
EDITORIAL

Machine learning for tissue diagnostics in oncology:
brave new world

Machine learning is an exciting technology with broad application in big data analysis, as well as increasingly in specialised
healthcare. As a diagnostic tool in tissue workup and pathology, it has the potential for personalised and stratified approaches, but
the limitations and pitfalls need to be better understood and characterised especially in this critical area of medical care.
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THE BEGINNING: LEARNING MACHINES IN MEDICINE
The development of powerful algorithmic approaches, termed
‘machine learning’, closely follows the development of modern
computer technology. The promises of machine learning in
medicine revolve around the notion of faster and more reliable
classification of images or datasets. Especially in oncology, the
possible applications are boundless: from the classification of
imaging studies (‘tumour’ versus ‘no tumour’) to the classification
of cells within a tissue section. The roots of machine learning lie
within the conceptional beginning of circuit design: algorithmic
investigations have held a tight grip on how data were perceived
and understood. One area that is now attracting more and more
research interest is the analysis of tissue specimens—harvesting
more information from ‘pure’ tissue sections, i.e. tissue material
processed in standardised routine procedures and available from
large numbers of patients. Tissue diagnostics and processing is the
field of work of the pathologist, and it is not visionary to predict
that image analysis and machine learning will further shape the
way pathologists will work in the future.

THE NEW ‘MICROSCOPE’ FOR TISSUE: COMPUTATIONAL
TOOLS DEVELOP WITH COMPUTATIONAL POWER
Tissue specimens, especially those processed and subjected to
haematoxylin-eosin staining, are available in large quantities from
a large number of oncological patients. Images generated from
these large sections with routine counterstains offer rich informa-
tion. Fundamental aspects of cellular composition, localisation and
quantity can be gained from these images. Without specific
staining procedures, it is difficult for the human eye to identify the
subsets of cells and to precisely quantify these subsets robustly.
There are clear examples where one can expect advantages from
a computerised approach: lymphocyte infiltration is a good
prognostic factor in many tumour entities. Dataset size is an
important factor in machine learning: datasets beyond 1000 data
points of uniform type are usually needed for creating robust
predictors. With the advent of whole slide image scanners for
histology, the availability of large patient datasets (of larger
numbers) has increased even more. The type of machine learning
algorithms applied to these medical images has developed over
time, and the complexity of these algorithms ranges from single-
layer neural nets to complex deep learning (Boltzmann) algo-
rithms. The history of machine learning is winding, with key
figures in the 50s and 60s of the last century being Marvin Minsky,
Frank Rosenblatt and Charles Wightman.1 In this evolution,

convolutional neuronal networks (CNN)2 have provided a sig-
nificant, new, and technically efficient approach.
With this technical advancement, more and more far-reaching

classifications and stratifications have been attempted with
machine learning. Aligning the treasure chests of ‘big data’ with
clinical outcomes has been also in the focus of attention,
chemotherapy response prediction in colorectal cancer patients
being just one example.3 With the focus on tissue, the
identification of predictive features within the tissue section was
performed4,5 (including lymphocytes or vasculature).6–8 A good
example is the identification of immunohistochemistry-based
signatures to predict metastatic sites of triple-negative breast
cancers.8 Finding ‘unseen’ aspects in tissue sections to align
genetic alterations with phenotypic features is also a key aspect of
new developments.9,10 However, with this advancement, espe-
cially for medical application on tissue, new fields of problems
have appeared.

BRAVE NEW WORLD: A (COMPUTATIONAL) STRATIFICATION
TOOL IS STILL A STRATIFICATION TOOL
The prerequisite for successful machine learning approaches is still a
sufficient dataset size. This is clearly limiting the use of this
technology, because the low frequency of certain cancer entities
limits available material. This also leads to the misinterpretation of
exploratory analyses and points to a need for extensive validation.
This is not to be disregarded in a computational approach, which
might be easy to transfer from one institution to another. Validating
the possible diagnostic machine learning approach requires the
same tight controls and quality assurance management as any other
medical validation approach with wet lab technology.
Another important point here is to understand the predictive

features within the tissue (or the image, see Fig. 1). One way is
obscuring the features within the image systematically to identify
elements that inform the predictive algorithm. This also opens the
door to understand ‘what precisely’ the machine learning
algorithm sees in the tissue, e.g. lymphocytes (i.e. round cells
without significant cytoplasm). Possible confounders or bias can
be identified as well, e.g. the counterstain. Here, the definition of
‘interpretability’ is important—translating the algorithmic findings
into human-understandable language or symbols (see e.g. https://
fatconference.org/2019/). Missing evidence-based expectations
for clinically acceptable performance is another specific danger
in machine learning—in other words, the alignment of expected
performance with realistic clinical expectations and the validation
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of it. Exemplum crudelitatis, the written clinical annotation on an
image as a predictor of outcome and not the actual medical image
itself (see https://medium.com/@jrzech/), is a flamboyant example,
but one that emphasises quality control and understanding of the
algorithm as important parameters of success.

THE OUTLOOK: ALGORITHMIC TOOLS FOR PATHOLOGY
An ideal scenario for development and validation of prediction
models should take the abovementioned points into account.
Machine learning is best suited for multisite studies and model
testing on subsets,11 but its application in study design and
reporting in medical research requires the development of clearer
standards. Algorithmic tools are indeed becoming a part of the
armamentarium in tissue diagnostics and pathology, regardless of
whether deep learning, multiple-agent simulations or other
computing approaches are used.12 The advent of another tool in
the medical toolbox is always exciting,13 but also requires a careful
analysis of the tool's boundaries and limitations. Artificial
intelligence critic Kate Crawford sums it up: ‘Machine learning

does not produce inscrutable and unquestionable objects of
mathematics that produce rational, unbiased outcomes. It is
human design behind it’. There is no doubt that machine learning
will enrich the diagnostic capabilities of pathologists and other
medical specialties, but only if mastered properly by trained
computer specialists and physicians alike. Medicine needs to
shape its tools and not the other way around.
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Fig. 1 Biology-inspired (a) design of circuits led to the development of digital neural networks (b), coupling different layers to form a structure
for feature recognition, separating an input layer and inner layers from the output (c), with variations in the design of the networks leading to
an evolution of different applicability and technical parameters (d)
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