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The sense of control over the consequences of one’s actions depends on predictions about
these consequences. According to an influential computational model, consistency
between predicted and observed action consequences attenuates perceived stimulus inten-
sity, which might provide a marker of agentic control. An important assumption of this
model is that these predictions are generated within the motor system. However, previous
studies of sensory attenuation have typically confounded motor-specific perceptual mod-
ulation with perceptual effects of stimulus predictability that are not specific to motor
action. As a result, these studies cannot unambiguously attribute sensory attenuation to
a motor locus. We present a psychophysical experiment on auditory attenuation that
avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–
target pairs has previously been shown to modulate both reaction times and the explicit
feeling of control over action consequences. Here, we demonstrate reduced perceived loud-
ness of tones caused by compatibly primed actions. Importantly, this modulation results
from a manipulation of motor processing and is not confounded by stimulus predictability.
We discuss our results with respect to theoretical models of the mechanisms underlying
sensory attenuation and subliminal motor priming.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

‘‘Sense of agency’’ refers to the pre-reflective feeling of
controlling one’s actions and, through them, sensory
events in the outside world (Haggard & Chambon, 2012).
Sense of agency is a fundamental aspect of human action
control, as illustrated by the profound changes when actual
control and subjective experience of agency are decoupled,
as in schizophrenia (Voss et al., 2010) or in patients with
alien motor phenomena (Spence, 2002).

According to an influential theoretical account of the
sense of agency, agency is inferred by comparing predic-
tions made during action processing with perception (e.g.
Shergill, Samson, Bays, Frith, & Wolpert, 2005; but see Syn-
ofzik, Vosgerau, & Newen 2008). Based on computational
theories of motor control (Wolpert & Miall, 1996), such
comparator models assert that a sense of agency over an
external event will occur when the sensory information
about the event is a predicted consequence of the action.
According to the model, predictions of action
consequences are used to cancel or partly cancel sensory

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2013.11.008&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2013.11.008
mailto:max-philipp.stenner@med.ovgu.de
http://dx.doi.org/10.1016/j.cognition.2013.11.008
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


228 M.-P. Stenner et al. / Cognition 130 (2014) 227–235
feedback signals at a comparator node. This cancellation or
attenuation process reduces perceived stimulus intensity
of only those external events that are caused by one’s
own actions (e.g. Blakemore, Wolpert, & Frith, 1998; but
see Brown, Adams, Parees, Edwards, & Friston, 2013).
When a sensory event is not predicted by current action
processing, there is said to be a ‘mismatch’ between pre-
diction and sensory consequence, and the sensory event
is not attenuated. Such a mismatch may signal non-agency
(Farrer et al., 2008).

While the comparator model cannot account for all as-
pects of the sense of agency (Haggard & Chambon, 2012;
Synofzik et al., 2008), it provides physiologically plausible
and testable predictions of how an integration of motor
and sensory processing may contribute to the sense of
agency. Sensory attenuation of action consequences is per-
haps the most distinctive prediction of this model, and,
accordingly, has received considerable attention in the lit-
erature (e.g. Bays, Wolpert, & Flanagan, 2005; Cardoso-
Leite, Mamassian, Schütz-Bosbach, & Waszak, 2010). The
model also makes the specific prediction that sensory pre-
dictions originate from a motor locus, within the circuits
that generate motor actions. For example, sensory predic-
tions of action consequences were linked to preparatory
motor processing in theoretical work by Wolpert and Flan-
agan (2001) and by Wolpert and Ghahramani (2000). Be-
cause these predictions are generated by an internal
forward model within the motor system, they are thought
to be physiologically distinct from purely associative sen-
sory predictions as induced, for example, by pairing of
external, sensory events.

Previous studies have not provided truly convincing
evidence for this motor-specificity of sensory attenuation,
in our view, although many have claimed to do so. Sensory
attenuation effects have been demonstrated for self-ap-
plied tactile (e.g. Bays et al., 2005; Blakemore, Frith, &
Wolpert, 1999), auditory and visual stimulation (Cardoso-
Leite et al., 2010; Weiss, Herwig, & Schütz-Bosbach,
2011). However, these previous studies cannot unambigu-
ously attribute these perceptual phenomena to motor pro-
cessing. To do this, the physical parameters of the relation
between action and consequent stimulus should be identi-
cal in the agency and non-agency condition. In particular,
any differences between conditions in the contingency be-
tween action and stimulus easily would lead to stimulus
identity or timing being more predictable in one condition
than another. Any such difference in predictability would
open the door to non-specific explanations of sensory
attenuation phenomena, undermining a motor-specific
account.

For example, most previous studies on sensory attenu-
ation have manipulated the sense of agency by comparing
conditions which differed regarding (a) the presence of a
motor response before the stimulus (e.g. Weiss et al.,
2011), (b) its temporal relation to the stimulus (e.g. Bäss,
Jacobsen, & Schröger, 2008), or (c) the mapping between
different actions and consequent stimuli (e.g. Cardoso-
Leite et al., 2010). In many cases, these manipulations of
the relation between action and a subsequent sensory
event clearly change stimulus predictability. In addition,
some contrasts introduce other, potentially more dramatic
differences between conditions, such as whether a motor
task is present or not or whether contingencies have been
learnt. Due to these potential confounds, any sensory
attenuation in such studies could reflect purely associative
sensory predictions that are not specific to motor action in
addition to, or instead of, predictive signals generated
within the motor system (for a review, see Hughes, Desan-
tis, & Waszak, 2013).

A recent series of studies has shown that an experimen-
tal manipulation of action processing, rather than the
physical parameters of the action-stimulus sequence, can
influence measures of experienced control over stimuli
(Chambon & Haggard, 2012; Wenke, Fleming, & Haggard,
2010). Critically, these studies manipulated experienced
agency not by omitting an action or changing the relation
between an action and a consequent stimulus, but by
inserting masked primes prior to the action. Wenke et al.
(2010) and Chambon and Haggard 2012 demonstrated that
self-reports of control over a visual stimulus that is contin-
gent on an action decreases when subliminal primes and
targets are incompatible when compared to trials with
compatible prime–target pairs. These studies remove
many of the potential confounds mentioned above. In par-
ticular, an action is always present, and its physical rela-
tion with the consequent event is held constant.
Therefore, non-specific explanations based on stimulus
predictability cannot readily explain the result. However,
both of these studies focused on explicit agency judge-
ments, i.e., self-reports of experienced causal control over
a stimulus. In contrast, sensory attenuation is a pre-reflec-
tive and implicit measure, which may provide more direct
insight into sense of agency (Synofzik et al., 2008).

Here, we combined subliminal masked priming of mo-
tor actions with a psychophysical measure of sensory
attenuation. Our motivation for this study was threefold:
Firstly, we wanted to develop a theoretically pure, well-
controlled test of sensory attenuation that avoided con-
founding effects of stimulus predictability. Secondly, we
wanted to test the theoretical prediction that sensory
attenuation arises specifically from motor processing.
And thirdly, we wanted to test whether differences in ac-
tion processing can lead to differences in sensory attenua-
tion, even when the objective contingency of a stimulus on
the preceding action is held constant. Such results would
provide more convincing evidence for sensory attenuation
as a motor-specific aspect of sense of agency.

Prime–target compatibility in subliminal priming tasks
can have either facilitatory or inhibitory effects on reaction
times and error rates, depending on the stimulus onset
asynchrony (SOA) of primes and targets (Eimer, 1999; Sch-
laghecken & Eimer, 2000). At longer SOAs, facilitatory ef-
fects of compatible primes (positive compatibility effects,
PCE) turn into inhibitory effects (negative compatibility ef-
fects, NCE). Chambon and Haggard (2012) reported similar
effects of prime–target compatibility on control ratings for
both PCE and NCE conditions, i.e., the experience of control
was diminished by incompatible primes irrespective of the
prime–target SOA. In particular, primes at NCE latency had
a positive, enhancing effect on the sense of control over ac-
tion outcomes, despite having a negative, detrimental ef-
fect on reaction times. This result suggests that sense of
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agency may depend on how the prime biases the initial
process of action selection, and not on how the prime influ-
ences actual subsequent execution.

Here, we focus on priming conditions known to induce
negative compatibility effects on motor performance. This
choice was motivated by the strong overlap between the
neural mechanisms underlying the negative compatibility
effect and those underlying sensory attenuation. Both ef-
fects have been linked to the supplementary motor area
by correlational and causal evidence (Boy, Husain, Singh,
& Sumner, 2010; Boy, Evans, et al., 2010; Haggard & Whit-
ford, 2004; Sumner et al., 2007; Voss, Ingram, Wolpert, &
Haggard, 2008). Positive compatibility effects on motor
performance, on the other hand, have been shown to in-
volve more widespread cortical networks, including more
lateral motor and attentional areas (D’Ostilio and Garraux,
2012; Dehaene et al., 1998). Thus, the NCE may provide a
more selective influence on those cortical circuits previ-
ously related to sensory attenuation.

In line with Chambon & Haggard’s (2012) findings of an
enhanced experience of control, we expected stronger
sense of agency, and therefore more sensory attenuation,
when primes and targets were compatible, compared to
when they were incompatible. Note that the positive effect
of primes on sense of agency would thus coexist with a
negative effect on motor performance and on perceived
intensity.
2. Methods

2.1. Participants

We recruited sixteen healthy volunteers (age
22.8 ± 3.2 years (mean ± SD), eight females). All partici-
pants were recruited via an online database. They gave
written informed consent prior to participation with the
right to exit the study at any time. The study was approved
by the local ethics committee (University College London,
UK). Participants received £10 per hour as reimbursement.
2.2. Task

All stimuli were generated and the paradigm was pro-
grammed using Presentation� software (Neurobehavioral
Systems, www.neurobs.com). The experiment was run in
a dark and sound-attenuated room. The task was presented
on an LCD screen at a vertical refresh rate of 60 Hz. The
screen background colour was white. Participants were
seated 75 cm in front of the screen and kept their chin on
a chin rest throughout the experiment.

The experiment consisted of a training session, a pre-
test, the experimental task and a control task, in this order.
In the experimental task, participants performed a tempo-
ral two-alternative forced choice task on the loudness of
sine wave tones whose onset timing and frequency were
determined by participants’ button presses. These button
presses were subliminally primed. The training session
served to familiarise participants with contingencies be-
tween their button presses and the onset timing and fre-
quency of subsequent sine wave tones. In the pre-test,
individual loudness discrimination thresholds were deter-
mined by means of an adaptive procedure and then used as
constant stimulus levels in the experimental task. The con-
trol task tested conscious recognition of the primes.

2.2.1. Action priming
Action priming was implemented as follows. Through-

out all parts of the experiment, i.e. the training session,
the pre-test, the experimental task and the control task, vi-
sual targets (black arrow outlines pointing to the right or to
the left) were first preceded by visual primes and then by a
metacontrast mask. Primes consisted of black arrows
pointing either in the same direction as targets or in the
opposite direction. In the training session and pre-test,
superimposed arrows pointing in both directions served
as neutral primes. The metacontrast mask was a black rect-
angle framing two white superimposed arrows that were
pointing in both directions. All visual stimuli were pre-
sented at fixation. Primes subtended a visual angle of
2.84� ⁄ 1.18� and were presented for one frame (17 ms).
Primes were replaced by the fixation cross (font size 1�)
for two frames (33 ms), which in turn was followed by
the metacontrast mask for seven frames (117 ms), sub-
tending a visual angle of 3.18� ⁄ 1.66�. After an SOA of nine
frames (150 ms), the target was presented. Targets sub-
tended a visual angle of 5.3� ⁄ 1.95� and were presented
for seven frames (117 ms).

The experimental factor was the compatibility between
prime direction and target direction.

2.2.2. Training session
In the training session (32 trials), participants learnt the

contingency between their left or right index finger button
presses, as instructed by the direction of the visual targets,
and the presentation of a sine wave tone of one of two fre-
quencies (900 Hz and 750 Hz; 100 ms duration) via head-
phones. In this training session, participants performed
two tasks in parallel. On each trial, they pressed a button
either with their right or left index finger in response to
the direction of the visual target. They were instructed to
perform these button presses within one second after tar-
get onset and as quickly and accurately as possible. When
pressing the wrong button (the button operated by the in-
dex finger opposite to the direction of the target) or when
pressing the button too late (later than 1200 s after target
onset) a red ‘‘x’’ was presented at fixation (font size 1�). As
in the pre-test and in the experimental task, these trials
were repeated at the end of the regular 32 trials. Index fin-
ger button presses were followed by one of two sine wave
tones after 50 ms. For half of the participants, left index
finger button presses led to the presentation of the low-
frequency tone and right index finger button presses to
the presentation of the high-frequency tone in the majority
of trials of this training session, while the opposite map-
ping was used for the other half of participants. In the
remaining three to five trials of the training session the re-
verse button – tone frequency mapping was valid (catch
trials). The number and distribution of catch trials was ran-
domly determined for each participant. Participants had to
count these catch trials and report their number at the end
of the training session. This task of counting catch trials

http://www.neurobs.com
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was introduced to ensure that participants attended to the
button – tone frequency contingencies. Only very few par-
ticipants miscounted the number of catch trials. All of
these were allowed to continue without repeating the
training session after ensuring that they gave a correct ac-
count of the button – tone frequency mapping.

2.2.3. Pre-test
In the pre-test (six blocks, 32 trials each) index finger

button presses in response to the visual targets led to the
presentation of a pair of tones of identical frequency,
which was now fully determined by the (instructed) choice
of buttons. The button – tone frequency mapping that was
predominant in the training session was now valid on
every single trial, so that participants did not encounter
any further reversals of the mapping (no catch trials).
The second tone followed the first after a fixed SOA of
1100 ms to keep predictability of the onset timing of the
two tones identical. Within each tone pair, one of the
two was louder than the other. After the second tone, a
question mark was presented in the centre of the screen,
prompting participants to indicate whether the first or sec-
ond tone was the louder by pressing one of two additional
buttons with the middle finger of the right hand (these
additional buttons were arranged orthogonal to the index
finger buttons in order to minimise bias in middle finger
button choice by the preceding index finger button press).
There was no time limit for the loudness discrimination
task. Participants received feedback for this loudness dis-
crimination task after each trial (correct responses were
indicated by a green tick, incorrect responses by a red
‘‘x’’, both at fixation, font size 1�) and after each block (as
the average percentage of correct responses in the previous
block). In both the training session and the pre-test, only
neutral primes (superimposed arrows pointing in both
directions) were used.

In this pre-test, stimulus levels were continuously ad-
justed using a weighted up/down staircase method (3 up,
1 down) (Kaernbach, 1991). There were four different
staircases, as sample tones that were either louder or softer
than the standard tone (74 dB SPL) were used in separate
staircases for each of the two tone frequencies. Initial step
size was 6 dB SPL (labelled ‘‘deltafirststep’’ below). Target
direction, order of standard and sample tones and order
of the four staircases were pseudo-randomly distributed
across each block so that none of these were predictable
from any of the others on a given trial. The downward step
size was increased during the first two downward slopes of
each staircase (3 up, 3 down) under the assumption that
initial differences in loudness (corresponding to volume
differences of ±6 dB) were easily detectable. The corre-
sponding first reversal points of the staircase were ex-
cluded from analysis. Sound volume was calibrated to dB
SPL using a sound pressure level meter to arrive at a vol-
ume of the standard tone of 74 dB SPL. During the pre-test,
loudness of the sample tones was adapted exponentially,
approaching 74 dB SPL asymptotically from above and be-
low with improving performance: At any point of the stair-
case, sound volume of the sample tone was determined by
(74 dB SPL ± deltafirststep ⁄ 1.15exponent), with the ‘‘±’’ deter-
mining whether the sample was louder or softer than the
standard. Exponents started at zero and were varied by
the 3 up, 1 down-manipulation (3 up, 3 down for the first
two downward slopes), i.e., the exponent of the current
staircase was decreased by 1 after a correct response and
increased by 3 after an incorrect response. Calibration to
dB SPL was checked on each testing day. Playback latency
of the sound card was determined to be below 1 ms in pre-
liminary testing.

After the pre-test, the discrimination threshold was
determined as the average of all reversals (from decreasing
to increasing volume differences and vice versa) from the
third reversal onwards, for each of the four staircases sep-
arately. Results from this staircase procedure, i.e. threshold
values and the number of reversals on which they were
based, are reported in Section 3.
2.2.4. Experimental task
The experimental task (Fig. 1) was identical to the pre-

test except for four differences. First, there was no trial
feedback for the loudness discrimination task (only the
blockwise feedback, i.e., the average percentage of correct
trials). Second, and unbeknown to participants, only the
second tone was varied in loudness (softer or louder than
the first), while the first tone was kept constant at 74 dB
SPL. Third, the experimental task was based on the method
of constant stimuli, using individual discrimination thresh-
old values from the pre-test for each of the two tone fre-
quencies and the two stimulus levels (softer or louder
than the first). And fourth, primes were now either com-
patible or incompatible with the targets.

The experimental task consisted of six blocks of 32 tri-
als each. Stimulus timing was carefully monitored and spo-
radic trials with longer prime-mask or mask-target SOAs
(due to sporadic asynchrony of the visual output with the
vertical refresh rate) were excluded (two trials across all
participants and both experiments). Prime direction, target
direction and the four threshold values (obtained from the
four staircases in the pre-test) were pseudo-randomly dis-
tributed across each block, so that none of these were pre-
dictable from any of the others on a given trial.
2.2.5. Control task: prime recognition
After the experimental task, existence of the primes was

revealed to participants and a forced choice prime recogni-
tion task was added (the control task). Visual stimulation
was identical to the experimental task, but participants
were instructed to ignore the direction of the target arrows
as well as the mask and to focus on the direction of the
primes only. They were required to indicate whether
primes pointed to the right or the left on each trial (by
using the respective index finger buttons). There was no
time limit for these responses. However, participants had
to wait for a tone (875 Hz, 150 ms, presented 600 ms after
the onset of the target) before responding. This constraint
for reaction times was introduced to keep the influence
of subliminal priming on the button choice to a minimum
and follows procedures used in previous studies for the
same purpose (Chambon & Haggard, 2012; Vorberg, Mat-
tler, Heinecke, Schmidt, & Schwarzbach, 2003; Wenke
et al., 2010). There was no feedback for this prime
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methods, Section 2.2, for details.
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recognition task. The prime recognition task consisted of
three blocks, each of 32 trials.

2.3. Data analysis

Data on loudness discrimination in the experimental
task and on prime recognition in the control task were ana-
lysed using signal detection theory measures (Green &
Swets, 1966).

Participants whose sensitivity for prime direction in the
prime recognition task exceeded a threshold (d0 > 0.5) were
excluded (three participants in experiment 1 (d0 of 3.77,
1.49 and 1.19).

The main behavioural metric of interest relating to the
experimental task was the bias to report the first of the
two tones as the softer as a measure of sensory attenua-
tion. Sensory attenuation has been known to decay over
the course of a few hundred milliseconds (Aliu, Houde, &
Nagarajan, 2009; Bays et al., 2005). The bias to report the
first tone, which was presented 50 ms after the action, as
the softer one (relative to the second tone 1150 ms after
the action) can therefore reflect sensory attenuation. We
used the log likelihood ratio ln(b) as a measure of bias,
i.e., the natural logarithm of the ratio of the values of the
two signal distributions at the decision criterion (Macmil-
lan & Creelman, 2005). In the widely-used (Wickens, 2002)
equal-variance Gaussian model of the two distributions,
ln(b) equals half of the difference of the squared z-trans-
forms of the false alarm rate (F) and hit rate (H):

lnðbÞ ¼ 0:5 � ðz2ðFÞ � z2ðHÞÞ

Systematic differences of ln(b) between conditions were
not explained by systematic changes in sensitivity (d0) as
d0 was not affected significantly by condition in both
experiments (see results).
Effects of prime–target compatibility on reaction times,
error rates and ln(b) were tested with dependent samples
t-tests across subjects. A one-tailed t test was used where
the direction of the effect has previously been established
in the previous literature, i.e., when testing for priming ef-
fects on reaction time and error rates. For priming effects
on our measure of sensory attenuation, a two-tailed t test
was used. Within-subject effects were tested using inde-
pendent samples t-tests.
3. Results

Our main focus was on the bias to report the first of the
two tones in the experimental task as the softer. We also
measured prime–target compatibility effects on inverse
efficiency, a measure that efficiently combines response
speed and accuracy (Townsend & Ashby, 1983). We report
results relating to bias under ‘‘Experimental task’’. For
completeness, we first report results of the pre-test.

3.1. Pre-test

The staircase procedure of the pre-test resulted in four
loudness discrimination thresholds for each individual,
representing volume levels above and below the volume
of the standard tone (74 dB SPL) for each of the two tone
frequencies (900 Hz vs. 750 Hz). Loudness discrimination
thresholds were not significantly modulated by these two
factors (factor 1: volume of the sample tone with respect
to the volume of the standard tone [louder, softer], factor
2: tone frequency [900 Hz, 750 Hz]) as revealed by a two-
way repeated measures ANOVA. On average, discrimina-
tion thresholds were based on 16.3 reversals (averaged
across the four staircases and all participants). There were
no significant differences in the number of reversals
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between the four staircases (all p > .25). Mean discrimina-
tion thresholds for the four staircases were 1.19 dB SPL
(750 Hz, staircase approaching 74 dB SPL from below),
1.05 dB SPL (750 Hz, staircase approaching 74 dB SPL from
above), 1.02 dB SPL (900 Hz, staircase approaching 74 dB
SPL from below) and 1.1 dB SPL (900 Hz, staircase
approaching 74 dB SPL from above).
3.2. Experimental task

As expected, prime–target compatibility significantly
modulated efficiency of instructed button presses. Consis-
tent with the literature on negative compatibility effects,
compatibly primed responses were significantly less effi-
cient than incompatibly primed responses (t12 = 6.5,
p < .001; inverse efficiency (mean ± SD): 433.95 ± 70.17
ms (compatible primes) vs. 372.59 ± 78.13 ms (incompati-
ble primes)). Participants responded significantly more
slowly to compatibly primed targets when compared to
incompatibly primed targets (t12 = 8.14, p < .001; reaction
time (mean ± SD): 423.33 ± 77.64 ms (compatible primes)
vs. 372.32 ± 78.23 ms (incompatible primes)) (Fig. 2a)
Fig. 2. Motor priming effects on motor efficiency and bias in the loudness
discrimination task. Prime–target compatibility effects on (A), reaction
time (in ms) and (B), error rate (in %) in the speeded reaction time task
(responses to the target arrows). (C) Motor priming effects on the bias
(ln(b)) to report the first of the two tones as the softer one.
and with a significantly higher error rate (t12 = 2.05,
p = 0.032; error rates (mean ± SD): 2.65 ± 4.52% (compati-
ble primes) vs. 0.08 ± 0.28% (incompatible primes))
(Fig. 2b). Eleven (out of thirteen) participants showed a sig-
nificant negative compatibility effect in a fixed-effect anal-
ysis (independent samples t-test across trials).

Importantly, prime–target compatibility also signifi-
cantly modulated bias in our loudness discrimination task.
The bias to report the first of the two tones as the softer
one was increased in trials in which primes and targets
were compatible when compared to incompatibly primed
trials (t12 = 2.34, p = .037) (Fig. 2c). Sensitivity, on the other
hand, as indexed by d0, was not affected significantly by
prime–target compatibility (t12 = 1.49, p = .16). Thus, com-
patibility of primes and targets decreased motor efficiency
and, in parallel, increased the bias to report the first of two
auditory action consequences as the less intense, i.e.,
softer.
4. Discussion

We demonstrate that the perceived loudness of an audi-
tory consequence of a motor action is attenuated by an
experimental manipulation that selectively influences mo-
tor processing, in the absence of any changes to stimulus
predictability. Specifically, we show that perceived loud-
ness and motor efficiency are both decreased in parallel
when the action is primed by a compatible, subliminally
presented, visual prime–target pair with a long SOA (Ei-
mer, 1999; Lingnau & Vorberg, 2005; Schlaghecken & Ei-
mer, 2000). In previous studies (Chambon & Haggard,
2012; Wenke et al., 2010), this experimental manipulation
has been shown to enhance explicit judgements regarding
the degree of control over sensory stimuli. However, such
explicit judgements may be subject to post hoc interpreta-
tive reconstruction. Therefore, they do not provide a direct
measure of sense of agency. In contrast, sensory attenua-
tion provides a low-level sensory measure related to sense
of agency (Synofzik et al., 2008), with the advantage of a
clear link to a strong theoretical model that identifies spe-
cific aspects of action processing (i.e., the feed-forward
predictor and the comparator stage). Several other studies
have appreciated the value of implicit, perceptual mea-
sures of the sense of agency (Shergill et al., 2005), but we
believe ours may be the first such study to do so while
avoiding any confounding effects related to action-stimu-
lus contingency.
4.1. Deconfounding experimental studies of sense of agency

Our study was partly motivated by concerns about con-
founds in previous studies on sensory attenuation. Sensory
attenuation is, by definition, action-specific (Bays et al.,
2005; Chapman, Bushnell, Miron, Duncan, & Lund, 1987)
and studies on sensory attenuation should be able to
unambiguously attribute observed changes in perception
to motor actions. Ideally, all parameters of an action-stim-
ulus sequence should remain constant across experimental
and control conditions to avoid confounding those effects
that are due to the manipulation of interest – e.g. due to
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manipulations of experienced stimulus causation – and
those that arise from any changes to stimulus presentation
with respect to the action.

Despite such potential pitfalls, most previous studies on
sensory attenuation are based on study designs that
manipulate the contingency between an action and a stim-
ulus and may therefore lead to different levels of stimulus
predictability. Given the ubiquitous perceptual effects of
predictability, these confounds make judgements of stimu-
lus intensity problematic. For example, some previous
studies on sensory attenuation have compared stimuli that
are contingent on an action (in ‘‘motor-to-effect’’ condi-
tions) to identical stimuli that are not preceded by a motor
command of the observer (in ‘‘effect only’’ conditions) (e.g.
Weiss et al., 2011). This design could confound authorship
over action consequences with motor processing. Other
studies have tried to avoid this confound by manipulating
the ‘‘when’’ or ‘‘what’’ of action consequences, i.e., the time
lag between the action and its consequence (e.g. Bäss et al.,
2008) or the mapping of various actions onto different con-
sequences (e.g. Cardoso-Leite et al., 2010). Such designs
successfully control for predictability of stimulus occur-
rence, but still need to control for predictability of stimulus
onset timing, or stimulus identity (for a review of these
confounds in previous studies, see Hughes et al., 2013).

A recent EEG study used subliminal priming of sensory
action consequences (rather than priming of the motor ac-
tion itself, as in our study) to demonstrate a neurophysio-
logical correlate of sensory attenuation (of visually evoked
responses) (Gentsch & Schütz-Bosbach, 2011). The concept
of modulating the experience of control over stimuli by
(subliminal or conscious) priming of these action conse-
quences prior to the action stems from studies on explicit
agency judgements (Aarts, Custers, & Wegner, 2005; Linser
& Goschke, 2007; Wegner & Wheatley, 1999). However,
priming of sensory action consequences (‘‘effect priming’’
rather than motor priming) might by-pass specifically ac-
tion-mediated effects on perception and alter sensory pro-
cessing directly, i.e., via stimulus–stimulus associations,
which are potentially independent of the action. Studies
that are based on priming of sensory action consequences
(rather than the motor action itself) cannot unambiguously
attribute observed sensory effects to the preceding action.
This reservation remains even if no effect of the sensory
priming is observed in control conditions that lack the ac-
tion (since these control conditions raise similar issues as
studies that compare ‘‘motor-to-effect’’ conditions and ‘‘ef-
fect only’’ conditions, as described above).

In contrast, our study design dissociates the primary
target of the experimental manipulation – the action –
from the outcome measure of interest – perceived loud-
ness – and thus provides strong support for the proposal
that perceived loudness is indeed modulated through the
action, as our measures of sensory attenuation and motor
performance co-varied with prime–target compatibility.

4.2. Motor processing and negative compatibility priming

We hypothesised that sensory attenuation would be
stronger when actions were compatibly primed. This
hypothesis was based on the finding that the experience
of control is enhanced when primes and targets are com-
patible (Chambon & Haggard, 2012) and on the proposed
association of sensory attenuation and the sense of agency
(Shergill et al., 2005). Direct support for this specific direc-
tion of the priming effect on sensory attenuation comes
from studies on motor priming.

A model of self-inhibitory neural circuits has been pro-
posed to explain negative compatibility effects on motor
performance (Eimer & Schlaghecken, 2003), based on
recordings of the lateralized readiness potential (LRP) in
conjunction with behavioural measures of motor efficiency
(Eimer & Schlaghecken, 1998). According to this model, an
initial facilitation of the correct motor response automati-
cally turns into inhibition of the correct response when
primes and targets are further separated in time (but see
Jaśkowski, 2008). This prime-induced, automatic, inhibi-
tory effect has been considered to be dissociable from the
effects of resolving the subsequent response conflict in-
duced by prime–target compatibility (D’Ostilio et al.,
2012).

In our study, only trials that showed correct responses
to targets were taken into account. These were trials in
which the conflict between automatic motor inhibition
and target instruction was successfully resolved and motor
inhibition was overcome. Previous studies have demon-
strated that physiological signals of motor processing are
enhanced when response conflict induced by prime–target
compatibility is resolved in favour of the correct response.
More specifically, an increase in blood-oxygen-level-
dependent signal in the supplementary motor area has
been shown (Boy, Evans, et al., 2010) as well as a larger
amplitude of the lateralized readiness potential at the time
of the response (Figs. 2 and 4 in Eimer & Schlaghecken,
1998; Eimer & Schlaghecken, 2003, respectively) in com-
patible vs. incompatible trials. This suggests an enhanced
neural representation of the chosen action in compatible
vs. incompatible trials when auto-inhibition is overcome,
and, consecutively, may imply higher accuracy (Blakemore,
Wolpert, & Frith, 2000) or precision (Brown et al., 2013) of
sensory predictions. In line with this, we find stronger sen-
sory attenuation when actions are compatibly primed.

4.3. Bias and sensitivity in sensory attenuation

We used bias in a discrimination task as a measure of
sensory attenuation, similar to previous studies that re-
ported shifts in the point of subjective equality (Desantis,
Weiss, Schütz-Bosbach, & Waszak, 2012; Haggard & Whit-
ford, 2004; Weiss et al., 2011). Early studies on sensory
attenuation reported detection rates and magnitude esti-
mation as outcome measures (Chapman et al., 1987),
which can, in principle, reflect either sensitivity or bias or
both (Macmillan & Creelman, 2005). Indeed, a prominent
example of sensory attenuation, the force-matching illu-
sion (Shergill, Bays, Frith, & Wolpert, 2003), is a shift of
both the point of subjective equality and the slope of the
psychometric function.

From a theoretical perspective, the comparator model
predicts signal cancellation, not a change in the sensory
gain function (but see Brown et al., 2013). The effects of
signal cancellation on the two main signal detection theory
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measures, sensitivity and bias, depend on the choice of task
design. In a detection paradigm, both signal cancellation
and gain reduction predict a decrease in sensitivity.
Accordingly, a previous study that was based on a detec-
tion paradigm found effects of response – stimulus congru-
ency (with respect to a learnt mapping) on sensitivity
(Cardoso-Leite et al., 2010). In discrimination paradigms,
however, mere cancellation of a sensory signal leads to a
perceptual bias, whereas a change of sensory gain affects
both signal amplitude and variance and, thereby, discrimi-
nability from the reference stimulus, i.e., discrimination
sensitivity.

Experiments that require high predictability of the sig-
nal for conceptual reasons, such as studies on sensory
attenuation, may profit from a design based on signal dis-
crimination, as a discrimination task allows to present the
same signal on every trial and to vary the reference stimu-
lus only. Furthermore, absence of an effect on sensitivity in
signal discrimination tasks, as in our study, speaks against
any major, potentially confounding effects on attention.
Attentional effects would typically affect the signal-to-
noise ratio, i.e., the sensory gain function (Hillyard, Vogel,
& Luck, 1998), resulting in altered sensitivity.

In principle, phenomena interpreted as sensory attenu-
ation might occur at an early sensory level as well as at
higher, decision-related stages. As outlined above, previous
studies interpret both sensitivity and bias effects as sen-
sory attenuation. Studies that show a decrease of early
electrophysiological components of sensory processing
typically suffer from those potential confounds, e.g. by
stimulus predictability, that our experiment aimed to ad-
dress (e.g. Gentsch & Schütz-Bosbach, 2011). Taken to-
gether, the previous literature on sensory attenuation
cannot conclusively attribute sensory attenuation phe-
nomena to purely perceptual or pure decision processes.

Our study was not designed to dissociate between per-
ceptual and decision-related components of sensory atten-
uation. We focussed more on the motor locus of the signals
causing sensory attenuation than on the sensory (or any
other) locus where the attenuating effect occurred. How-
ever, our results make a purely decisional effect unlikely,
since response mappings in the speeded reaction time task
and in the loudness discrimination task were orthogonal
(indeed, buttons for the two tasks were arranged orthogo-
nal to each other).
4.4. Priming and unconscious processing

Our results are also relevant to the wider questions of
how unconscious stimuli can modulate cognition (Kouider
& Dehaene, 2007). Previous studies have demonstrated
that subliminal priming can influence perceptual, lexical,
semantic and motor processing (Dehaene et al., 1998; Kou-
ider & Dehaene, 2007). Wenke et al. (2010) and Chambon
and Haggard (2012) further showed that unconscious per-
ception can affect conscious experience of control over the
consequence of an action. The authors argued that such ac-
tion priming effects were mediated by signals arising from
action preparation, i.e., from within the motor system.
Here, we demonstrate that subliminal priming effects
extend beyond motor processing to the conscious percep-
tion of the consequence of an action.

Would supraliminal primes produce similar effects to
those we have observed with subliminal primes? Previous
studies with the NCE disagreed regarding the relation be-
tween prime visibility and priming effects on motor per-
formance (Eimer & Schlaghecken, 2002; Schlaghecken,
Blagrove, & Maylor, 2008). Here, we excluded three partic-
ipants based on relatively high sensitivity in the prime rec-
ognition task. Our rationale for excluding these
participants was that Wenke et al. reported very different
results of motor priming on the experience of control
depending on prime visibility (2010). In line with this
observation, we found a trend towards a significant differ-
ence in the priming effect on our measure of sensory atten-
uation between participants who were excluded and the
rest (independent samples t-test, t14 = 2.11, p = .053; mean
shift in bias from compatible to incompatible trials, ±SD:
�0.32 ± 0.41 (excluded participants) and 0.31 ± 0.48 (in-
cluded participants)). This offers some circumstantial evi-
dence that consciously seeing the primes reverses their
effect on perceived outcome intensity. Whereas subliminal
primes produce a negative compatibility effect on both
motor performance and sensory attenuation, supraliminal
primes have, if anything, the opposite effect. This may indi-
cate that prime awareness is a predictor of (the direction
of) priming effects on sensory attenuation. However, this
is just circumstantial evidence and should be treated with
caution: stronger evidence would come from an experi-
ment designed to address the issue of prime visibility. In
the meantime, it is possible that the internal, motoric sense
of agency studied here operates in a form of competitive
inhibition with other, external attributions of consequent
stimuli. A supraliminal prime might provide an alternative
potential cause to which the consequent tone could be
attributed, and this would then weaken the motoric sense
of agency.

In summary, based on a well-controlled, theoretically
pure design, our study demonstrates that sensory attenua-
tion of action consequences is driven by top-down modu-
lation of perception specifically via motor processing.
Conversely, our results show that effects of subliminal mo-
tor priming extend beyond motor execution to conscious
perception of sensory action consequences. Our approach
provides the basis for future studies that focus on behavio-
urally relevant neural mechanisms underlying sensory
attenuation.
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