
Crosstalk between the CBM
complex/NF-κB and MAPK/
P27 signaling pathways of
regulatory T cells contributes to
the tumor microenvironment

TongbingQi1,2†, Ying Luo3†, Weitong Cui2, Yue Zhou2, XuanMa2,
Dongming Wang4, Xuewen Tian1* and Qinglu Wang1,2*
1College of Sport and Health, Shandong Sport University, Jinan, China, 2Key Laboratory of Biomedical
Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, China, 3Clinical
Laboratory, Zibo Central Hospital, Zibo, China, 4Department of Pediatrics, People’s Hospital of Huantai,
Zibo, China

Regulatory T cells (Tregs), which execute their immunosuppressive functions by

multiple mechanisms, have been verified to contribute to the tumor

microenvironment (TME). Numerous studies have shown that the activation

of the CBM complex/NF-κB signaling pathway results in the expression of

hypoxia-inducible factor-1 (HIF-1α) and interleukin-6 (IL-6), which initiate the

TME formation. HIF-1α and IL-6 promote regulatory T cells (Tregs) proliferation

and migration through the MAPK/CDK4/6/Rb and STAT3/SIAH2/P27 signaling

pathways, respectively. IL-6 also promotes the production of HIF-1α and

enhances the self-regulation of Tregs in the process of tumor

microenvironment (TME) formation. In this review, we discuss how the

crosstalk between the CARMA1–BCL10–MALT1 signalosome complex (CBM

complex)/NF-κB and MAPK/P27 signaling pathways contributes to the

formation of the TME, which may provide evidence for potential therapeutic

targets in the treatment of solid tumors.
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Highlights

1) The activation of the CBM complex/NF-κB signaling pathway results in TME

formation.

2) HIF-1α and IL-6 promote Treg proliferation and migration via the MAPK/CDK4/6/

Rb and STAT3/SIAH2/P27 signaling pathways.

3) The crosstalk between the CBM complex/NF-κB and MAPK/P27 signaling pathways

appears in Tregs.
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Introduction

The development of immune checkpoint therapy (ICT),

which stimulates an immune response to cancer, has been one

of the most rapid and important advances in cancer treatment

over the past decade. Programmed cell death 1 (PD-1) is an

immunosuppressive co-stimulatory signal receptor that belongs

to the CD28 family. PD-1 and PD-L1 blockage at immune

checkpoints can rejuvenate patients’ T cells to achieve long-

term remission (Qi et al., 2020). However, the clinical effect of

programmed cell death 1(PD-1)/programmed cell death 1 ligand

1 (PD-L1) targeted therapy for solid malignant tumors is not

ideal (Cai et al., 2019). Only 20% of patients achieve favorable

long-term results after treatment, and most patients relapse after

treatment (Yan et al., 2019). This phenomenon may be related to

the tumor microenvironment (TME), which is characterized by

nutrient competition, hypoxia, low pH, and metabolite

accumulation. Such complex conditions accelerate exhaustion

of T effector cells and promote differentiation and accumulation

of regulatory T cells (Tregs), M2-like macrophages, andMyeloid-

derived suppressor cells (MDSCs). The TME also produces

unique subsets of myeloid cells known as tumor-associated

dendritic cells (TADC) and tumor-associated neutrophils

(TAN) (Bader et al., 2020; Wang et al., 2021).

In this complex microenvironment, T cells encounter many

inhibitory cells and molecules that can disrupt the survival,

activation, proliferation, and effector functions of T cells

(Joyce and Fearon, 2015; Turley et al., 2015). Alongside the

developments in antibody therapy, modulation of cell signaling

pathways using small-molecule inhibitors has gained ground

within the immunotherapy field. The functional profiles of

immune cells are necessarily shaped in response to

environmental cues, which are conveyed to the cellular

machinery via a myriad of distinct but overlapping signaling

cascades (Wicherska-Pawlowska et al., 2021).

Recent studies have shown that Tregs may be involved in PD-

1/PD-L1 blockage treatment, and the PD-1/PD-L1 axis may

affect the differentiation and function of Tregs (Cai et al.,

2019). Tregs execute their immunosuppressive functions by

multiple mechanisms, such as by consuming interleukin-2

(IL-2), expressing cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), secreting inhibitory cytokines (transforming growth

factor-β, interleukin-10, interleukin-35) (Takeuchi and

Nishikawa, 2016), and directly killing T cells or Antigen-

presenting cells (APCs) by producing granular enzymes and

perforin (Sakaguchi et al., 2010; Cai et al., 2019). These

functions can be enhanced by classical interleukin-6 (IL-6)

receptor (IL-6R) signaling (Hagenstein et al., 2019). These

functions of Tregs may be related to hypoxia in the TME.

The microenvironment of most tumors is usually hypoxic,

and the expression level of hypoxia-inducible factor-1α (HIF-

1α) is often increased in Treg (He et al., 2015). Hypoxia can also

change the T cells CBM complex (CARMA1-BCL10-MALT1)

activity, which is closely related to the development of solid

tumor via NF-κB activation (Schaefer, 2020).

The effects of the hypoxic environment on the

immunosuppressive function of Tregs are still inconclusive.

Some studies have shown that HIF-1α positively affects the

function of Tregs and plays a role in their suppressive

function in tumors (Clambey et al., 2012; Westendorf et al.,

2017). Other studies, however, have shown the opposite (Hsu

and Lai, 2018). A recent study using a murine model of glioma

has shown that ablation of HIF-1α leads to enhanced animal

survival due to a decrease in the migratory abilities of HIF-1α
Knockout Tregs (Miska et al., 2019). Here, we provide a brief

review of signaling pathways in Tregs and the formation of the

TME (Table 1).

Cyclin-dependent kinase signaling
enhances treg proliferation and
migration

Cyclin-dependent kinases (CDKs) are a class of serine/

threonine kinases. As important signaling molecules that

regulate transcription, CDK–cyclin complexes are involved in

Treg growth, proliferation, dormancy, and apoptosis (Arnett

et al., 2021). During the Treg cycle, cyclins are expressed and

degraded periodically and are bound to the CDK activated by

them. Through the activity of CDKs, phosphorylation of

different substrates can be catalyzed to realize the promotion

and transformation of the Treg cycle. Sequential phosphorylation

of CDK4/6 and Rb proteins activates 1) downstream E2F and

Stathmin, leading to the release of transcription factors such as

E2F4 and E2F7 (Dyson, 1998; Pietrzak et al., 2018), and 2) some

genes necessary for E2F4 and E2F7 activation and transcription,

leading to progression into the S phase (Geng et al., 2020). As

shown in Figure 1, when CDK4/6 phosphorylation is inhibited by

P27 which is a CDK inhibitor (Scortegagna et al., 2020), some

functions of Tregs such as gene transcription, cell proliferation,

and migration, are affected.

Therefore, it is a good strategy to control the TME by

inhibiting Treg proliferation by targeting CDKs with some

target drugs (Johnson et al., 2010). Numerous clinical trials

have been conducted with small molecules that target CDKs

in patients with cancer (Albanese et al., 2010).

IL-6 enhances effects of the STAT3/
SIAH2/CDK4/6 signaling pathway

The IL-6 signaling pathway is associated with tumor

angiogenesis, and previous studies have found that the

suppression of IL-6 signaling led to suppression of

angiogenesis and migration of breast cancer (Luo et al., 2020).

IL-6 is produced by fibroblasts, keratinocytes, and endothelial
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cells in response to injury, and corresponding receptors also exist

on Tregs (Hagenstein et al., 2019). IL-6 transmits signals

resulting in the activation of transcription factors, signal

transducers and activators of transcription 1 (STAT1) and 3

(STAT3), through the association with gp130, and then promotes

Foxp3 (+) Treg proliferation (Yeh et al., 2013).

STAT3 is an important member of the STAT family, which

also includes STAT1, STAT2, STAT4, STAT5a, and STAT5b.

The STAT6 and STAT3 signal transduction pathways are closely

related to cell proliferation, differentiation, and apoptosis. The

pathways control the production of growth factors and cytokines,

and the extracellular signal stimulation, thereby regulating target

gene transcription. The pathway activation can lead to abnormal

cell proliferation and malignant transformation (Buettner et al.,

2002). Jak–STAT3 can be activated by a variety of extracellular

proteins, such as interleukins (Wang and Fuller, 1994). When

activated, JAKs phosphorylate the tyrosine site on the receptor,

causing the receptor to produce a region that binds to STAT3. At

this point, the Src homology (SH2) domain on STAT3 binds to

the phosphorylated tyrosine residues on the receptor, thereby

forming homo- or heterodimers, which are transported to the

nucleus and interact with other transduction factors to regulate

gene transcription (Liu et al., 2017).

STAT3 activates the transcription and translation of the

ubiquitin ligase, Seven In Absentia Homolog 2 (SIAH2).

Then, P27, which inhibits CDK4/6 activation, is degraded by

ubiquitination of SIAH2 (Figure 1). According to Hoshino et al.,

upregulation of P27 expression is necessary for specific blockage

of tumor extracellular signal-regulated kinase pathways, which in

turn leads to complete growth inhibition of tumor cells (Hoshino

et al., 2001). A recent study has shown that the

immunosuppressive function of Tregs in tumors of Siah2−/−

mice was blunted owing to P27-dependent suppression of

CDK4/6 signaling activation (Scortegagna et al., 2020).

STAT3 gene is highly expressed in hepatocellular carcinoma

cells, and regorafenib (Stivarga), a drug targeting STAT2 for the

treatment of hepatocellular carcinoma, has been identified as a

second-line oral agent (Jindal et al., 2019).

SIAH2 enhances tumor HIF-1α
expression

The SIAH2/PHD/HIF-1α pathway plays an important role

in the development of the TME. The experiments by Nakayama

et al. have confirmed that the E3 ubiquitin ligase SIAH2 shows

significant ubiquitin-dependent degradation of prolyl-

hydroxylase 1 (PHD1) and prolyl-hydroxylase 3 (PHD3),

while its effect on PHD2 is not significant (Nakayama et al.,

2004). There are two types of HIF-α, including HIF-1α and

HIF-2α(Albadari et al., 2019). Among them, only the

expression mechanism of HIF-1α has been well studied, and

only HIF-1α has been found in a wide range of cells. As a

substrate for PHD, HIF-1α can be hydroxylated in two forms,

thereby undermining the stability of HIF-1α. When the

intracellular oxygen concentration is below normal values

(2–5%), a hypoxic environment is generated. Induction of

SIAH2 expression by hypoxia serves to enhance the

degradation of prolyl-hydroxylase 1/3(PHD1/3) and

consequently increase the abundance of HIF-1α(Nakayama

et al., 2004).

Upregulated HIF-1α expression in tumor cells and immune

cells is characteristic of the TME. Some studies have shown that

HIF-1α positively affects Treg function and plays a role in their

TABLE 1 Points of concern between TME, Treg, CDKs, HIF-1α, CBM, MAPK, SIAH2 and STAT.

Correlation Points of concern References

TME and Treg Treg is one of the important factors in the formation of tumor microenvironment Sakaguchi et al. (2010)

CDKs and TME TME was changed by drug targeting CDKs Johnson et al. (2010)

HIF-1α and TME Treg HIF-1α expression in TME is increased He et al. (2015)

SIAH2/PHD/HIF-1α pathway plays key role in the development of the TME Nakayama et al. (2004)

Albadari et al. (2019)

HIF-1α and Treg Treg HIF-1α expression in TME is increased He et al. (2015)

HIF-1α positively affects Treg function Westendorf et al. (2017)

VEGF and VEGF receptor are closely related to HIF-1α in Tregs Vaupel and Multhoff, (2018)

CBM complex and Treg Partial disruption of CBM complex in Tregs improve immune checkpoint therapy Di Pilato et al. (2019)

MAPK and Treg MAPK regulates the Treg cell cycle and gene expression Klomp et al. (2021)

ERKs adjust Treg proliferation, differentiation, et al Wang et al. (2019)

STAT and Treg IL-6/STAT1/3 promote Treg proliferation Yeh et al. (2013)

SIAH2 and Treg immunosuppressive function of Siah2−/− Tregs was blunted Nakayama et al. (2004)

CDKs and Treg CDKs regulate Treg growth, proliferation, dormancy, and apoptosis Arnett et al. (2021)

CDK4/6 phosphorylation affects Tregs proliferation and migration Scortegagna et al. (2020)
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suppressive function in tumors (Clambey et al., 2012;

Westendorf et al., 2017). An immune escape mechanism

involves Treg-mediated immunosuppression, which is used by

tumors to overcome the antitumor activity of CD8+ cytotoxic

T cells, dendritic cells, and natural killer cells (Bader, Voss, and

Rathmell, 2020).

When the expression level of HIF-1α in Tregs is upregulated,

hypoxia response element (HRE) binds to HIF-1α, resulting in

the production of a variety of products, such as vascular

endothelial growth factor (VEGF), which is associated with

angiogenesis, and CXCR4, which is associated with cell

migration (Forsythe et al., 1996). Overexpression of VEGF

and activation of VEGF receptor are closely related to HIF-1α
in Tregs (Vaupel and Multhoff, 2018).

VEGF and HIF-1α are also closely related to the development

of blood vessels. Currently, inhibitor drugs targeting these two

proteins are approved by the FDA for the treatment of some

tumors (Jindal, Thadi, and Shailubhai, 2019). Given that VEGF

and HIF-1α genes are also implicated in Treg reproduction,

immunosuppressive drugs can be used to destroy the TME in

Tregs.

Mitogen-activated protein kinase
signaling enhances CDK4/
6 activation

The mitogen-activated protein kinase (MAPK) signaling

pathway is a signal transduction pathway that is widely found

in animal cells. This pathway plays an important role in

regulating the Treg cell cycle and gene expression (Liu et al.,

2013; Klomp et al., 2021). The MAPK signaling pathway consists

FIGURE 1
MAPK/P27 signaling of Tregs contributes to the tumormicroenvironment. Il-6 in the tumormicroenvironment promotes the expression of HIF-
1α in Tregs and removes the inhibition of CDK4/6 by P27. Meanwhile, the interaction betweenHIF-1α and VEGF activates theMAPK/CDK4/6 signaling
pathway to promote Treg cell proliferation. HIF-1α, Hypoxia-Inducible Factor-1α; VEGF, Vascular endothelial growth factor; shc, Src-homology
collagen protein; RAS, small G-protein; KRAS, V-Ki-ras2 Kirsten ratsarcoma viral oncogene homolog; RAF, Raf kinase; BRAF, v-raf murine viral
oncogene homolog B1; MEK, Mitogen-activated protein kinase; ERK, Extracellular-signal-regulated kinase; MAPK, mitogen-activated protein kinase;
CDK, Cyclin-dependent kinase; Rb, Retinoblastoma protein; E2F, Transcription factor; P27, Potential tumor suppressor protein; Ub, Ubiquitin; SIAH2,
Seven in absentia homolog 2; STAT3, Signal Transducer and Activator of Transcription 3; TCR, T cell receptor; PHD1, Hypoxia-inducible factor prolyl
hydroxylase 1.
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of a cascade of successively activated serine/threonine protein

kinases that amplify and transmit extracellular signals step by

step to the cell and even to the nucleus, connecting membrane

receptor-bound extracellular stimuli to effector molecules in the

cytoplasm and nucleus (Tetu et al., 2021).

Vascular endothelial growth factors (VEGFs) constitute a

subfamily of growth factors that stimulate the growth of new

blood vessels. VEGFs are important signaling proteins involved

in both vasculogenesis (de novo formation of the embryonic

circulatory system) and angiogenesis (the growth of blood vessels

from preexisting vasculature) (Negri et al., 2019). VEGFs can

bind the Treg cell membrane receptor and increase Treg cell

proliferation (Vasilev et al., 2019). NRP-1, a semaphorin III

receptor involved in the activation of T cells, is constitutively

expressed on the surface of Foxp3+ Tregs independently of their

activation status. NRP-1 has been found to interact with VEGFs

and interfere with Treg-mediated immunosuppression (Pucino

et al., 2014).

RAS is a small GTP-binding protein, with the GTPase

domain binding GDP in the inactive state and GTP in the

active state; therefore, RAS plays the role of molecular switch.

RAS adjusts T cell development, differentiation, and proliferation

by inducing downstream signal transduction pathways.

Inhibition of RAS has been found to be associated with an

increased number and boosted function of Foxp3+ Tregs

(Aizman et al., 2010).

FIGURE 2
The CBM complex/NF-κB signaling pathway of Tregs contributes to the tumor microenvironment. Activation of the CBM complex/NF-κB
signaling pathway in Tregs increases HIF-1α and IL-6 expression and initiates the TME. The secretion of HIF-1α and IL-6 in the TME promotes Treg
proliferation and migration. TCR, T cell receptor; PKC, Protein kinase C; CARM1, Caspase recruitment domain-containing membrane-associated
guanylate kinase protein-1; BCL10, B-cell lymphoma/leukemia 10; MALT 1, Mucosa-associated lymphoid tissue 1; TRAF6, TNF receptor
associated factor 6; TAK1, TGFβ-activated kinase 1; TAB2, TAK1-binding protein 2; Iκκ, inhibitor of kappa kinase; NF-kB, nuclear factor kappa B.
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ERKs adjust Treg proliferation, differentiation, and

survival, and regulate the production of a variety of

downstream growth factors (EGF, model NGF, and PDGF)

(Liu et al., 2013; Wang et al., 2019). The RAS/Raf/MEK/ERK

axis is the main axis of the ERK pathway (Akula et al., 2019).

Activation of ERK can promote the phosphorylation of

cytoplasmic target proteins or regulate the activity of other

protein kinases; the activated ERK is translocated into the

nucleus, where it promotes the phosphorylation of a variety

of transcription factors. The MAPK pathway transfers

extracellular stimulatory signals to cells and their nuclei to

regulate cell growth, differentiation, proliferation, apoptosis,

and migration.

As shown in Figure 1, VEGF-R2 phosphorylates and

activates SHC, which binds to spline protein, which binds to

guanylate exchange protein via the SH2 domain to approach the

RAS, thereby further activating the MAPK cascade

(Raf1→MEK1/2→ERK1/2). It can also induce the activation

of P38 MAPK, which in turn activates MAPKK-2/3 and

phosphorylates both the polymerized regulatory molecule of

filamin actin (F-actin) and heat shock protein 27 (HSP27),

causing the recombination of the actin cytoskeleton and

stimulating endothelial cell migration (Wu et al., 2016).

Effects of CARMA1 on the NF-κB
signaling pathway in tregs

CARMA1 (CARD11) proteins are composed of 1,147 amino acid

residues. Their N-termini consist of a CARDdomain and a coiled-coil

structure, and the C-termini contain a PDZ domain, an SH3 domain,

and a GUK domain. Activated downstream of protein kinase C

(PKC), CARMA1 is coupled to lipid rafts on cell membranes

(Figure 2). When MHC binds to molecules on the cell surface,

TCR activates tyrosine phosphoric acid, which leads to activation

of PKC. PKC is then phosphorylated and couples CARMA1 to the

membrane, where BCL10 is connected to the Ig region ofMALT1 and

to CARMA1 to form a CBM complex. The CBM complex of all the

T cells—which can respond to specific antigen receptor stimulation

and includes the invariant components BCL10 and MALT1,

assembled with CARD9, CARD10, CARD11, or CARD14—is an

important mediator of NF-κB activation (Schaefer, 2020).

In addition, MALT1 interacts with CARMA1’s coiled spiral

region. This complex has enzymatic activity (Oruganti et al., 2017).

NF-κB usually forms homo-/heterodimers with P65 and P50 and is

inactivated in the cytoplasm by binding to the inhibitory protein IκB
to form a trimer complex. CARMA1 binds to lipid rafts on the cell

membrane. It also acts as a signal transmitter and ultimately

FIGURE 3
Crosstalk of the CBM complex/NF-κB and MAPK/P27 signaling pathways Tregs contributes to the TME. Ligand binding to TCR of Tregs, HIF-1α
and IL-6 are produced via activating the CBM complex/NF-κB signaling pathway. In turn, Treg proliferation and migration are promoted by HIF-1α
and IL-6 through the MAPK/CDK4/6/Rb and STAT3/SIAH2/P27 signaling pathways, respectively.
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activates NF-κB when Tregs are stimulated by antigens (Di Pilato

et al., 2019). CARMA1 plays an important role in the activation of

the NF-κB signaling pathway as a junction between membrane-

bound and cytoplasmic proteins (Ma et al., 2014).

The functional changes of the CBM complex in Tregs have an

important relationship with the formation of TME. The CBM

complex mediates TCR-induced NF-κB activation in Tregs and

controls the conversion of resting Tregs to effector Tregs when

needed. Partial disruption of the CBM complex in Tregs, such as

due to a knockdown of CARMA1 gene, can weaken the formed

TME and improve sensitivity to PD-1/PD-L1 immune

checkpoint therapy (Di Pilato et al., 2019). The interaction

among CARMA1, BCL10, and MALT1 also affects the activity

of downstream NK-KB signaling pathway, and the control of

BCL10 on MALT1 paracaspase activity affects the formation of

malignant melanoma TME (Rosenbaum et al., 2019). The role of

Bcl10 in the development of Tregs and formation of TME is

essential (Yang et al., 2021). Based on the results of a series of

studies on the CBM complex, we can predict that drugs targeting

CARMA1, BCL10 and MALT1 inhibitors will be able to

effectively break the TME formed by Tregs (Keller et al., 2021).

The continuously activated NF-κB in Tregs or other cells can

enhance the transcription of VEGF genes and also increase the levels

of some tumor promoting cytokines, such as IL-1 (acute leukemia

growth factor), TNF (malignant lymphogranuloma, T cell lymphoma,

glioma growth factor), and IL-6 (growth factor formultiplemyeloma),

thereby promoting the above signaling pathways regulated by VEGF

and IL-6. Two small-molecule inhibitors regulate cell signaling

pathways in a synergistic manner to inhibit the proliferation and

migration of Tregs, thereby blocking the secretion of inhibitory

cytokines by Tregs to aid in the formation of the TME. Currently,

four clinical trials have been recruited on the https://www.clinicaltrials.

gov/, and they involve solid tumors and leukemia.

Conclusion

In conclusion, Tregs are involved in the regulation of

autoimmune diseases, allergic diseases, and graft rejection, and

Treg-mediated immunosuppression has become a major obstacle

to effective treatment of tumors. Tregs play an immunosuppressive

role in the TME through various mechanisms. Based on our

analyses (Figure 3), we think that after specific ligand binding

to TCR of Tregs, the CBM complex/NF-κB signaling pathway is

activated, and factors such as HIF-1α and IL-6 are produced,

thereby initiating the TME formation. HIF-1α and IL-6 promote

Treg proliferation and migration through the MAPK/CDK4/6/Rb

and STAT3/SIAH2/P27 signaling pathways, respectively. IL-6 also

promotes the production of HIF-1α and enhances the self-

regulation of Tregs in the process of TME formation.

In this review, we discussed the crosstalk between the

CBM and MAPK/P27 signaling pathways, in order to gain a

better understanding of the complexity of the role of Tregs in

the process of TME formation. However, the complex role of

Tregs in the formation of the TME via either CBM or the

MAPK/P27 signaling pathway and its underlying

mechanisms need further exploration. Therefore, further

exploration of the complex role of CBM and MAPK/

P27 signaling pathway in the formation of TME will

provide stronger evidence for potential therapeutic targets

in solid tumor therapy.
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