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Abstract: In late December of 2019, high-throughput sequencing technologies enabled rapid identifi-
cation of SARS-CoV-2 as the etiological agent of COVID-19, and global sequencing efforts are now a
critical tool for monitoring the ongoing spread and evolution of this virus. Here, we provide a short
retrospective analysis of SARS-CoV-2 variants by analyzing a subset (n = 97,437) of all publicly avail-
able SARS-CoV-2 genomes (n = ~11.9 million) that were randomly selected but equally distributed
over the course of the pandemic. We plot the appearance of new variants of concern (VOCs) over time
and show that the mutation rates in Omicron (BA.1) and Omicron sub-lineages (BA.2–BA.5) are signif-
icantly elevated compared to previously identified SARS-CoV-2 variants. Mutations in Omicron are
primarily restricted to the spike and nucleocapsid proteins, while 24 other viral proteins—including
those involved in SARS-CoV-2 replication—are generally conserved. Collectively, this suggests that
the genetic distinction of Omicron primarily arose from selective pressures on the spike, and that the
fidelity of replication of this variant has not been altered.
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1. Introduction

All viruses, including SARS-CoV-2, accumulate mutations as they replicate and spread.
Most of these changes have little or no impact on the transmissibility, disease severity, or
effectiveness of current vaccines and diagnostics. However, selective pressures that act on
phenotypes produced by random mutations efficiently enrich rare variants with enhanced
viral fitness (e.g., replication and transmissibility). Initially, SARS-CoV-2 variants were
named according to their geographic origin (e.g., Wuhan), but naming based on geography
can be culturally insensitive, stigmatizing, and is often inaccurate. Thus, this naming
scheme was quickly replaced by a unique combination of letters and numbers known as the
Pangolin nomenclature (e.g., B.1.1.7), but alphanumerics are cumbersome and sometimes
confusing for scientists and the public alike. Part of this confusion arises from the use of
aliases, which are used to limit the growing string of letters and numbers that accumulate
with successive differentiation [1]. With increasing frequency, we now complement the
Pangolin nomenclature with the use of a single Greek letter. Omicron (B.1.1.529 or its alias
BA.1) is the 15th letter of the Greek alphabet but only the fifth variant designated as a
variant of concern (VOC) by the World Health Organization (WHO).

2. Omicron, the Newest Variant of Concern

Omicron was first identified from a specimen collected on 9 November 2021 in South
Africa and was designated as a VOC on 26 November [2]. This designation was based on the
number of mutations (26–32) in the spike protein relative to previously sequenced isolates,
as well as concerning epidemiological reports from South Africa [3,4]. Omicron has since
diversified into five phylogenetically distinct sub-lineages (BA.1 to BA.5) (Figure 1) [1,5],
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which are frequently associated with vaccine breakthrough or reinfection of previously
infected individuals [6,7]. Here, we take a step back and provide a short retrospective
overview of how SARS-CoV-2 genomes have changed over the course of the pandemic.
We analyze synonymous mutations that have no impact on the protein sequence and
non-synonymous mutations that change the SARS-CoV-2 proteome (Figure 2A,B). Non-
synonymous mutations, particularly those in the spike, tend to attract the most attention due
to the prominent role of this protein in viral attachment and entry into the host. However,
synonymous mutations also accumulate over time. Many of these mutations are neutral, but
some alter expression patterns [8,9] or codon usage in ways that may improve fitness [10,11].
Collectively, we analyze a high-quality subset (n = 97,437) of all SARS-CoV-2 genomes
(n = ~11.3 million) that were randomly selected but equally distributed over the course
of the pandemic—starting with the Wuhan reference genome (2019) and ending with
high-quality Omicron genomes from the GISAID database (17 June 2022) [12]. Overall, this
analysis reveals a trend of increasing mutations over time, with a statistically significant jump
in both synonymous and non-synonymous mutations in Omicron sub-lineages, relative to
all the previous strains of the virus (p < 2 × 1016 and p < 2 × 1016, respectively; one-way
ANOVA) (Figure 2A,B).
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Figure 1. Phylogenetic relationship of named SARS-CoV-2 variants. Variants of concern (VOC) are
represented by a colored node. The phylogenetic tree was adapted from data provided by NextStrain,
CoVariants (i.e., covariants.org, http://covariants.org (accessed on 18 July 2022)), and Pangolin (i.e.,
cov-lineages.org, http://cov-lineages.org (accessed on 18 July 2022)) [1,8,13].
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Figure 2. (A) Non-synonymous mutations acquired over time in 26 SARS-CoV-2 protein sequences
extracted from 97,437 genomes from 19 December 2021, to 17 June 2022 (GISAID accessions available
at: https://github.com/WiedenheftLab/Omicron (accessed on 18 July 2022) and DOI: https://doi.
org/10.55876/gis8.220721mv (accessed on 18 July 2022)). Genomes included in this analysis are a
random sampling of 11,336,176 million SARS-CoV-2 from GISAID, which were quality filtered using
NextClade (“good” overall QC status) then sampled with the Filter utility in NextStrain (selecting
up to 120 genome per country per month of the pandemic) [1,14]. Variants of concern (VOC) are
shown in bold and are colored as in Figure 1. Vertical lines mark the date the first sequence for each
lineage was identified. The time elapsed between first detection and VOC designation by the WHO
is shown as dotted lines above the graph. Dots are colored similar to variant names, and grey circles
represent non-VOC lineage genomes. A linear regression line is shown in black. Omicron variants
deviate from the trend. (B) Synonymous mutations in the SARS-CoV-2 genomes shown in panel (A).
(C) Non-synonymous mutations in the Omicron RNA replication proteins (n = 13,094 genomes) are
shown as red lines on schematic representations of each protein, and frequencies of each mutation
shown as vertical lines (red). Most non-synonymous mutations are found in less than 1% of Omicron
sequences. (D) Schematic depiction of SARS-CoV-2 protein coding sequences, with each gene colored
according to its respective amino acid mutation rate. These rates are normalized to account for the
length of each protein (i.e., substitutions/amino acids in protein/month of the pandemic).

Based on the anomalous mutational profiles of Omicron viruses, we hypothesized that
Omicron genomes have mutations that affect the fidelity of viral RNA replication machinery.
To test this hypothesis, we analyzed the sequences of replication-associated proteins (i.e.,
Nsp7, Nsp8, Nsp12, Nsp13 and Nsp14) to determine whether they had acquired mutations
that would be likely to affect the fidelity of replication (Figure 2C). This analysis revealed
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only one widespread mutation in the RNA-dependent RNA polymerase (i.e., P314L in
Nsp12), which arose prior to the emergence of the Omicron and co-occurred with a spike
mutation (D614G) that swept to global fixation in mid-2020 and is present in 97.8% of all
the SARS-CoV-2 sequences we analyzed [15,16]. The only other widespread mutations
we detected in the RNA replication components of Omicron were mutations in the RNA
helicase (R392C in Nsp13) and a conservative amino acid substitution (i.e., I42V) in the 3′–5′

exoribonuclease protein (Nsp14) that is responsible for proof-reading (Figure 2C) [17,18].
Since these mutated residues are distal from the Nsp13 and Nsp14 active sites [19,20] and
the P314L mutation in Nsp12 is not unique to Omicron variants, it seems unlikely that they
are responsible for the increase in mutations acquired by Omicron lineage viruses.

While the origins and conditions leading to the emergence of Omicron remain uncer-
tain, some scientists suspect that Omicron arose in chronically infected, immunocompro-
mised patients in which the immune response was too weak to clear the virus but strong
enough to select for variants with increased fitness [21]. To identify other proteins that
might be evolving under similar selective pressures, we evaluated mutational trends for
each SARS-CoV-2 protein over the course of the pandemic (Figure 2D). Consistent with
what has been observed previously, this analysis highlights the unique evolutionary signa-
tures of the structural (i.e., S, E, M, N) and accessory proteins (i.e., 7a, 7b, 9, and 9b), which
are evolving more rapidly than the non-structural proteins (NSP1-16) (Figure 2D) [5,22–24].
Such a concentration of mutations in some but not all loci is consistent with at least two
different evolutionary scenarios. First, Omicron may have emerged from a dichotomy of
strong purifying selection on NSP1-16 genes and strong diversifying selection on S, E, M,
N, and accessory genes. Second, Omicron may represent a recombinant between a more an-
cestral (e.g., B1.1) lineage and a yet-to-be-discovered hyper-mutated virus (i.e., a virus with
many mutations distributed more evenly across all loci) [25–27]. While there are examples
of both scenarios among other viral emerging infectious diseases [28], the second scenario
(recombination) is simpler and quicker compared to the necessary coincident rounds of
opposing mutation-selection pressures of the first scenario. Additional sequencing of rare
variants should help clarify Omicron’s evolutionary history.

3. The Future of SARS-CoV-2

Since most diagnostics target the N gene (PCR) or N protein (antigen), continued
evolution of N is expected to complicate ongoing efforts to provide rapid and reliable diag-
nostics [29–31]. Similarly, changes in the spike will continue to have major impacts on the
efficacy of natural or vaccine-induced immunity [6,7,32,33]. Increased incidence of break-
through infections may indicate that a globally distributed and coordinated rollout of new
vaccine cocktails that simultaneously targets the spike of several distinct variants [34–37]
or multiple different viral genes that go beyond the spike [38,39] are necessary to establish
durable immunity.

Accurately predicting the future is improbable, but it is safe to assume that the virus
will continue to evolve and that we will continue to work our way through the Greek
alphabet. However, at a time when Omicron variants are driving infection rates up (i.e.,
3.3 million weekly cases on 5 June versus 6.7 million on 17 July) [40,41], viral surveillance is
in rapid decline. Over a million SARS-CoV-2 genome sequences were deposited in GISAID
in the months of November (2021) through February (2022), but submissions have dropped
steadily over the last four months, and in June, the number of genomes contributed dipped
below 500,000 (Figure 3) [12]. Wastewater surveillance helps fill in some of the gaps by
providing community level assessments of the viral load [42], which is especially important
as diagnostic testing moves out the clinic, where numbers are regularly tracked, to at-home
testing, which is less sensitive and rarely reported to public health departments. There is
no easy solution to this situation, but as infections increase, and tracking decreases, we
are wandering blind into an uncertain future and we are at greater risk of being caught off
guard by an unlucky role of the evolutionary dice, which may result in a new variant with
distinct clinical outcomes.
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