig 4(A), where xy- and xz-slices through the center of a
spheroid show the typical intensity distribution due to signal attenuation. Note that the signal
of the EdU channel is also reduced in the lower parts of the spheroid, which renders the detec-
tion of EdU positive cells impossible in that region. Notice also that signal attenuation due to
deep tissue imaging is not the only reason for signal detoriation. When using for example point
scanning microscopes, other factors, such as photobleaching, can also become significant.

As all cells in the spheroids carry a stable fluorescent marker (thus assumed to be constant
within a single spheroid), their vertical intensity profile through the center of the spheroid can
be used as a measure for the signal attenuation. Indeed, a gradual reduction of the stable
marker signal (here corresponding to the RFP signal) with increasing depth in the spheroid tis-
sue is observed in Fig 4(C). In order to measure the maximum depth in the spheroid up to
which positive cells can be accurately detected, we assume the attenuation of the specific fluo-
rescent marker to be comparable to that of the stable marker. When the wavelengths of both
channels do not differ significantly, this is a reasonable assumption. Given a user-defined value
for the minimal percentage of intensity that has to be retained after attenuation of the signal,
we can determine the depth of the analyzable region of the spheroid (see the Materials & Meth-
ods section).

The analyzable depth is subsequently compared to the spheroid vertical diameter. Three dis-
tinct cases are identified (as illustrated in S1 Fig):

1. The entire spheroid is visible. Results are not affected by light attenuation.

2. More than half of the spheroid is visible. The upper hemisphere of the ellipsoid will be ana-
lyzed and the results extrapolated on the lower half, assuming similar characteristics.

3. Less than half of the spheroid is visible. The spheroid cannot be analyzed because positive
cell counts cannot be extrapolated from the spheroid surface to the core, where the availabil-
ity of oxygen and nutrients is expected to be different [11].

Since only half of a spheroid needs to be visible, our proposed analysis procedure extends
the window of spheroid sizes that can be analyzed, allowing diameters to be approximately
twice as large. Also, spheroids that are too large for full analysis (i.e., case three) will be identi-
fied and may be omitted from sample analysis. In the case that a significant amount of
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spheroids has to be omitted, the proposed analysis is not appropriate anymore and other types
of analysis of the spheroid cell cultures have to be utilized.

Validation of the ellipsoid approximation. In order to test the proposed 2D segmenta-
tion step, we compared the results of the automated with a manual 2D segmentation of the
data, assessing the sensitivity of the spheroid detection and the accuracy of the resulting con-
tours as defined in detail in the Materials & Methods section. The MIPs of 8 image stacks were
manually segmented as described in the Materials & Methods section, and we found an average
accuracy of 0.911 ± 0.066, and a sensitivity of 0.928, within the 95% confidence interval [0.909,
0.944]. Sensitivity strongly depends on the threshold minMIP, and whether a segmented con-
tour is categorized as spheroid or as noise, especially for spheroids that have a mean intensity
close to background. In S2(A) and S2(B) Fig we plotted the sensitivity and the ratio of false pos-
itives (FP) and their Wilson score interval as function of the intensity threshold minMIP. The

Fig 3. Fitting of 3D ellipsoids. (a) The segmented spheroids in 2D, overlaid on the MIP. (b-c) Ellipsoids fitted to the spheroid mask in (a). The center slice
projections of the spheroids from (b) the top (the xy-plane) and (c) the side (the xz-plane), are shown overlaid with the fitted ellipsoids.

doi:10.1371/journal.pone.0156942.g003
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sensitivity decreases together with the number of false positives with increasing threshold, as
such there is a certain trade-off to consider when setting the threshold value. S2(C) and S2(D)
Fig illustrate the mean intensity of the spheroid as function of different categories, indicating
that spheroid contours classified as false positives (FP) have generally a low intensity. The accu-
racy of the segmentation contours of the spheroids which are identified in the GT as “well sepa-
rated spheroids” is significantly high (an exactly matching contour has an accuracy equal to 1)
and shows that the non-homogeneity of the height view is a valid measure for the segmentation
of this type of cell cultures.

Spheroids overlapping in the MIP are unsuitable for analysis (as illustrated in Fig 5(A)). Since
the circularity of overlapping spheroids is expected to be lower, identifying spheroids with a small
value for circularity should allow for removal of most of these objects. To check whether there
indeed is a correlation between overlaps and spheroid roundness, the circularity as determined by
the 2D automatic segmentation mask was plotted against the distinct classes of the GT, i.e. well-
separated spheroids (red), adjacent spheroids (cyan), and overlapping spheroids (green) in Fig 5
(B) where a notable decrease of circularity can be observed in overlapping spheroids (p���).

To verify that a circularity threshold removes overlapping spheroids, the fraction of cor-
rectly segmented pixels of the spheroid masks was plotted as a function of their circularity for
each spheroid and labeled with the manual classification of the ground truth in Fig 5(C). The
correlation between both is highly significant (p���), with an estimated value of r = 0.70 and a
confidence interval [0.64, 0.75]. A MANOVA applied on the data indicates that the distribu-
tions of the two spheroid classes shown differ significantly (p���). The figure shows further
that applying a circularity threshold indeed removes most overlapping spheroids. As an unde-
sired side-effect of this filter, some well separated but non-elliptical structures were removed.
These may represent invasive spheroids rather than compact micro-tumors and are excluded
from analysis. In S5 Fig the origin of the spheroids which are omitted due to too low circularity

Fig 4. Light attenuation in multi-cellular spheroids. (a) Top view from the xy-plane of a spheroid with an ellipsoid fitted, where the RFP (561 nm), Hoechst
(405 nm), and EdU (640 nm) channels are shown. (b) The same spheroid, in a side view (xz-plane). No signal is detected from the lower part of the spheroid
(assuming that the spheroid is of an ellipsoidal shape). (c) Parameters of the spheroid derived from the vertical profile curve of the RFP signal through the
ellipsoid center: top z-coordinate, maximum intensity, analyzable depth (corresponding to the user-defined minimum intensity percentage).

doi:10.1371/journal.pone.0156942.g004
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is indicated. For the ground truth images, under consideration, less than 20% of spheroids
were omitted, primarily due to being obscured during imaging.

Finally, in Fig 5(D), the relation between spheroid size and light attenuation is illustrated,
using a sample set containing control and SOC (standard of care) treated cultures, as described
in the Materials & Methods section. As in the previous section, the spheroids were categorized
into groups of 100%, more than 50%, or less than 50% visible spheroids. While a standard 2D
MIP image analysis method would only be able to analyze spheroids in the first 100% visibility
category, our approach also allows the quantification of spheroids belonging to the second cat-
egory (> 50%), which in this case contains approximately 25% of the total number of spher-
oids, as can be seen from the spheroid count per visibility category.

Identification of cells positive for a given nuclear marker
Cells positive for a given nuclear marker are detected either via a computationally expensive
3D or a fast 2.5D spot detection algorithm based on the MIP and height view of the corre-
sponding fluorescent channel. It is assumed that resolution is sufficient to resolve the

Fig 5. Validation of the ellipsoid segmentation algorithm. (a-c) The classification of spheroids being obscured by others in the GT data is compared with
the automated identification of those spheroids based on the circularity of the 2D spheroid masks. (a) illustrates a typical situation where the shape of the 2D
spheroid mask is non-elliptical because the spheroid is overlapping with another (brighter) one, the green dashed line shows the GT contour of the spheroid,
while the solid contours result from automatic segmentation. (b) shows the spheroid circularity resulting from the automatic segmentation as function of the
spheroid class in the GT, where the different classes are given by the cartoons on the x-axis representing well separated (red), adjacent (blue), or
overlapping (dark green) spheroids. (c) shows the percentage of correctly segmented pixels by the automatic segmentation as function of the circularity for
the class of well separated (red) and overlapping (green) spheroids. (d) shows spheroids of different sizes that are categorized according to their analyzable
region: the entirety, more than half, or less than half of the spheroid is analyzable (visibility category). Above the bars the number of spheroids per visibility
category is shown. The labels large (blue), medium (red), and small (green) correspond to spheroids with a number of cells larger than 200, between 50 and
200, and smaller than 50, respectively.

doi:10.1371/journal.pone.0156942.g005
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individual nuclei, which are physically separated by the cytoplasm (as visualized in S1 Movie).
In both approaches, marker positive spots are found using a Laplacian of Gaussian (LoG) filter,
at the scale of the expected size of a nucleus, which reveals the coordinates of the spots in the
original image as local minima. The maximal spot radius parameter is set to permit merging of
multiple local minima occurring within a nucleus, while maintaining the distinction between
separate nuclei. The optimal scale for the expected size of the nuclei is determined beforehand
by using the 2DMIP. The total sum intensity of the LoG of the MIP is maximized by optimiz-
ing the scale parameter, between one tenth of the maximal spot radius and the value itself. A
curve for the total sum intensities as function of the scale parameter is shown in S3 Fig After-
wards, the spots are filtered based on their intensity, with the threshold equal to the median
spheroid intensity in the MIP (resulting in a single threshold per image). As an example the
results of the approach are shown in panel (b) of S3 Fig where the red circles represent detected
EdU positive cells. For the 2.5D spot detection algorithm, the original image stack is exchanged
for its 2D MIP and the z-coordinate of a spot is obtained from the height view.

Application of the approach to a proliferation study
We applied our proposed algorithm to analyze images of proliferating cells in 3D spheroid cul-
tures, demonstrating its performance on partially attenuated images stacks. These are images
of multi-cellular spheroid prostate cancer cell cultures treated for 17 days with a cytotoxic com-
pound (docetaxel) or a cytostatic (MDV-3100) compound. As illustrated in Fig 6, tumor cells
were labeled with RFP, stromal cells with GFP, and Hoechst and EdU dyes were applied to
identify nuclei and proliferating cells, respectively. The spheroid volume and the number of
EdU positive cells per spheroid were analyzed. The volume and number of EdU positive cells
per spheroid at the endpoint of the experiment is shown for a culture of PC346-c cancer cells
for both compounds in (Fig 7A and 7B). Under docetaxel treatment both volume and number
of EdU positive cells per spheroid decrease. The total number of EdU positive cells per image
volume (four different fields were imaged in the sample well), shown in Fig 7(C), indicates fur-
ther that treatment with docetaxel reduces the total number of EdU positive cells in the culture.

Comparison with 2D analysis results. An important difference between our approach
and a standard 2D MIP analysis (as described in the Materials & Methods section) is that the
number of detected EdU positive cells within a large spheroid is corrected for. The significance
of this difference is shown in a comparison of the two approaches in the plots in Fig 7(D). As
expected, a significant nonzero difference between the two approaches is found in the MDV
treated cultures representing a culture with larger spheroids. Our proposed new algorithm cor-
rects for signals lost due to light attenuation, whereas small spheroids basically lead to the same
results. As such, our approach is especially useful for spheroid cultures containing a fair
amount of larger spheroids in the cultures. In particular this can lead to a significant difference
when comparing two samples containing different average spheroid sizes, large vs. small, for
example when imaging a culture of growing spheroids at different time points. A bias in the
sample of large spheroids from a 2DMIP analysis could then lead to inaccurate conclusions.

Comparison with a full 3D analysis. We compared the proposed algorithm with a full 3D
analysis executed in a widely used general purpose commercial tool, Bitplane Imaris (Bitplane
AG, Switzerland, http://bitplane.com). We compared the detection of proliferating cells and the
computation of the volume of matching detected spheroids. Due to differences in segmentation
algorithms, the overlap of detected spheroids was 63%. In S4(A) Fig the volumes from both
methods are compared. The volume obtained by a full 3D approach is on average larger than in
the 2.5D approach for small spheroids, but smaller for larger spheroids. In panel (b) this is illus-
trated. We hypothesize that due to the intensity-based segmentation in Imaris, very small
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spheroids tend to appear stretched along the z-direction because of poor z-resolution, increasing
the total volume, while larger spheroids tend to be not fully imaged due to signal attenuation. To
test this hypothesis we plotted the sphericity of the spheroids as function of their volume in panel
(c). The decrease in the fitted curve indicates that the larger spheroids are not correctly seg-
mented. To illustrate the effect on a growth analysis we plot the difference between the number
of EdU positive cells obtained by our approach and Imaris. This plot in panel (d) indicates that
for larger spheroids (where the visibility category is less than 100%), our approach results in
more spots, corresponding to the correlation coefficient (Spearman) which was equal to 0.26.

Fig 6. Proliferation analysis example data. (a): Scheme of the labeling of the cells and dyes used. (b-c): Image of a 3D in vitro cancer cell culture labeled /
stained with EdU, RFP, GFP and Hoechst. The maximum intensity projection is shown.

doi:10.1371/journal.pone.0156942.g006
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To demonstrate the computational advantage of taking a 2.5D approach we timed both
methods (on a standard workstation with an Intel1 Core™ i7-3920XM CPU running at 2.9
GHz and 8 GB RAM). The image stacks used had a size of 1024 x 1256 x 91 pixels (two 16bit
channels were used). In Imaris it took on average 7 minutes to perform both the spheroid seg-
mentation and spot detection. Our 2.5D approach executed this in 3 minutes and when the
simplified spot detection algorithm (based on the MIP and height view) was used this reduced
to 1 minute.

Materials and Methods

Multi-cellular spheroid culture image stacks
The cell cultures, used for testing the analysis method, contained LNCaP human prostate can-
cer cells (ATCC, Rockville, USA) or PC346c cells (a prostate cancer cell line obtained from the

Fig 7. Comparison of the proposed analysis method with a baseline 2D MIP analysis method. Spheroid cell culture proliferation, quantified by EdU
positive cells, from a 3D homogeneous spheroid culture treated with a cytotoxic compound (Docetaxel, 1e-8 M) and a cytostatic compound (MDV-3100, 1e-7
M). In (a) the spheroid volume is shown, and in (b) the number of EdU positive cells per spheroid. In (c) the total number of EdU positive cells per image
volume is shown, where the size of the dots represent the total foreground / background ratio of the MIP of the image stack. In (d), the EdU positive cell count,
based both on the proposed and a 2DMIP analysis method, is compared. The normalized difference in EdU positive cells, weighted with the spheroid
volume, is shown.

doi:10.1371/journal.pone.0156942.g007
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Erasmus Medical Centre, via the PREDECT consortium) and CAF-PF179T human cancer
associated fibroblasts (a cell line obtained from the Weizmann Institute, via the PREDECT
consortium) [32], embedded in Matrigel1 (Corning #356231, Lot#3198769, growth factor
reduced, phenol red free, concentration: 4 mg/ml). They were suspended in the matrix and
seeded (10,000 tumor cells and 1,000 stromal cells in 60 μl/well) in 96 well plates (96 well poly-
styrene cell culture black microplates with a μClear1 bottom; Greiner, #655090), which were
pre-coated with matrix (30 μl/well). Treatment of cultures with either a cytotoxic compound
(docetaxel), or a cytostatic compound (MDV-3100) started on day 6, when the cultures were in
exponential phase, and the experiment was ended at day 23, when untreated cultures had
reached stationary phase. Cancer and stromal cells stably expressed tRFP and eGFP, respec-
tively. Prior to imaging, cell cultures were stained with 10 μM EdU for 2h (Click-iT EdU Alexa
Fluor 647 HCS; Life Technologies) to detect proliferating cells, and Hoechst 33342 (8.1 μM, 30
min) to label all nuclei and then fixed with 4% formaldehyde.

Microscopic image stacks of multi-cellular spheroid cultures were acquired with a Yoko-
gawa CellVoyager 7000 confocal spinning disk microscope (Wako Automation, San Diego,
United States), using a UPLSAPO 10x/0.4 NA objective and a 10 μm z-separation between the
slices in the stack. Excitation wavelength–filter pairs used for the tRFP, eGFP, Hoechst, and
EdU channel were 561 nm—BP 600/37, 488 nm—BP 522/35, 405 nm—BP 447/45, and 640
nm—BP 676/29, respectively.

Ground truth images
Ground truth data were generated for 3D homogeneous multi-cellular LNCaP cancer spheroid
cultures by manually drawing a 2D mask for each spheroid on the MIP. Moreover, each spher-
oid was classified to one of the cases: (1) well separated, (2) overlapping with brighter spheroids
in the MIP (rendering it non-separable), (3) overlapping with less bright spheroids in the MIP
(rendering it well separable), (4) merely touching other spheroids, and (5) touching the border
of the 2D projection of the image. The labelling was conducted using the RoiManager plugin in
FIJI (ImageJ) [24] resulting in contours for the cases (1) to (5) colored in red, green, magenta,
cyan, and blue, respectively. These ground truth data were used to validate the 2D segmenta-
tion step of the algorithm by defining sensitivity and accuracy, and are provided in S2 File.

Implementation of the analysis algorithms
Analysis of the image stacks was conducted using the image analysis toolbox DIPimage (Delft
University of Technology, Delft, The Netherlands) for MATLAB1 (Release 2014a, The Math-
Works Inc., Natick, United States). The algorithms are available as a bundle of MATLAB scripts
in S1 File: Image analysis algorithms source code, containing both the code to generate the fig-
ures, and the implementation of the method. Running the provided code requires a working
MATLAB environment with installed DIPimage toolbox and the following external libraries: the
Bio-formats toolbox for MATLAB, JSONlab, and ReadImageJROI. The implementation is also
available on GitHub: https://github.com/mbarbie1/ellipsoids-analysis-paper.git.

Statistical analysis
Statistical analysis was executed in R (https://www.r-project.org) using the RStudio IDE
(https://www.rstudio.com). The data was tested for normality using the Shapiro-Wilks test, sig-
nificances were obtained using Welch’s T-Test and the non-parametric Mann-Whitney-
U-Test for non-normal distributions. To compare multivariate distributions, e.g. data for the
spheroid size and number of proliferating cells, a MANOVA was applied. In all such cases only
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two groups were compared, thereby the F-statistic approximation is reduced to the Hotelling's
T-square statistic. Significances were depicted as �: p< 0.05, ��: p< 0.01, and ���: p< 0.001.

Derivation of the ellipsoid 3D fit parameters
The z-coordinate of the center and the length of the vertical axis are derived from the pixels of
the original 3D image. The z-coordinate of the center of the ellipsoid is defined as the median
value of the z-coordinates of the outer rim of the 2D segmentation mask. To derive the length
of the vertical ellipsoid semi-axis, we consider the neighborhood which contains the 8 nearest
neighbor pixels of the ellipse center (xc, yc) in the xy-plane, and a sufficient range (2 times the
largest diameter D of the ellipse) in the z-direction:

ðx; y; zÞ 2 fx; y; z : ðx; yÞ 2 ½ðxc; ycÞ � ð1; 1Þ; ðxc; ycÞ þ ð1; 1Þ� & z 2 ½zc � D; zc þ D�g

Averaging over this neighborhood yields a profile I(z) through the centroid of the 2D spher-
oid segmentation mask (see Fig 4(C)). The z-coordinate of the top of the spheroid (which suf-
fers the least from light attenuation) is defined from the profile curve as the z-coordinate above
the spheroid center where the curvature becomes zero (the inflection point). When the 2D
mask of the spheroid under consideration has an area below a specific threshold minradius, the
above approach is not used; instead the length of the vertical axis is approximated by the aver-
age length of the ellipse axes in the plane.

Characterization of the signal attenuation in the spheroids
The depth up to which the spheroid is analyzable is limited by the signal attenuation in the
spheroid tissue. We calculate the maximal depth (z-coordinate) in the spheroid for which a
user-defined percentage of the intensity is still retained after signal attenuation. To obtain this
depth we assume that: (1) the fluorescent stain of the tumor cells is constant within each spher-
oid, (2) the scattering and absorption coefficients determining the attenuation of the signal are
constant inside spheroid tissue and zero outside, and (3) intensity values of the first slice of the
spheroid are free of attenuation.

The signal attenuation is expected to be largest in the (x,y)-center of the ellipsoid for each
z-coordinate. Therefore, the vertical intensity profile through the center of the ellipsoid is used
to characterize the attenuation of the signal. The intensity profiles I(z) are determined as
described in the previous section (see Fig 4(C)). They typically have a steep inclination towards
a single maximum Imax = maxz I(z) near the top of the spheroid, followed by an intensity
decrease. We consider Imax the intensity without attenuation, and the percentage retained after
attenuation is defined as Patt(z) = 100 I(z) / Imax. The user-defined threshold on the minimal
percentage retained Pmin leads to a range [zmax, zanalyzable] for which Patt(z)> Pmin is valid. The
analyzable depth of the spheroid is defined as the distance between the first z-coordinate of the
spheroid and zanalyzable.

Other analysis methods used for comparison
For comparative purposes, a 2D MIP analysis as well as a full 3D analysis, were utilized. Both
approaches are detailed below.

Baseline 2DMIP analysis method. For the 2D analysis of proliferation in the test data,
the following image analysis approach was applied: Similarly as in the proposed algorithm a
2D segmentation mask of the MIP of the RFP channel was obtained, thereafter EdU positive
cells were identified by a 2D spot detection algorithm performed on the EdU channel. But
unlike in the proposed analysis, all EdU positive cells within the 2D regions of the spheroid
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masks are considered to belong to the corresponding spheroids, and no correction for signal
attenuation was attempted.

Imaris based full 3D analysis workflow. Analysis of the images was conducted using the
cell extraction functionality from ImarisCell, a component of Bitplane Imaris (v8.1.2, Bitplane
AG, Switzerland, http://bitplane.com), where “spheroids and proliferating cells” translate to
“cells and cell vesicles”. Spheroids were segmented using the surface extraction tool and mor-
phological features of the spheroid surfaces were extracted. Proliferating cells were detected
using the spot detection tool. Subsequently, the detected surfaces and spots were imported in
the cell analysis module to determine the spheroid borders and proliferating cells. Finally, fea-
tures relating to the location of the spheroids and number of proliferating cells were exported.
As a final remark we mention that although an attenuation correction method for homoge-
neous signal attenuation exists (through the Imaris module ImarisXT), our spheroid cultures
are largely inhomogeneous and this method cannot be applied.

Sensitivity and accuracy of the 2D segmentation mask
To quantify the deviation of an automated segmented mask from the ground truth image, we
compare the 2D segmented image regions RGT = {Mj} of the ground truth image with the
regions RA = {mi}, found by automatic segmentation. For each regionMj we search a corre-
sponding regionmi that overlaps withMj more than 50%. RegionsMi for which no corre-
sponding region is found are considered as false negatives (FN), while regionsmi not belonging
to a ground truth regionMj are false positives (FP). The sensitivity is given by the ratio:
TP/(TP + FN), where TP stands for true positives. The error on the sensitivity is given by the
confidence interval as defined by Wilson, the so-called Wilson score interval [33].

For true positives (segmented regionsmi which do belong to a ground truth region accord-
ing to the above criterion) the segmentation accuracy can be quantified by assigning a penalty
determined by how close the contours of the two regions are. This is done as follows: the distance
of the pixels of regionsmi\Mj (including all pixels frommi which are not belonging toMj) and
Mj\mi, from the contour of regionMj is calculated, using the distance image (in μm) of the con-
tour mask ofMj, which weights the error contribution of misclassified pixels. A sigmoid function
f(x) = 1 / {1 + exp[−k (x − x0)]} with x0 = 1.5 μm and k = 2 μm-1 is applied to this distance, so
that very small errors in the spheroid outline contribute little to the error estimate, but large
errors have a constant weight. Then the pixels are summed over and normalized by dividing by
the area of the ground truth region. The resulting penalty ei is close to zero for nearly overlapping
spheroid masks, and the accuracy of spheroid maskmi can be defined as 1 − ei.

Supporting Information
S1 Fig. Relationship between the visibility categories and the spheroid size. From left to
right spheroids of decreasing sizes are shown, as representatives of the different visibility cate-
gories: Less than half of the spheroid, more than half, or the entire spheroid is measurable. xy-
and xz-slices through the middle of the spheroids are shown and overlaid with white dashed
ellipsoid contours (which were fitted manually). In the xz-planes a manually drawn thin
dashed contour shows the approximate boundary of the analyzable region of the spheroids. As
spheroid size decreases, the Point Spread Function (PSF) of the confocal microscope leads to
distortion of the spherical shape.
(TIF)

S2 Fig. Segmentation sensitivity dependency on the intensity threshold minMIP. (a-b) The
dependency of the sensitivity, the FP/P ratio, and their 95% confidence interval (Wilson) on
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the threshold set on the mean intensity of the segmented spheroids (minMIP). (c) Shows the
mean intensity of each spheroid as function of their segmentation category: true positives
(red), false positives (green), spheroids missed in the segmentation (blue), segmentation masks
merging multiple spheroids in the GT (magenta), and spheroids which are detected as multiple
spheroid masks (brown). (d) Represents the number of spheroids for each of the categories.
(TIF)

S3 Fig. Spot detection in scale space. The spot detection steps are shown using the example
image stack in file Data_3, which is available from Dryad (doi:10.5061/dryad.0m9n7). (a)
shows the total sum of pixel intensity of the LoG-filtered MIP image as function of the Gauss-
ian scale parameter σ (smoothing parameter). The σ which maximizes the total sum of pixel
intensity (of the negative LoG) represents the optimal scale σ for the spot detection. (b) shows
a visual comparison of the results from the spot detection originating from the 3D LoG
approach used in our approach (red circles), and, the 3D spot detection calculated using Bit-
plane Imaris (blue circles).
(TIF)

S4 Fig. Comparing the proposed analysis method with a full 3D (using Bitplane Imaris)
analysis approach. (a) the obtained spheroid volume for both the full 3D method (blue dots)
and our approach (red dots) is shown for corresponding spheroids. (b) the ratio of the volume
obtained from Imaris over the one obtained from our approach, together with a linear fit of the
data. In panel (c) the sphericity, of the spheroid surfaces obtained in Imaris, is plotted as func-
tion of the volume. Here a non-linear fit is obtained. (d) the difference of the number of prolif-
erating cells obtained by our approach with the ones obtained in Imaris are plotted, where the
colors correspond to the visibility category: 100% (red dots) and> 50% (green dots). There
were no spheroids with a visibility< 50% for these samples.
(TIF)

S5 Fig. Spheroids omitted during ellipsoid approximation due to shape irregularity. The
percentages of spheroids that are omitted due to low circularity are categorized in spheroids
with a non-spherical shape, obscured spheroids or incorrect segmented spheroids. As dataset
the ground truth validation images from the file Data_4, which is available from Dryad (doi:10.
5061/dryad.0m9n7), are used.
(PNG)

S1 File. Algorithm implementation. This is a zip-file containing all the source code files. The
code is written in MATLAB using the DIPimage toolbox. The source code is also available on
GitHub: https://github.com/mbarbie1/ellipsoids-analysis-paper.git.
(ZIP)

S2 File. 2D ground truth. This is a zip-file containing manually segmented 2D ground truth
labeled masks (the corresponding 3D image stacks can be found in the file Data_4 which is
available from Dryad (doi:10.5061/dryad.0m9n7)). The cancer (LNCaP) spheroids are labeled
in five distinct classes: (1) well separated, (2) overlapping with brighter spheroids in the MIP
(rendering it non-separable), (3) overlapping with less bright spheroids in the MIP (rendering
it well separable), (4) merely touching other spheroids, and (5) touching the border of the 2D
projection of the image. Opening of the images in FIJI (ImageJ) with the ROI Manager allows
visual inspection of the data.
(ZIP)

S1 Movie. Spot detection algorithm illustrated on a 3D image stack represented as a movie.
This is the 3D image stack from the file Data_6, which is available from Dryad (doi:10.5061/
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dryad.0m9n7), saved as a movie, in AVI format with JPEG compression. It shows the EdU
channel of the 3D image stack in the file Data_3, available from Dryad (doi:10.5061/dryad.
0m9n7), with the EdU positive cells annotated by small spheres. This movie can serve as an
example result of the spot detection algorithm (3D version).
(AVI)
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