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Abstract

Two-Sided Matching is a well-established approach to find allocations and matchings 

based on the participants’ preferences. While its most prominent applications are 

College Admissions and School Choice problems, this paper applies the concept to 

the matching of mentors to mentees in a higher education context. Both mentors and 

mentees have preferences with whom they ideally want to be matched, as well as who 

they want to avoid. As the general formulation for these types of preferences is NP-

hard, several existing approximation algorithms and heuristics are compared with 

respect to their ability to find a matching with desirable properties. The results show 

that a combination of evolutionary heuristics and local search approaches works best 

in finding high-quality solutions, allowing us to find mentor-mentee pairs which are 

close to the respective ideal match.

Keywords: Information science, Applied mathematics

1. Introduction

Two-Sided Matching approaches are a well-established process to coordinate 

markets and resource allocations based on participants’ preferences. For example, 

they are commonly applied in School Choice (see [1]), College Admission scenarios 
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lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00634
mailto:christianhaas@unomaha.edu
https://doi.org/10.1016/j.heliyon.2018.e00634
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2018.e00634
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2018.e00634&domain=pdf


Article No~e00634

2 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 The Authors. Pub

(http://creativecommons.org/licenses/
(see [2]), and in innovative scenarios such as (dynamic) resource allocation in 

wireless networks [3, 4]. In these settings, one side provides resources (e.g., schools 

and colleges offer places) and the other side is interested in obtaining these resources 

(e.g., being admitted to the respective school or college). At the same time, both sides 

have preferences for their most preferred choices, expressed by an ordinal ranking 

where a higher rank indicates that a match would be preferred.

The matching of mentors and mentees in a professional and/or higher education 

lends itself as an application of Two-Sided Matching. A good relationship between 

mentors and their mentees can have fundamental effects/benefits for mentees’ 

careers, hence finding a good mentor is crucial. In settings where there is a 

pool of potential mentors as well as interested mentees, calculating an allocation 

(match) which satisfies both sides and has favorable properties can be of substantial 

complexity. Manual calculation of the matching in this case is challenging, both in 

terms of required work as well as the achievable quality of the solution. Hence, we 

make use of computational methodologies to find a good solution for mentors and 

mentees.

This paper has two main goals. First, we want to apply Two-Sided Matching 

procedures to find a high-quality solution which is beneficial for as many participants 

as possible. For this, we have to define which criteria we want to use for evaluation. 

Common criteria are stability of the solution, the closeness to the most preferred 

choice, and the number of mentor/mentee pairs that can be successfully matched. 

Hence, the goal is to find a mentor-mentee matching that matches as many pairs as 

possible, while achieving desirable solution qualities and matching the participants 

close to the respective most preferred option. Second, for the given real data, we want 

to analyze which algorithm performs best for the given set of criteria. For this, we 

consider several approximation algorithms and heuristics that have been developed 

for this setting, offering solutions with different quality trade-offs. We apply them to 

a set of preferences obtained by a mentor-mentee matching at a university program, 

thus representing realistic preferences as they occur in similar settings. Our analysis 

shows that heuristics, which can simultaneously optimize multiple objectives, offer 

the best solution quality for the given setting. In particular, high-quality solutions 

can be found that, on average, match the participants close to their most preferred 

options.

The contribution of this paper is twofold. First, we show that Two-Sided Matching 

is a useful approach for problems such as matching mentors and mentees at a 

workplace, and we provide a recommendation for the type of algorithm that should be 

used in this case. Second, we extend the current literature on Two-Sided Matching by 

evaluating a real data set, collected based on real preferences from a mentor-mentee 

matching at our university.
on.2018.e00634
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The paper is structured as follows. After introducing Two-Sided Matching funda-

mentals in Section 2, we describe the algorithms and preferences used in this study 

in Section 3. The evaluation of solution quality differences of the various approaches 

and their implications are discussed in Section 4. Section 5 provides an overview on 

related work, and Section 6 concludes with an outlook on further work.

2. Theory

We consider the matching of a set of mentors, 𝑋, and mentees, 𝑌 , in a university 

advising program that encourages women to pursue a career in computing. The task 

at hand is to find a match of mentors with potential mentees, ⟨𝑋, 𝑌 ⟩ consisting of 

pairs of individuals ⟨𝑥, 𝑦⟩ where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , while aiming to ensure that both 

sides are as happy with the matching as possible. As the number of mentors and 

mentees does not have to be equal, a match does not guarantee that each mentor or 

mentee will be matched. However, as in our setting the number of mentors is higher 

than the number of mentees, our goal is to find a mentor for each mentee.

Both mentors and mentees have preferences 𝑃𝑖 =
(
𝑃𝑖,𝑗1

,… , 𝑃𝑖,𝑗𝑛

)
, 𝑗 ∈ 𝑌 and 

𝑖 ∈ 𝑋, or 𝑖 ∈ 𝑌 and 𝑗 ∈ 𝑋 with whom they want to be matched. The preferences 

are represented by ordinal ranks, where 𝑃𝑖,𝑗 denotes the preference rank that user 𝑖

has towards user 𝑗. The most preferred option (match) has rank 1, the second-most 

preferred match rank 2, and so on. The preferences represent transitive priority 

structures ≿ , where each user of the opposite side is ranked according to its priority. 

The asymmetric part ≻𝑖 indicates a strict priority, whereas the symmetric part 

indicates an indifference. For example, 𝑗1 ≻ 𝑗2 means 𝑗1 is preferred over 𝑗2, whereas 

𝑗1 ∼ 𝑗2 means the user is indifferent between 𝑗1 and 𝑗2. The preference towards being 

unmatched is defined as 𝑃𝑖,∅. A preference profile is said to be complete if 𝑗 ≻ ∅ for 

all users 𝑗, meaning that the user is willing to be matched with any user of the other 

side. If ∅ ≻ 𝑗 for some user 𝑗, the preference profile is said to be incomplete. This 

indicates that user 𝑖 wants to remain unmatched rather than being matched to user 𝑗. 

A preference profile is strict if ∀𝑗 ∈ 𝑋 (𝑗 ∈ 𝑌 ), ≿𝑗 is asymmetric. If 𝑗 ∼ 𝑘 for some 

users 𝑗 and 𝑘, then the preference profile is said to have indifferences, or ties.

In our case, we allow for preferences that are both incomplete and include ties. 

Mentors are allowed to place restrictions on the specific mentees that they are willing 

to supervise (e.g., some mentors only want to be matched with undergrad students). 

Similarly, in our setting mentees provide the names of up to 5 mentors that they 

would prefer. While this restriction seems arbitrary, we decided to limit the number 

of mentors that each mentee has to rank to reduce the time (and complexity) for the 

mentees to form a ranking out of a large pool of mentors. Due to these restrictions, 

preferences on both sides are incomplete. Furthermore, mentees are allowed to be 

indifferent between their listed options. For example, they might state that some 
on.2018.e00634
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mentors are equally preferred, while the remaining mentors are less preferred. 

Mentors do not provide a further preference ranking, i.e., are by default indifferent 

between all allowed options (i.e., allowed mentees after the previous restrictions).

Based on these stated preferences, Two-Sided Matching calculates a match ⟨𝑋, 𝑌 ⟩
where mentors are matched with mentees (or not matched at all). To evaluate the 

quality of a matching between mentors and mentees, we use following standard 

criteria to consider the solution quality: stability, the number of matched pairs, and 

the average welfare.

Stability is the core requirement of practically all approaches for Two-Sided 

Matching. In a stable solution, no participant can be better off (be matched with 

a more preferred mentor/mentee) by switching their allocated partner with another 

mentor/mentee pair. Proposed mentor-mentee matches may fail in the sense of 

become undone after having been proposed, because some participants see better 

opportunities. Specifically, a match ⟨𝑋, 𝑌 ⟩ containing at least one pair of matched 

individuals ⟨𝑥1, 𝑦1⟩ and ⟨𝑥2, 𝑦2⟩, 𝑥1, 𝑥2 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌 , where 𝑥1 prefers 𝑦2
to 𝑦1 as a partner and 𝑦2 prefers 𝑥1 to 𝑥2 as a partner is said to be unstable.
If the unhappy participants, here 𝑥1 and 𝑦2, are aware of this, they would break 

their proposed mentor relationships and form a new pair. Stability is important as 

otherwise even one unstable pair can lead to chaotic unraveling [5]. Note that stability 

is not further described as solution property as all algorithms considered in this paper 

yield stable solutions, thus removing the requirement to compare the stability of the 

different approaches.

The second criterion is the number of matched pairs, i.e., the number of pairs ⟨𝑥, 𝑦⟩
where 𝑥 is a mentor and 𝑦 is a mentee. This might seem obvious, yet finding a solution 

with the maximum number of matched pairs is itself an NP-hard problem [6]. In our 

context, we aim to provide a mentor-mentee match for as many mentees as possible 

as it is not guaranteed that a stable solution exists where all mentees are matched.

As a third criterion, Welfare describes the average preference rank that each 

participant is matched with. That is, for each matched participant we sum up the 

preference rank 𝑃𝑖𝑗 of their respective match and calculate the mean matched 

preference rank. For example, given that the highest (most preferred) rank is 1, 

a welfare score of 2 would mean that participants are, on average, matched with 

their second most preferred choice. While welfare is an important criterion for

the solution, it is not commonly considered by many approximation algorithms 

or heuristics in the general case of incomplete preferences with ties, due to the 

NP-hardness of the problem. However, it can be easily included in evolutionary 

algorithms as additional objective (see e.g., [7]).

Finally, Equality considers if both sides of participants are treated equally. For each 

matched pair of mentor and mentee, the rank of the respective matched partner is 
on.2018.e00634
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calculated. The equality score for a pair is defined as the difference of these two 

ranks. A solution is considered to be more equal if both mentor and mentee are close 

in the respective other preference ranking. A solution that is completely equal would 

have score of 0 in this case.

Given these solutions quality criteria, we aim to find a stable solution that matches as 

many mentees as possible, while at the same time matching each participant as close 

to their most preferred choice as possible. Several algorithms have been suggested 

for this case, and they are described in the next section.

3. Methodology

Given the preferences and solution evaluation criteria introduced in the previous 

chapter, we compare a set of different algorithms in their ability to find a good 

solution for this NP-hard problem. As a baseline, we use the first and most famous 

approach in Two-Sided Matching: The Deferred Acceptance (DA) algorithm [8]. 

Having been developed to find a stable solution in case of complete preferences 

without ties, it does not guarantee that the maximum number of mentor/mentee 

pairs are found in case of incomplete preferences with ties. However, by breaking 

the ties (even in an arbitrary fashion), the DA can calculate a stable solution based 

on this tie breaking, which produces a stable solution under the original preferences 

(see, e.g., [6]). We use this approach of arbitrary tie breaking as a baseline for our 

evaluation. In addition to the DA, we compare two general sets of approaches that aim 

to find a solution with as many matched pairs as possible: Approximation algorithms 

and heuristics.

3.1. Approximation algorithms

Approximation algorithms provide a guaranteed performance with respect to the 

number of matched pairs. In other words, given the actual optimal solution (the one 

with the highest number of matched pairs), the calculated solutions are within a 

certain boundary to this optimal solution. We consider following approaches that 

have been proposed in the previous years:

• Shift: [9] describe an approximation algorithm for this case, in the following 

abbreviated as Shift. For certain preference structures, this algorithm provides 

non-trivial quality bounds for finding the stable match of maximum size. Shift 

operates through breaking indifferences in a systematic manner and applying the 

DA on the resulting set of strict preferences. In particular, if indifferences occur 

on both sides of the market, Shift guarantees non-trivial quality bounds if the 

length of indifferences is at most 2.
on.2018.e00634
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• Király: [10] presents an algorithm with a 5∕3 approximation ratio in the general 

stable matching case, and a 3∕2 approximation ratio when ties are only allowed 

on one side.

• McDermid: [11] presents an algorithm that improves upon the algorithm by [10]

by providing a 3∕2 approximation ratio, which is the best known approximation 

ratio for the general case without restrictions on tie lengths.

• GSModified: [12] presents another algorithm with the same 3∕2 approximation 

ratio as the algorithm by [11], yet with an additional improvement in runtime.

3.2. Heuristics

In contrast to approximation algorithms, heuristics do not provide a guaranteed 

solution quality. However, it is less clear how the algorithms perform on average. 

Hence, we consider following heuristics:

• LocalSearchSMTI: [13] present local search heuristics to solve the generalized 

stable matching. They start with solving the relaxed version of the problem 

(assuming complete preferences), thereby potentially introducing instability, and 

then deleting unstable pairs through an iterative process until stable solutions are 

found.

• Genetic Algorithm in combination with Threshold Acceptance: [7, 14] suggest 

the use of Genetic Algorithms (GA) for the general problem with incomplete 

preferences and ties. The GA is initialized with a set of 50 different (but 

stable) starting solutions, which are calculated by arbitrary tie breaking and 

using the DA to calculate a stable solution. These starting solutions are then 

evolved by using mutation and crossover operators. Crossover operators take 

two existing stable solutions, exchange certain (randomly selected) parts of the 

respective solution, and uses the resulting new solutions in the next evolution 

step. Mutation operators randomly switch participants in two matched pairs, 

resulting in local changes to the solution. The GA typically uses the best solution 

of the population after 100 evolution rounds. After this initial GA, a Threshold 

Accepting (TA) algorithm is used to further improve the solution quality. The 

TA evaluates small adjustments to the solution (similar to the Mutation in GA) 

in every round until no improvement can be found. TAs are efficient in finding 

local improvements, as shown in [14], and well suited to complement the GA.

We use two variants of the heuristic for the evaluation, depending on the set 

of starting solutions: GATA uses Deferred Acceptance to calculate starting 

solutions, evolves them, and uses a subsequent TA approach to optimize the best 

GA solution. GATA-Mixed is similar, yet uses a mix of DA, Király, McDermid, 

GSModified, and LocalSearchSMTI solutions.
on.2018.e00634
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Table 1. Computational complexity of considered two-sided matching algorithms.

Type Authors Abbreviation Complexity

No Guarantee [8] DA 𝑂 (𝐿)
Approximation [9] Shift 𝑂

(
𝜏2𝐿

)
Approximation [10] Kiraly 𝑂 (𝐿)
Approximation [11] McDermid 𝑂

(
𝑛3∕2𝐿

)
Approximation [12] GSModified 𝑂 (𝐿)
Heuristic [13] LocalSearchSMTI 𝑂 (𝑛 log(𝑛))
Heuristic [7] GATA / GATA-Mixed 𝑂 (𝑝𝐿)

3.3. Algorithm complexity and runtime

Due to the NP hardness of the underlying problem, it is necessary to consider the 

runtime and complexity of the various algorithms used to calculate the solutions. 

While the runtime is of less concern for the comparably small dataset at hand, it 

is a relevant aspect when scaling the approach to hundreds or even thousands of 

participants.

Table 1 provides an overview of each algorithm’s complexity. In general, algorithms 

that explicitly check whether or not a match is stable include the complexity factor 𝐿, 

the sum of the lengths of the preferences. This stems from the requirement to check 

for the stability of the solution, and no algorithm is known to run in less than 𝑂(𝐿) for 

this. For example, the DA algorithm as well as Shift and GATA all check for stability 

in (some of their) calculation steps. Shift additionally depends on the factor 𝜏2, 

where 𝜏 represents the length of ties (indifferences) in the preferences. Similarly, 

the GATA heuristic additionally depends on the population size factor 𝑝, although 

this can be arguably neglected for complexity considerations as it usually is a fixed 

factor of 50. The runtime of the Király, McDermid, and GSModified algorithms also 

depend on 𝐿 (as well as the number of participants 𝑛 for McDermid). Finally, the 

LocalSearchSMTI algorithm promises an 𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛)) runtime growth, although 

the heuristic needs to calculate one stable solution first (which again could require 

𝑂(𝐿) depending on the algorithm used).

Considering the runtime of the algorithms, due to the small problem size all 

algorithms were able to compute the solutions for the given preferences in less 

than 5 seconds. Individual runtimes varied slightly due to the different setup of the 

algorithms, yet can be considered negligible for the given problem.

3.4. Preferences

For the preferences, we used a set of real preferences coming from a mentor-

mentee matching at our university. For the given setting, our set of participants 

consists of 29 mentees and 31 mentors who wanted to participate in a college-wide 

program. After an initial meeting, mentees provided a preference ranking for mentors 
on.2018.e00634
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based on common (research) interests and other considerations. As described above, 

the mentees were allowed to list up to 5 mentors, and were allowed to include 

ties between two or more mentors. Roughly half of the mentees listed only strict 

preferences (no ties), while only 8 listed less than 5 mentors. On the mentor side, 7 

mentors indicated that they are willing to be matched with more than one mentee. 

In this case, the preferences were duplicated into a new ‘dummy’ mentor with the 

same preference structure as the ‘real’ mentor, effectively duplicating the preference 

structures for these mentors.

3.5. Simulation

To evaluate the different algorithms, we use a simulation approach with 100 

independent repetitions and calculate the solution quality for each algorithm. This is 

necessary as all algorithms utilize certain random procedures in their calculations, 

resulting in a potentially different solution per run. In each run, we compute the 

resulting match for each algorithm, and calculate the solution quality criteria for 

the matches. In the end, the results for the number of matched pairs as well as the 

average welfare and equality of the solution is calculated and saved.

4. Results

In this section, we compare the performance of the different solution approaches 

with respect to the three previously described metrics: Number of matched pairs, 

average welfare of the match as well as the average equality. It is noteworthy that 

the approximation algorithms in the previous section are developed to only focus 

on the first criterion, the number of matched pairs. Indeed, for the general matching 

problem with indifferences and incompleteness, [9] showed that creating algorithms 

with guaranteed quality boundaries is an NP hard problem in itself, which explains 

the lack of approximation algorithms that consider welfare and equality in addition 

to the number of matched pairs. One of the main advantages of using heuristics 

such as GATA is that they are able to include these additional criteria, even though 

they cannot provide performance guarantees. The main reason why we compare the 

algorithms with the additional two criteria is that they have strong influence on the 

participants’ perception of the solution, i.e., how satisfied they will be.

4.1. Number of matched pairs

The maximum number of matched pairs in our case is 29, as stable solutions have 

been found where all 29 mentees were matched. Hence, we can compare the average 

performance of the algorithms against their ability to find solutions with 29 matched 
on.2018.e00634

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00634
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e00634

9 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 The Authors. Pub

(http://creativecommons.org/licenses/
Figure 1. Number of matched pairs found by algorithms.

pairs. Note that even though some algorithms find solutions with 29 matched mentees 

in some iterations, the existence of random (decision) procedures in each algorithm 

leads to potentially different solutions in each iteration.

Figure 1 shows the average number of matched pairs, i.e., the number of matched 

mentees in our case (since we have less mentees than mentors), in addition with 

error bars indicating the standard deviation for the given 100 iterations. Several 

observations are notable. First, the Deferred Acceptance algorithm is outperformed 

by the others who specialize on finding a large stable match. Second, the heuristic 

using a Genetic Algorithm with mixed initial solutions and a subsequent Threshold 

Accepting approach (GATA Mixed) performs best, with the LocalSearchSMTI 

(LSMTI) and GSModified procedures being close behind. Third, a comparison of 

GATA (starting solutions computed by DA) and GATA Mixed (starting solutions 

with DA and approximation algorithms) reveals that adding a more diverse set of 

starting solutions for the Genetic Algorithm increases the ability of the heuristic to 

find good solutions in this case. In addition, using approximation algorithms as a seed 

for subsequent heuristics seems to be a profitable approach, as they outperform the 

initial approximation algorithms. A Kruskal–Wallis and subsequent Dunn test with 

Bonferroni adjustments for the algorithm differences based on the 100 simulation 

runs shows that GSModified, LocalSearchSMTI, and GATA-Mixed significantly 

increase the number of mentees matched (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001), and that no statistical 

difference can be found between the three approaches.

4.2. Welfare

The solution metric Welfare looks at how closely the average participant is matched 

to the most preferred solution. While calculating a theoretical optimum for the 

given preferences is infeasible (due to the NP-hardness), values closer to 1 (the 
on.2018.e00634
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Figure 2. Welfare score as average matched rank for participants.

most preferred match/preference rank) are better, allowing for a comparison between 

algorithms.

Figure 2 shows the Welfare for each algorithm, averaged over the 100 repetitions. 

Error bars with the standard deviation of Welfare scores are included as well. Note 

that the algorithms are sorted based on their performance to find a high number of 

matched pairs, i.e., their performance in Figure 1. Several things can be observed. 

First, the heuristics GATA and GATA-Mixed, which performed well/best for the first 

solution criterion, consistently outperform the other approaches. While they achieve 

an average matched rank of 1.81 and 1.86, respectively, the other algorithms achieve 

a Welfare of 1.95 and higher. Second, and particularly striking, is that the second 

best performing solution, LocalSearchSMTI, yields the worst Welfare results with a 

score of 2.53. In a direct comparison between GATA-Mixed and LocalSearchSMTI, 

the average user is matched 0.67 preference ranks worse in the latter algorithm. 

While LocalSearchSMTI does a superb job at finding additional matched pairs, 

apparently it does so by sacrificing the average matched rank of the participants. 

In contrast, the heuristic approach GATA-Mixed seems to find good solutions with 

simultaneous good characteristics in Welfare. The GSModified algorithm is closer 

to the GATA-Mixed welfare score, indicating a better performance as compared 

to LocalSearchSMTI. Similar as before, a Kruskal Wallis and follow-up Dunn test 

shows that GATA and GATA-Mixed significantly improve the Welfare score of the 

solution compared to the other algorithms (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001).

While the Welfare metric considers the average matched rank for all participants, it 

is also worthwhile to consider the solution quality with respect to the lowest rank 

that any mentee is matched with, i.e., the mentee that is worst off in the given 

solution. Figure 3 shows the worst preference rank for mentees over all matched pairs, 

averaged over the 100 repetitions. The error bars in the picture capture the standard 

deviation of this metric. Interestingly, it can be observed that DA yields, on average, 

the lowest worst rank, whereas the best performing algorithms for the other metrics, 
on.2018.e00634
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Figure 3. Average worst preference rank for mentees.

Figure 4. Average equality score for the algorithms.

GSModified, LocalSearchSMTI, and GATA-Mixed, yield worse performance in this 

case. However, this seems to be a trade-off as the DA matches less mentees on 

average. The worse ranks for GSModified, LocalSearchSMTI, and GATA-Mixed in 

Figure 3 indicate that stable solutions which match more mentees in total lead to the 

situation where some of the mentees are matched with less preferred partners. From 

an overall perspective, however, the performance of GATA-Mixed with respect to 

number and welfare of matched mentees seems to be the preferred choice.

4.3. Equality

Considering Equality, i.e., if both mentors and mentees are treated equally by the 

solution with respect to the preference rank that their partners have, Figure 4 shows 

the respective equality scores. For example, an Equality score of 0.85 for GATA-

Mixed indicates that, on average, the difference between the preference ranks for 

the partner that each mentor and mentee is matched with is 0.85. Interestingly, 

in this case the McDermid approximation algorithm seems to yield the most 
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Table 2. Comparison of the algorithms with respect to number of matched pairs and welfare.

Algorithm Average num-
ber of matched 

pairs

Average 
welfare

Worst 
matched 

rank

Equality 
score

DA 25.28 2.43 3.81 0.65

McDermid 26.66 1.97 3.91 0.44

Shift 27.20 2.06 4.1 0.72

Király 27.90 1.99 4.35 0.79

GATA 27.95 1.81 4.26 0.62

GSModified 28.67 1.95 4.78 0.87

LSMTI 28.72 2.53 4.68 1.48

GATA-Mixed 28.95 1.86 4.3 0.85

equal solutions, whereas the previously best performing algorithms GATA-Mixed, 

GSModified, and in particular LocalSearchSMTI yield less equal solutions.

This result shows again that there are trade-offs in the performance of the algorithms 

with respect to different metrics. Overall, however, when concentrating on the main 

criteria number of matched pairs and Welfare, GSModified, LocalSearchSMTI and 

especially GATA-Mixed seem to provide the best overall performance. Table 2

summarizes the results for the number of matched pairs, Welfare, as well as Equality.

5. Related work

Related work in Two-Sided Matching can be broadly categorized into solutions 

for different preference properties and solution quality criteria, and the analysis of 

preference manipulation strategies.

Regarding preference properties and solution quality, we have to distinguish between 

complete and incomplete preferences as well as the introduction of ties (indiffer-

ences). On one hand, the DA can be used in all scenarios to compute a stable solution. 

On the other hand, including additional solution criteria leads to considerably 

more complex problems. For example, [5, 15] showed that the number of stable 

solutions for a given preference set can be large, sometimes even exponential. With 

the exception of complete preferences without ties, where there are polynomial-

time algorithms to compute the welfare-best [16] and approximately fairness-best 

solutions [17], finding the welfare-best or fairness-best stable solution is generally an 

NP-hard problem and sometimes even hard to approximate [18]. For the most general 

case of incomplete preferences and allowed indifferences, the common goal is to find 

stable solutions that match as many participants as possible. For this specific case, 

approximation algorithms have been developed that provide lower-bound quality 

guarantees for the solutions [10, 11, 12]. In addition, other approaches that aim to 

increase the solution quality are heuristics such as Genetic Algorithms with multi-

objective target functions [7, 19, 20]. While heuristics do not provide lower bound 

quality guarantees, they have been shown to work well on average and offer the 
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flexibility to optimize multiple solution criteria simultaneously. In another approach, 

Erdil and Ergin [21] introduced an extension to the DA that can cope with ties in 

preferences. Their algorithm tries to find potential Pareto-improvement cycles in a 

given solution which might improve the overall quality of the solution.

A second line of research in Two-Sided Matching considers the occurrence and 

practical implications of preference manipulation. While finding stable solutions 

is the de-facto standard [22], it can be shown that algorithms which always find 

stable solutions are not incentive compatible [2, 23]. This implies that for these 

algorithms, at least some of the participants have an incentive to submit manipulated 

preferences that do not reflect their true preference ranking. Preference manipulation 

is an important consideration due to the effects on both participants and the overall 

solution quality. On one hand, individual participants have to decide whether or 

not and how to manipulate the preferences. While theoretical results show that 

preference manipulation is beneficial for some participants [24], the results do 

not provide guidance on how much and in which circumstances to manipulate. 

On the other hand, manipulation can also affect the overall solution quality. As 

the algorithms calculate stable solutions based on the submitted (and potentially 

manipulated) preferences, the resulting solution is not necessarily stable under the 

true preferences. The effects of manipulation can be severe, as evidenced by schools 

that have been closed due to being ranked low in the School Choice problem [25]. 

The most common manipulation strategy is truncation, where participants submit a 

shortened preference ranking by leaving out undesired potential matches. Theoretical 

and experimental studies have shown its prevalence and the implications on the 

overall system [26, 27, 28].

6. Discussion & conclusion

This article considers the matching of mentors and mentees, which can be substan-

tially improved by applying Two-Sided Matching approaches. This guarantees stable 

matchings as well as near-optimal solutions with respect to secondary solution 

quality criteria such as the average matched rank of participants. With respect 

to algorithm choice, heuristic approaches perform best when it comes to number 

of matched participants as well as substantially outperform other approximation 

solutions with their ability to find solutions with high welfare quality, i.e., solutions 

where the average participant is matched close to their most preferred choice. 

Considering additional criteria such as Equality, the results show that there seems 

to be a trade-off between algorithm performance with respect to different metrics. 

Overall, the performance of the GATA-Mixed heuristic seems to be the best fit for 

the given set of preferences.
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The work at hand can be extended in several directions. First, the overall approach 

can be adjusted to include additional constraints such as mentors who are willing 

to supervise mentees that do not find other mentors, but would prefer to remain 

unmatched otherwise. Second, additional solution criteria can be considered. 

A common additional criterion for Two-Sided Matching is Fairness, which compares 

the welfare for each participating side. If both sides, on average, are matched to 

similarly preferred partners, the solution is considered fair. Finally, an interesting 

endeavor is the explicit analysis of potential preference manipulation in this type of 

Two-Sided Matching. Through the use of questionnaires or other confidential means, 

participants can be asked to reveal if they adjusted their true preference ranking, and 

to provide their actual ranking. This would enable us to study how frequent and 

severe preference manipulation is, and also what the actual effects of manipulation 

on the overall solution quality (stability and welfare of the solution) are.
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