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ABSTRACT
Chukar partridges (Alectoris chukar) are popular game birds that have been
introduced throughout the world. Propagules of varying magnitudes have been used
to try and establish populations into novel locations, though the relationship between
propagule size and species establishment remains speculative. Previous qualitative
studies argue that site-level factors are of importance when determining where to
release Chukar. We utilized machine learning ensembles to evaluate bioclimatic and
topographic data from native and naturalized regions to produce predictive species
distribution models (SDMs) and evaluate the relationship between establishment
and site-level factors for the conterminous United States. Predictions were then
compared to a distribution map based on recorded occurrences to determine model
prediction performance. SDM predictions scored an average of 88% accuracy and
suitability favored states where Chukars were successfully introduced and are
present. Our study shows that the use of quantitative models in evaluating
environmental variables and that site-level factors are strong indicators of habitat
suitability and species establishment.
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INTRODUCTION
A central goal in the study of introduced species involves determining the forces that might
influence introduction success. Duncan, Blackburn & Sol (2003) argued that such forces
fall in to three categories: species-level factors; site-level factors; and event-level factors.
In a recent analysis, Moulton et al. (2018), examined a large database of game bird
introductions to the United States (US), from the Foreign Game Investigation Program
(FGIP). Based on the pattern of introduction successes, Moulton et al. (2018), argued that
the best explanation for the pattern indicated that location-level factors must frequently be
more important in deciding the fates of game bird introductions than the
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often-championed event-level factor of propagule pressure (e.g., Williamson & Fitter,
1996; Lockwood, Cassey & Blackburn, 2005). However, the evidence for an important role
for location-level factors was indirect, and non-specific.

In the FGIP database, 13 of the 17 species released invariably failed to establish
populations in the US despite a wide range of propagule sizes. The remaining four species
included the Chukar (Alectoris chukar); Common Pheasant (Phasianus colchicus); Gray
Partridge (Perdix perdix); and Himalayan Snowcock (Tetraogallus himalayensis). Of these
species, we selected the Chukar for a detailed study of location-level factors in predicting
the fate of introductions.

Chukars are gallinaceous birds that are found at higher altitudes in arid regions
consisting of talus slopes, short grasses, and shrubs (Alcorn & Richardson, 1951; Barnett,
1952; Galbreath & Moreland, 1953; Christensen, 1954, 1970, 1996; Bohl, 1957; Harper,
Harry & Bailey, 1958; Tomlinson, 1960). Their native range includes southeastern Europe,
central and west Asia, and the Himalayas, but have been successfully introduced to North
America, the Hawaiian Islands, and New Zealand (Christensen, 1970, 1996; Long, 1981;
Lever, 1987). In the conterminous US, Chukars are well-established in 10 western states;
their distribution is centered in the Great Basin and extends to eastern Washington,
northern Idaho, western Wyoming and Colorado, the northwestern border of Arizona,
and parts of Montana (Christensen, 1970, 1996). Efforts have been made to establish
Chukars in several other parts of world, including Australia, western Europe, and southern
Africa; however, most attempts were unsuccessful (Long, 1981; Lever, 1987).

A number of sources remain inconsistent, specifically with what constitutes as an
introduction or release attempt. In some cases, an introduction is identified as a single
release or instance, while others are a summation of releases over some duration of time
(Moulton & Cropper, 2020). Even then, large propagules may have occurred not out of
necessity, but rather to expedite population densities (Moulton, Cropper & Broz, 2015;
Moulton et al., 2018; Moulton & Cropper, 2016). Spatial scale is also often ignored, and
previous studies reviewed introductions at a state or country level rather than more specific
locations (Moulton & Cropper, 2020). Therefore, three unverifiable assumptions are
made from this: individuals were only released in areas considered to be suitable;
propagule size was determined by the amount of available habitat; and introductions
were distributed uniformly, and not in clustered locations.

Gullion (1965) criticized these assumptions when reviewing the FGIP data and
questioned if birds truly adapted/acclimated to new geographical territory, or if they were
introduced and succeeded in locations that were most similar to native habitat. He further
asserted that if an introduced species were to establish in a new location, that should
hold true for even small propagules.

The most well-documented experimental programs occurred in the US, with both state
and federal game commissions releasing individuals in a variety of habitats (e.g., Nagel,
1945; Galbreath & Moreland, 1953; Long, 1981; Lever, 1987). Bump (1968) reported that
probably every state within the US attempted to establish Chukars; fortunately, a great
deal of detailed environmental information is available as well as general locations
within each state where releases were successful and unsuccessful (Nagel, 1945;
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Alcorn & Richardson, 1951; Barnett, 1952; Galbreath & Moreland, 1953; Christensen, 1954,
1970, 1996; Bohl, 1957; Harper, Harry & Bailey, 1958; Long, 1981; Lever, 1987). These
qualitative assessments indicate that Chukars favored habitats that resembled their native
range, but they might not persist in environments with too much snow (e.g., Gullion, 1965;
Christensen, 1970), or hot, arid regions with limited access to free water (e.g., Galbreath &
Moreland, 1953; Tomlinson, 1960; Christensen, 1970; Larsen et al., 2007).

Although Chukars have been studied extensively (e.g., Nagel, 1945; Alcorn &
Richardson, 1951; Barnett, 1952; Galbreath & Moreland, 1953; Christensen, 1954, 1970,
1996; Bohl, 1957; Harper, Harry & Bailey, 1958; Tomlinson, 1960; Moulton, Cropper &
Broz, 2015; Moulton et al., 2018; Moulton & Cropper, 2016, 2019, 2020), little information
exists for quantitative comparisons of locations deemed suitable versus not suitable.
With this in mind, the goal of our study was to develop quantitative models using machine
learning algorithms to assess environmental factors of sites in the Chukar’s native range,
and to determine/predict most suitable sites for introductions in the 48 contiguous
states of the US.

Such algorithms represent a standard practice for formulating a species distribution
model or SDM, which identifies characteristics of a species niche or could be applied to
predicting potential range expansions or contractions (Phillips et al., 2009; Elith et al., 2011;
Hijmans, 2012; Hijmans & Elith, 2017). Species distribution models (SDMs) use species
occurrence records and compare them to areas where they are absent. In many cases,
absences were not recorded, and models refer to ‘pseudo-absent’ or ‘background’ data,
places assumed less suitable due to the lack of occurrence records, for comparative
purposes (Phillips et al., 2009). These models score and rank each point in the area of
interest to determine the level of suitability. Traditional methods rely on regression
techniques such as generalized linear models and generalized additive models because of
their seemingly straightforward interpretability (Elith, Leathwick & Hastie, 2008; Hastie,
Tibshirani & Friedman, 2009). Machine learning algorithms are also able to produce such
models but do not require any preconceived relationships between environmental
covariates and are able to handle complex data distributions (Elith, Leathwick & Hastie,
2008; Hastie, Tibshirani & Friedman, 2009; Elith et al., 2011). A common problem when
trying to quantify habitat quality is determining which variables to include in model
building given that reducing the dimensionality of the problem could lead to missing
subtle non-linear interactions. We chose algorithms with proven success when applied to
large, multi-dimensional data sets to remove bias from the covariate selection. A common
practice is to choose the ‘best’ model based on a set of statistics. To eliminate this bias
and to ensure a collective analysis, we chose to construct and examine ensembles
(e.g., model averages) to assess the importance of various site-level factors.

METHODS
All of our analysis, model construction, and graphics were done using R Ver. 3.5.2
statistical computing language (R Core Team, 2018). All data points and covariates were
measured using geospatial packages and extracted from 2.5-min spatial scale raster and
polygon layers.
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Species occurrence data
We constructed two sets of models for our analysis. First, we collected observations
submitted to eBird (Sullivan et al., 2009; eBird, 2021) that provided a media source for
validation. We removed all duplicate occurrences that shared longitudinal-latitudinal
coordinates leaving us with 1,302 occurrences. We compared these occurrences to where
Chukars were successfully introduced and determined they were appropriate for our
analysis since both records shared similar distributions (e.g., Christensen, 1970, 1996;
Long, 1981; Lever, 1987). Note, 21 occurrences that met our requirements were from states
where Chukar failed to establish (Christensen, 1970, 1996; Long, 1981; Lever, 1987).
While there are no records that indicate these are wild Chukar or that the locations are
suitable, we retained these points to avoid sampling bias. We then randomly selected
10,000 background points from all terrestrial regions, excluding Antarctica and
snow-covered Greenland using the ‘spsample’ function from the ‘sp’ package (Pebesma &
Bivand, 2005). We chose to exclude these regions because the persistent, thick
snow-covered areas are unsuitable habitat for Chukar, as noted above. Bohl (1957)
documented several studies within the US regarding the distance travelled by released
Chukars. We averaged these measurements (m ¼ 49 km) and created circular buffers
around each point and merged these polygons to create an estimated range plot (Fig. 1).

Mori et al. (2019) note that subspecies selection may account for variability in
distribution models. Therefore, we chose to create similar models using the 97 points from
the naturalized region in California, US (Fig. 1) and predict the remaining area of the
conterminous US. We chose this region because historical records show that California
was one of the first places where Chukars were imported from their native range, reared,
released, established/acclimated, and hunted in the US. Furthermore, several other state
game commissions acquired Chukars from California game farms, with both failed and
successful introductions of large propagules documented (Nagel, 1945; Galbreath &
Moreland, 1953, Harper, Harry & Bailey, 1958). It should be noted that though Chukars in
Nevada, the first state in the US with successfully established Chukars and the first to hold
a hunting season, were not derived from California game stock, but were the same
subspecies as those in California (Alcorn & Richardson, 1951; Harper, Harry & Bailey,
1958; Christensen, 1970).

Model covariates
Choosing appropriate model covariates often depends on spatial scale (Pearson & Dawson,
2003; Luoto, Virkkala & Heikkinen, 2006). Some studies (Pearson & Dawson, 2003;
Thuiller, Araújo & Lavorel, 2004; Luoto, Virkkala & Heikkinen, 2006; Engler et al., 2017)
note that while finer spatial scales may account for more specific habitat characteristics
(e.g., biotic interactions, species dispersal limitations, soil and land cover types), Pearson &
Dawson (2003) suggest a hierarchal consideration of factors, with importance dependent of
spatial scale. Since our study was of the subcontinental scale and a coarser spatial
resolution, model parameters pertained to climate and physiography. A favored set of
measurements for SDMs are the 19 WorldClim bioclimatic variables (Hijmans et al., 2005;
Fick & Hijmans, 2017; Schatz, Kramer & Drake, 2017) and were included in our model
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building procedure. Limiting studies to these variables alone has been criticized as this
might overestimate habitat ranges and does not speak to local ecosystems (Hirzel &
Le Lay, 2008). Because Chukars require steep, talus slopes and favor higher altitudes
(e.g., Christensen, 1970), we also included elevation, and calculated the slope, aspect, and

Figure 1 Chukar eBird occurrences and estimated range model. (A) World distribution of eBird
Chukar occurrences that provided a media source. (B) Estimated naturalized range for the contiguous
United States with the sample of California occurrences used to build models.

Full-size DOI: 10.7717/peerj.11280/fig-1
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Terrain Roughness Index score for each cell using the NASA Shuttle Radar Topography
Mission raster layer provided by WorldClim (Fick & Hijmans, 2017). Finally, to ensure
equal weight to all model covariates, we normalized each raster value prior to point
extraction, where values range from 0 to 1.

Algorithms
An extensive study by Norberg et al. (2019) showed SDM predictions may vary due to a
variety of factors including preconceived assumptions, statistical inference, and
algorithmic framework, and encourage the use of several models rather than a single ‘best’
model. We, therefore, chose to incorporate several of their suggestions into our modeling
framework.

We built our models using the ‘dismo’ package in R (Hijmans & Elith, 2017; Hijmans
et al., 2017). We used the machine learning algorithms cited in Hijmans & Elith (2017)
as these algorithms are widely used but have been shown to produce highly accurate
models. These algorithms include artificial neural networks (ANN) as defined by
Kulhanek, Leung & Ricciardi (2011), gradient boosting trees (GBM; Elith, Leathwick &
Hastie, 2008), maximum entropy (MaxEnt; Elith et al., 2011), random forest (RF; Breiman,
2001), and support vector machines (SVM; Drake, Randin & Guisan, 2006).

A common statistical technique for model training and testing is to use a K-fold cross
validation on the data to determine model performance (Hastie, Tibshirani & Friedman,
2009; Schatz, Kramer & Drake, 2017; Norberg et al., 2019). We used a 5-fold cross
validation for all sets of models where all background points were used for each fold to
enhance habitat variability.

To evaluate each iteration of model building, we chose to use the Area under the
Receiver operating Curve (AUC) as a measure of model usefulness and testing
performance for each fold. To test overall performance of each algorithm, we calculated the
mean and standard deviation across all five folds, then created an ensemble of the model
by averaging the prediction models. To evaluate model predictions, we transformed
our ranked models to a binary map (i.e., suitable-not suitable) using the optimized
specificity-sensitivity threshold measurement (Liu, Newell & White, 2016). We calculated
the percent classification accuracy, sensitivity, and specificity of each model via confusion
matrix comparing the predictive plots to the estimated naturalized range plot (Fig. 1) to
determine model performance.

Finally, we created three ensembles for each algorithm, one average and two election
models, and two collective election ensembles built using all 25 models. Here, an election is
one where each model casts a ‘vote’ on the status of the raster cell and the classification
in the final model is determined by a set proportion. For each algorithm, we calculated
the average predictive value for each raster cell across the five folds and average the
thresholds produce our binary classifications. For our election models we used a majority
vote (MV, 3 of 5 folds) and a unanimous decision (UD), cases where all 5 folds agree,
to determine suitability. We also used the majority (13 of 25 folds) and the UD frameworks
for the two collective election ensembles. We then calculated our prediction statistics for
comparative purposes.
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RESULTS
Modeling native points
We compared the training AUC scores of the model folds to determine model quality
(Fig. 2). For the cross-validation testing scores, RF l ¼ 0:9884; r ¼ 0:0042ð Þ and

Figure 2 Performance statistics for evaluation and prediction of models. Each bar represents the the
mean of all the folds from cross validation. (A) Performance statistics related to models built from native
range occurrences. (B) Performance statistics related to models built from the California occurrences.

Full-size DOI: 10.7717/peerj.11280/fig-2
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MaxEnt l ¼ 0:9870; r ¼ 0:0021ð Þ performed the best in the evaluation phase, followed
by GBM l ¼ 0:9564; r ¼ 0:0159ð Þ, SVM l ¼ 0:9516; r ¼ 0:0218ð Þ; and ANN
l ¼ 0:9349; r ¼ 0:0186ð Þ.
We determined all the models performed well and we produced prediction rasters for

each model. Because we were interested in determining our models’ abilities to accurately
classify suitable locations, we calculated the percent of correctly defined raster cells
when comparing to the estimated naturalized range plot as a measure of model
performance. ANN l ¼ 0:8924; r ¼ 0:0018ð Þ, MaxEnt l ¼ 0:8882; r ¼ 0:0037ð Þ, and
GBM l ¼ 0:8851; r ¼ 0:0089ð Þ, produced the most accurate predictions followed by
RF l ¼ 0:8823; r ¼ 0:0094ð Þ, and SVM l ¼ 0:8751; r ¼ 0:0072ð Þ.

Different models favored specificity or sensitivity. RF l ¼ 0:3440; r ¼ 0:1294ð Þ
performed best with respect to sensitivity, followed by GBM l ¼ 0:3335; r ¼ 0:1314ð Þ,
SVM l ¼ 0:2524; r ¼ 0:0590ð Þ, MaxEnt l ¼ 0:1484; r ¼ 0:0550ð Þ, and ANN
l ¼ 0:1319; r ¼ 0:0737ð Þ. For specificity, our models scored exceptionally well and
ranked in the following order: ANN l ¼ 0:9846; r ¼ 0:0108ð Þ, MaxEnt l ¼ 0:9779;ð
r ¼ 0:0108Þ, GBM l ¼ 0:9520; r ¼ 0:0251ð Þ, SVM l ¼ 0:9506; r ¼ 0:0152ð Þ, and
RF l ¼ 0:9475; r ¼ 0:0580ð Þ.

Each algorithm was used to create five suitability plots, each pertaining to the model
trained on each step in the cross-validation process. While our statistics are associated
with the classification/binary plots, we also evaluated the maps of suitability scores
(Figs. S1–S5). With respect to our suitability scores, all models favored the western half of
the US (roughly 93�W to 124�W) with higher scoring regions around the known
naturalized area. All models were consistent across folds. RF, SVM and three GBMmodels
predicted suitability throughout the Appalachian Mountains. RF favored portions of
southeastern states Arkansas and Louisiana. Even so, higher suitability scores were
prevalent in the western half of the US.

A full analysis of the ensemble performances can be found in Table 1. Statistically, our
ensemble models for ANN, GBM, and RF performed similarly to their individual folds
and were slightly more accurate and specific (Figs. S6–S10). The performance of the mean
and MV ensembles varied by algorithm; however, all five algorithms had improved
accuracy via UD ensemble. As for our collective ensembles, collective MV performed well,
but ANN MV was more accurate and sensitive. Our collective UD model produced the
most convincing result with an accuracy of 0.8973 and the highest sensitivity (0.6918)
scores amongst all the ensembles.

Modeling California points
Overall, we saw similar predictions when evaluating models on California points (Fig. 2,
Figs. S11–S20). All of our model folds scored greater than 0.99 in AUC with the exception
of one ANN fold (0.7121) and one SVM fold (0.9095). We created prediction plots for
these models and again calculated the classification accuracy, sensitivity, and specificity
for each model. We saw similar accuracy scores for ANN l ¼ 0:8907; r ¼ 0:0065ð Þ,
MaxEnt l ¼ 0:8981; r ¼ 0:0465ð Þ, RF l ¼ 8714; r ¼ 0:0403ð Þ, and SVM
l ¼ 0:8926; r ¼ 0:0054ð Þmodels but lower scores for GBM l ¼ 0:8167; r ¼ 0:0465ð Þ.
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In comparison to the native range models sensitivity scores were higher for ANN
l ¼ 0:2379; r ¼ 0:1701ð Þ, GBM l ¼ 0:4498; r ¼ 0:1939ð Þ, and MaxEnt
l ¼ 0:2368; r ¼ 0:1248ð Þ, roughly the same for SVM l ¼ 0:2576; r ¼ 0:0899ð Þ, and

slightly lower for RF l ¼ 0:3099; r ¼ 0:2511ð Þ. Specificity scores were higher only for

Table 1 Ensemble model results for US suitability predictions calibrated from native points vs
California points.

Algorithm Ensemble Accuracy Sensitivity Specificity

Native points–algorithm ensembles

ANN Mean 0.8945 0.1100 0.9896

ANN MV 0.8940 0.5488 0.9015

ANN UD 0.8936 0.5812 0.8971

GBM Mean 0.8898 0.3243 0.9584

GBM MV 0.8862 0.4615 0.9202

GBM UD 0.8943 0.5350 0.9074

MaxEnt Mean 0.8901 0.1373 0.9814

MaxEnt MV 0.8884 0.4521 0.9047

MaxEnt UD 0.8935 0.5602 0.8979

RF Mean 0.8864 0.3224 0.9548

RF MV 0.8848 0.4567 0.9230

RF UD 0.8932 0.5197 0.9061

SVM Mean 0.8613 0.3557 0.9212

SVM MV 0.8776 0.3917 0.9119

SVM UD 0.8839 0.4123 0.9063

Collective MV 0.8917 0.4976 0.9061

Collective UD 0.8933 0.6918 0.8941

California points–algorithm ensembles

ANN Mean 0.8968 0.2343 0.9771

ANN MV 0.8968 0.5510 0.9144

ANN UD 0.8935 0.6080 0.8956

GBM Mean 0.8243 0.4227 0.8730

GBM MV 0.8043 0.2664 0.9283

GBM UD 0.8904 0.4785 0.949

MaxEnt Mean 0.8989 0.2113 0.9823

MaxEnt MV 0.8984 0.5991 0.9087

MaxEnt UD 0.8981 0.6271 0.9048

RF Mean 0.8956 0.1956 0.9804

RF MV 0.8953 0.5456 0.9084

RF UD 0.8979 0.7185 0.9005

SVM Mean 0.8837 0.4565 0.9279

SVM MV 0.8947 0.5280 0.9142

SVM UD 0.8970 0.5871 0.9064

Collective MV 0.8978 0.5629 0.9143

Collective UD 0.8931 0.8436 0.8932
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SVM l ¼ 0:9696; r ¼ 0:0169ð Þ, similar for Maxent l ¼ 0:9783; r ¼ 0:0154ð Þ and
were lower for ANN l ¼ 0:9626; r ¼ 0:049ð Þ, GBM l ¼ 0:8612; r ¼ 0:0752ð Þ, and RF
l ¼ 0:9394; r ¼ 0:0753ð Þ.
We found similar improvements in our ensemble models to that of the individual

models (Table 1). Suitable habitat was further reduced to states roughly 103�W to 124�W.
The majority of suitability fell in the Chukar naturalized range, and states where Chukars
are present especially California, Idaho, Nevada, and Oregon (Fig. 3).

Figure 3 Collective ensemble prediction plots. Full-size DOI: 10.7717/peerj.11280/fig-3
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DISCUSSION
Pearson & Dawson (2003) state that suitability models favor a hierarchal framework,
suggesting that measuring the bioclimatic envelope as a preliminary step in the modeling
scheme may give insight to a broad domain of suitability. We limited our models to
data derived from climate and topography, which do not speak to localized circumstances
and are not exclusive to Chukar. Nonetheless, we were able to produce accurate SDMs
using both native range data and data from just a small partition of the US naturalized
range. The majority of the SDM plots show a strong suitability in the western half of the
US, particularly in states where Chukars exist, confirming that site-level factors are indeed
significant predictors of Chukar establishment success.

Traditionally, species occurrences are recorded in field studies or pulled from published
databases. Even so, these studies may only represent a portion of the suitable habitat range
due to abiotic barriers or individuals simply were not reported in suitable areas.
(Phillips et al., 2009; Hirzel & Le Lay, 2008; Robinson et al., 2011). With the growing
interest and use of citizen science, SDMs studies now resort to databases such as the Global
Biodiversity Information Facility (e.g., Beck et al., 2014; Mori et al., 2019), iNaturalist
(e.g., Mori et al., 2019), and eBird (e.g., Steen, Elphick & Tingley, 2019). However, some of
these records are unverified as individuals could be misidentified, data may be missing or
inaccurate (e.g., longitudinal/latitudinal coordinates reversed), or the inability to
differentiate between wild and recently released or escaped captive individuals. To avoid
these pitfalls, we implemented a data filtering process on eBird data that limited our
study to occurrences with proof of observation, and we removed all duplicate records.
Because the distribution of occurrences was consistent with historic range maps
(e.g., Christensen, 1970), we found these points suitable for our analysis.

We used algorithms that are widely chosen by ecologists (Drake, Randin & Guisan,
2006; Elith, Leathwick & Hastie, 2008; Elith et al., 2011; Hijmans & Elith, 2017; Hijmans
et al., 2017; Schatz, Kramer & Drake, 2017; Norberg et al., 2019) and three classification
statistics in our analysis to understand a model’s predictive limitations. With respect to all
84 models produced, we calculated accuracy l ¼ 0:8823ð Þ, sensitivity l ¼ 0:3525ð Þ,
specificity l ¼ 0:9397ð Þ. We suspect the low sensitivity scores were due to spatial
autocorrelation, which predicts a greater range of suitable location. Even then, our models
still favored the states where Chukars are established. These statistics show that while our
models perform well in classifying novel locations, the high specificities and lower
sensitivities suggest our models are better at predicting locations that are not suitable over
those that are. In spite of this, we argue that it is just as important to know this
information, especially for gamebird introductions (Nagel, 1945, Bohl, 1957).

Further inspection into species and site-level factors known to affect Chukar
introduction success should be considered. Several field studies (Nagel, 1945; Alcorn &
Richardson, 1951; Barnett, 1952; Galbreath & Moreland, 1953; Christensen, 1954, 1970,
1996; Bohl, 1957; Harper, Harry & Bailey, 1958) suggest certain land types are associated
with successful establishment, though modeling this should be done at a finer spatial scale
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(Pearson & Dawson, 2003; Thuiller, Araújo & Lavorel, 2004; Luoto, Virkkala & Heikkinen,
2006). It is also well documented that the availability of cheatgrass (Bromus tectorum) is a
convincing indicator of establishment in the US (Galbreath & Moreland, 1953; Harper,
Harry & Bailey, 1958; Christensen, 1970) though data regarding to cheatgrass occurrence
and/or density is minimal, which is why it was excluded from our models. Artificial habitat
or watering systems (e.g., ‘guzzlers’) have been integrated into game introductions, which
may have been an adequate supplemental resource to facilitate establishment in some
studies (Harper, Harry & Bailey, 1958; Christensen, 1970; Larsen et al., 2007). Sub-species
environmental tolerance has been shown to impact SDM model predictions (Mori et al.,
2019) and while this is implied by our spatial partitioning of the naturalized range and the
use of the California data, further studies may be necessary to understand true range
potential. Even then, domestication of reared Chukars may also affect introduction
attempts (Alcorn & Richardson, 1951).

With this in mind, it is important to note that while our models do not account for
specific site-level, species-level, or event level factors, gamebird introduction efforts would
benefit from consideration of habitat variables. Modeling of the bioclimatic envelope allows
us to not only determine which states consist of potential habitat, but which ones to avoid.
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