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1 Introduction

The COVID-19 virus first occurred in Wuhan, China in December 2019. COVID-19 has

been named novel because it is a completely new variant (genetically variant, chain) of

virus and due to emerging in the year 2019, it was given the numerical suffix 19. The said

virus survives on surfaces of human body variably ranging from few hours to several days

and causes complications for the respiratory system of the human population across the

whole world. Coronavirus is considered to be themost challenging virus of the community

of flu viruses. As the transmission of coronavirus occurs, wemust be aware of the fact that

the future will involve a war between health and disease caused by strangemicroorganism

of every sort (viruses and bacteria, etc.). More than 4 million people have died from the

epidemic and at the time of writing, approximately 180 million people have acquired

the infection of coronavirus [1]. The story of the COVID-19 outbreak began in Wuhan,

China in December 2019. The outbreak spread very quickly to all parts of the world,

and many people have been infected with COVID-19. The Italian Government issued

an order on March 8, 2020 to close the borders of its country to reduce the spread of

the epidemic in the country. The data were taken from the Center for Systems Science

and Engineering (CSSE) at Johns Hopkins University, Baltimore, the United States [2].

These data were analyzed in a study to capture the period January 22, 2020 to March

15, 2020.

The recent COVID-19 pandemic is a respiratory system virus that is picked up by con-

tact with an infectiousman or woman through droplets in the air when a person coughs or

sneezes or through small drops of saliva [3, 4]. People can also be infected by COVID-19 by

touching a surface that is contaminated with the virus and then touching their face, espe-

cially theirmouth or nose. The disease to appear in body takes 5 or 6 days and remain up to

14 days [5, 6]. By March 26, 2020 WHO declared it as pandemic. In the same time Chinees

government had tried to control it. During 2020 Italy has been affected by COVID-19.

Majority of COVID-19 cases in New York had been due to Europe not China [7]. On June
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11, 2020 several locally reported cases of COVID-19 were reported in USA [8]. On June 15,

2020 nearly 79 cases were reported in locality of Wuhan [9]. On June 29, 2020, the World

Health Organization (WHO) warned people that transmission of this virus was still

spreading increasingly as various countries reopened their businesses, although several

countries were progressively decreasing the spread [10].

As of August 28, 2020, more than 24.4 million cases had been confirmed worldwide.

More than 831,000 people had died from COVID-19 and more than 16 million people

had recovered [2, 11, 12]. People fear COVID-19 because a similar disease before this killed

more than 100,000 humans.Researchers and physicians try to suggest some precautionary

measures for reducing the transmission of COVID. To know the fundamental causes for

the COVID-19 pandemic, data of statistics and some mathematical formulations, con-

cepts are needed. The idea of mathematical modeling was used first in 1927. The appli-

cation of statistics data on different pandemics will contribute to the development of a

mathematical model. This model will be used to model different real-world phenomena.

Therefore, several real problems may be represented by one formula, as can be studied in

[13–16]. So far, several scholars have analyzed the COVID-19 pandemic using some ana-

lytical methods as in [17–21]. Some of them have modeled the pandemic applying math-

ematical modeling that provides future predictions in light of the recent pandemic. The

story, coupled with current information on such a disease, can help policymakers to build

a few successful strategies for controlling it. Given the significance of mathematical

modeling, the pandemic has been studied inmany research articles [22–26]. Construction
of mathematical models that involves parameters and various compartments which gives

us information about transmission dynamics of infectious disease. As COVID-19 can

spread easily in social situations, therefore some scholars have analyzed the dynamics

of such a type of disease for transmission due to immigration as given here:

S
� ¼S ðtÞa�S ðtÞbJðtÞ+S ðtÞe,

J
� ¼S ðtÞbJðtÞ+ ð�d�e + cÞJðtÞ,

S ð0Þ¼ S0, Jð0Þ¼J
0
:

8>><
>>:

(1)

The mathematical models that we used in this chapter are inspired by the classic Lotka-
Volterra model [27, 28] for analyzing predator-prey dynamics. The classic model has been

suitably modified to build the susceptible-infected individual population dynamics model.

The susceptible individual population is given by S ðtÞ at time t. The infected individual

population is given byI ðtÞ at time t. The infection rate is given by b¼ (1�protection rate).

The immigration rate of susceptible individuals is given by a. The immigration rate of

infected individuals is given by c. The death rate is given by d and the recovered rate is given

by e. Furthermore, the dynamics of COVID-19 epidemic models have been studied by sev-

eral researchers for the numerical solution of COVID-19 models, and some methods have

been introduced. In the last few years, several researchers used semianalytical techniques

including the Sumudu decomposition method, Laplace Adomian decomposition method,

the variation iterationmethod andmanymore from other sources; for numerical purposes,
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recent researchers used only the simple Euler method and the modified Euler method to

handle the solution of the COVID-19model. To the best of our knowledge, the Taylor’s series

method has not been applied yet to handle the solution of biological models in past

decades. Therefore, we are now going to adopt the Taylor’s series method to obtain the

numerical solution of our new four compartmental integer-order model for COVID-19

given as

dS ðtÞ
dt

¼�rS ðtÞIðtÞ,
dIðtÞ
dt

¼�rS ðtÞIðtÞ�ða+dÞIðtÞ,
dRðtÞ
dt

¼aIðtÞ,
dDðtÞ
dt

¼dIðtÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(2)

The given initial conditions are S ðt0Þ¼S 0, I (t0) ¼I0, Rðt0Þ¼R0, and Dðt0Þ¼D0, r is the
infection rate, a is the recovered rate, and d is the death rate due to infection. Therefore,

in this chapter, we investigate a SIRD-typemodel for the numerical solution of COVID-19.

We will use the Taylor’s series method to find the appropriate solution of the above

COVID-19 model. We will also investigate the fractional order of Eq. (2), as the

fractional-order differential equation gives a more realistic result than that of the

integer-order differential equation. The fraction-order equation for Eq. (2) is

CD℘
t S ðtÞ¼�rS ðtÞIðtÞ,

CD℘
t IðtÞ¼ rS ðtÞIðtÞ�ða+dÞIðtÞ,

CD℘
t RðtÞ¼aIðtÞ,

CD℘
t DðtÞ¼dIðtÞ,

S ðt0Þ¼ S0,Iðt0Þ¼ I0,

Rðt0Þ¼R0, Dðt0Þ¼D0,

8>>>>>>>>>>><
>>>>>>>>>>>:

(3)

where 0 < ℘ � 1.
The area of fractional calculus has received a great deal of attention in the last three

decades. Renowned scientists have provided their contribution in this area by introducing

different fractional operators in different articles. Modern calculus provides more realistic

results compared to classical calculus. It describes the dynamics of different real-world

phenomena lying between two integers. Furthermore, the fractional differential operators

have greater degree of freedom and include the integer differential operators as special

case. Up to now, various researchers have published many research articles, books, and

different monographs which discuss the said area. Podlubny gave the physical and geo-

metrical explanation of the fractional-order derivatives [29]. Analysis of various dynamical

systems in the sense of fractional-order operators can be seen in [30–37]. The applications
of this calculus in physics may be studied in [38]. Some fuzzy fractional-order linear and
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nonlinear dynamical problems have been analyzed for semianalytical solutions using the

fractional Sumudo transform [39, 40]. Many types of publications have also been com-

posed of existence, uniqueness, and numerical analysis under fractional-order concepts.

The first notable definitionwas given by Riemann-Liouville in 1832. Then in 1967, this def-

initionwasmodified by Caputo, andwasmostly used to deal with various real-world prob-

lems. Recently in 2015, a new definition named the Caputo-Fabrizio (CF) derivative was

provided by Caputo and Fabrizio by replacing the singular kernel in the previous defini-

tionwith a nonsingular one. Later on, in 2016, Atangana, Baleanu, andCaputo further gen-

eralized the CF derivative to an ABC-type derivative. In our work, we will apply the Caputo

fraction operator to our considered operator.
2 Fundamental results

In this section,weprovide some fundamental lemmas anddefinitions fromRefs. [29, 30, 41].

Definition 1. Let us present the arbitrary-order integral w.r.t τ as

CI℘τ S ðτÞ¼ 1

Γð℘Þ
Z τ

0

ðτ�ηÞ℘�1SðηÞdη, ℘> 0,

where the integral on right-hand side converges.
Definition 2. Let us have an operator, say S ðτÞ; we give the Caputo fractional differ-

entiation w.r.t τ as

CD℘
τ ½S ðτÞ� ¼ 1

Γðn�℘Þ
Z τ

0

ðτ�ηÞn�℘�1 dn

d℘n
½S ðηÞ�dη, ℘> 0,

with all operators are point-wise continuous on R+, n ¼ [℘] + 1. If ℘ � (0, 1], then one has
CD℘
τ ½S ðτÞ� ¼ 1

Γð1�℘Þ
Z τ

0

ðτ�ηÞ�℘ d

d℘
½S ðηÞ�dη:

Lemma 1. Podlubny [29]. The solution of
CD℘
τ S ðτÞ¼XðτÞ, 0<℘� 1

is given by
S ðτÞ¼ c0 +
1

Γð1�℘Þ
Z τ

0

ðτ�ηÞ℘�1XðηÞdη:

Definition 3. The general Taylor’s series mathematical expression for g(t) is as
follows:

gðτÞ¼
Xn
i¼0

Xi℘

Γði℘+1ÞD
i℘
τ gð0Þ+ Dðn+ 1Þ℘

τ gðζÞ
Γððn+ 1Þ℘+ 1Þ ,

with 0 � ζ � τ, 8τ � (0, a], 0 < ℘ � 1. From this result, we can evaluate Euler’s iterative
technique.
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Definition 4. Lipschitz conditions. Take a rectangular form R¼ (t, y):a� t� b, c� y� d

and consider that f (t, y) is conditional on R. Then the operator fwill fulfil the Lipschitzian

condition in y on R for L > 0 and

j f ðy,tÞ� f ðy ,tÞj �L
∗ jy�y j, ðy,tÞ,ðy ,tÞ�R,

where L* is called the Lipschitzian constant for f.
Theorem 1. If f (t, y) is continuous on R then 9 L* > 0; j fy(t, y)j� L*, 8 (t, y) �R. Then f

fulfils the Lipschitzian condition in y with a Lipschitzian constant L* on R.

Proof. Let t be fixed and c � (a, b), then

j f ðt,yÞ� f ðt,y2Þj ¼ j fyðt,cÞðy1�y2Þj:
By using the mean value theorem, we satisfy
jðt,yÞ� f ðt,y2Þj � L
∗ jy1�y2j:

.

□

Theorem 2. Existence and uniqueness. Take f (t, y) as defined on R¼ (t, y):t0� b, c� y�
d if it satisfies L-condition on R in y and (t0, y0)�R, then the IVP y0 ¼f (t, y), y(0)¼ y0 has one

solution on t0 � t0 + δ.
Definition 5.Contraction operator. Consider an operator T : X !X , where X is Banach

space, then it is called contraction if for all x, y � X, we have

jTx�Ty j � kjx�yj, 0< k< 1:

Theorem 3. Banach contraction principle. In 1922, Banach stated that if T is a
contraction operator on a Banach space X and let D� X be a closed convex subset of X then

T : X !X has a unique fixed point such that

kTx�Ty k � k k x�y k ,
for all x, y � D, 0 < k < 1.
Definition 6. Definition of Taylor’s series. If a function f (x) is such that f (x), f0(x), f
0 0
(x),

f
0 0 0 ðxÞ,…, f n�1ðxÞ are said to be continuous on the closed interval [x, x + h] and fn(x) exist in

the open interval (x, x + h) then there exists real number θ between 0 and 1 such that

f ðx +hÞ¼ f ðxÞ+hf 0 ðxÞ+ h2

2! f
0 0 ðxÞ+ h3

3! f
0 0 0 ðxÞ+⋯+ hn

n! f
nðx + θhÞ.
3 Feasibility of solution and stability analysis

Lemma 2. The root of the proposed problem is bounded in the feasible region, provided as

T ¼fðS,I ,R,DÞ�R4
+ : 0�XðtÞ�X0g

and the disease will occur if S 0 >
a+d
r .
Proof. Let

XðtÞ¼S ðtÞ+ IðtÞ+RðtÞ+DðtÞ:
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This implies that
XðtÞ
dt

¼S ðtÞ
dt

+
IðtÞ
dt

+
RðtÞ
dt

+
DðtÞ
dt

:

On addition of all equations of Eq. (3), we obtain
dX

dt
¼�rS ðtÞIðtÞ+ rIðtÞS ðtÞ�ða+dÞIðtÞ
+aIðtÞ+dIðtÞ

¼ 0:

(4)

Evaluating Eq. (4), we have
XðtÞ¼X0,

¼S 0 + I0 +R0 +D0,

¼S 0 + I0:

This implies that XðtÞ�X0. This derived the first part of the lemma.
Further, from the first equation of Eq. (3)

dS

dt
� 0

or
S ðtÞ�S 0:

Therefore, S ðtÞ is always decreasing and hence no disease will occur. From the second
equation of Eq. (3) we have

dIðtÞ
dt

¼ rIðtÞS ðtÞ�ða+dÞIðtÞ,
a+d
r is called the threshold phenomenon or critical community size for epidemic.
If

S 0 <
a+d

r
)dIðtÞ

dt
< 0,

then the infection class will decrease and hence no COVID-19 will occur. If
S 0 >
a+d

r
)S ðtÞ>a+d

r
)dIðtÞ

dt
> 0,

then the infection class will increase and a pandemic will occur. By this we proved the sec-
ond part of the lemma. □
Theorem 4. The basic number of reproduction for Eq. (3) is computed as

R0 ¼ r

a+d
if S� 1:

Proof. Let from second equation of Eq. (3) for computing the number of basic repro-
duction as N ¼ I

CD℘
t ðNÞ ¼ CD℘

t ðIÞ¼ rIðtÞSðtÞ�ða+dÞIðtÞ,
CD℘

t ðNÞ ¼F�V :
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Here F ¼ rIðtÞS ðtÞ, V ¼ðγ + κÞIðtÞ, F is new infection, and V is the transferring of infection.

Further, we calculate the matrix of next generation as FV�1, where

F ¼ ∂

∂I
ðrIðtÞSðtÞÞ

� �
¼ ½rS ðtÞ�

and
V ¼ ∂

∂I
ðða+dÞIðtÞÞ

� �
¼ ½ða+dÞ�, V�1 ¼ 1

a+d

� �
,

then
FV�1 ¼ rS

ða+dÞ
� �

:

Here R0 is defined as the highest eigenvalue of the matrix of next generation FV�1, as
follows:

ρðFV�1ÞE0
¼ rS

ða+dÞ ,

R0 ¼ rS0
ða+dÞ ,

(5)

is the required reproduction number. Or if S ðtÞ� 1, then
R0 ¼ r

a+d
:

Now as we know that S0 ¼ a+d
r , which leads us to R0 ¼ 1 having no meaning in biological
terms, therefore, we can either take S0 <
a+d
r for nonoccurrence of the pandemic or for

disease-free equilibrium, S0 >
a+d
r for the occurrence of a pandemic or for disease equilib-

rium point. This shows that

R0 < 1 for S0 <
a+d

r
,

R0 > 1 for S0 >
a+d

r
: □
Theorem 5. System (3) will be locally asymptotically stable before a pandemic if

R0 < 1 for S0 <
a+d

r

and locally asymptotically stable after a pandemic if
R0 > 1 for S0 >
a+d

r
:

Proof. The proof of this theorem can be seen in Theorem 4. □



196 Methods of Mathematical Modeling
4 Qualitative analysis

In this section, we shall analyze some characteristics for the root of the fractional-order

problem (3). The qualitative analysis of a problem is provided by fixed-point theory. Thus

we use Banach and Schauder fixed-point theorems for the proof of the required results.We

have considered the arbitrary-order model (3) as follows:

CD℘
t S ðtÞ¼℧1ðt,S ðtÞ,IðtÞ,RðtÞ,DðtÞÞ,

CD℘
t IðtÞ¼℧2ðt,S ðtÞ,IðtÞ,RðtÞ,DðtÞÞ,

CD℘
t RðtÞ¼℧3ðt,S ðtÞ,IðtÞ,RðtÞ,DðtÞÞ,

CD℘
t DðtÞ¼℧4ðt,S ðtÞ,IðtÞ,RðtÞ,DðtÞÞ,

Sðt0Þ¼ S0,Iðt0Þ¼ I0,Rðt0Þ¼R0,Dðt0Þ¼D0,

0<℘� 1:

8>>>>>>>>>>><
>>>>>>>>>>>:

(6)

We apply an integral with order ℘ � (0, 1] on Eq. (17), to get the nonlinear integral equa-
tions as follows:

SðtÞ ¼ S0 +
1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1℧1ðη,SðηÞ,IðηÞ,RðηÞ,DðηÞÞdη,

IðtÞ ¼ I0 +
1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1℧2ðη,SðηÞ,IðηÞ,RðηÞ,DðηÞÞdη,

RðtÞ ¼ R0 +
1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1℧3ðη,SðηÞ,IðηÞ,RðηÞ,DðηÞÞdη,

DðtÞ ¼ D0 +
1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1℧4ðη,SðηÞ,IðηÞ,RðηÞ,DðηÞÞdη:

(7)

Next, taking∞> T� t� 0, we have closed norm space by E1¼ C([0, T]	R4+, R+), clearly E
¼ E1 	 E2 	 E3 	 E4 is also “closed norm space” having the norm

k ðS,I ,R,DÞ k¼ max
t�½0,T �

jSðtÞj+ max
t�½0,T �

jIðtÞ+ max
t�½0,T �

jRðtÞ+ max
t�½0,T �

jDðtÞj:

We write system (16) as
FðtÞ¼F0ðtÞ+ 1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1ψðη,FðηÞÞdη, (8)

where
FðtÞ¼

SðtÞ
IðtÞ
RðtÞ
DðtÞ

8>>>>><
>>>>>:

, F0ðtÞ¼
S0ðtÞ
I0ðtÞ
R0ðtÞ
D0ðtÞ

8>><
>>:

(9)
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and

ψðt,FðtÞÞ¼

℧1ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ

℧2ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ

℧3ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ

℧4ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ

8>>>>>>>><
>>>>>>>>:

: (10)

For derivation of existence and uniqueness, we take some growth conditions on mapping
vector ψ : ½0,T �	R4
+ !R+ as follows:

ðE1Þ: There exist Lψ > 0 for all FðtÞ, �FðtÞ�R	R	R	R;

jψðt,FðtÞÞ�ψðt, �FðtÞÞj �Lψ jFðtÞ� �FðtÞj:
ðE2Þ: There exist Cψ > 0 and Mψ > 0;
jψðt,FðtÞÞj �Cψ jF j+Mψ :

Theorem 6. If ψ is continuous along with ðE2Þ, problem (3) has at least one solution.
Proof. Using the fixed-point theorem of Schauder, we have to prove the existence of a

solution. We take a close subset C of E as

B¼fF�E : kF k�R, R> 0g:
We take a mapping B : C!C by Eq. (8) as
BðFÞ¼F0ðtÞ+ 1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1ψðη,FðηÞÞdη: (11)

For any F�C, we have
jBðFÞðtÞj � jF0j+ 1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1jψðη,FðηÞÞjdη

� jF0j+ 1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1½Cψ jF j+Mψ �dη

� jF0j+ T℘

Γð℘+ 1Þ½Cψ kF k +Mψ �,

which implies that
kBðFÞ k � jF0j+ T℘

Γð℘+ 1Þ ½Cψ kF k +Mψ �
�R:

(12)

Eq. (19) shows that F�C. Thus BðCÞ
C. This also shows that the mapping B has bounds.
Next, for complete continuity, we go ahead as follows:
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We take t2 > t1 � [0, T], then propose

jBðFÞðt2Þ�BðFÞðt1Þj ¼ 1

Γð℘Þ
Z t2

0

ðt2�ηÞ℘�1,ψðη,FðηÞÞdη� 1

Γð℘Þ
Z t1

0

ðt1�ηÞ℘�1ψðη,FðηÞÞdη
����

����,

� 1

Γð℘Þ
Z t1

0

½ðt1�ηÞ℘�1�ðt2�ηÞ℘�1�ψðη,FðηÞÞdη
�

+

Z t2

t1

ðt2�ηÞη�1ψðη,FðηÞÞdη
�
,

�ðCψR+Mψ Þ
Γð℘+ 1Þ ½t℘2 � t℘1 + 2ðt2� t1Þ℘�:

(13)

From Eq. (13), as t1 approaches t2, the right-hand side approaches to zero. Sowe conclude
that

jBðFÞðt2Þ�BðFÞðt1Þj! 0, as t1 ! t2:

Directly we say that
kBðFÞðt2Þ�BðFÞðt1Þ k! 0, as t1 ! t2:

Therefore, B is equi-continuous. By the Arzelá-Ascoli theorem, the mapping B is
completely continuous and shown to be uniformly bounded. By Schauder’s theorem,

the given model (3) has at least one solution. □

Next we have to prove the uniqueness of solution as follows:

Theorem 7. Under assumption ðE1Þ, the considered problem (3) has one solution if
T℘

Γð℘+ 1ÞLψ < 1.

Proof. As B: E ! E given presection, we consider F and �F� E and proposed as

kBðFÞ�Bð �F Þ k ¼ sup
t�½0,T �

1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1ψðη,FðηÞÞdη
����

� 1

Γð℘Þ
Z t

0

ðt�ηÞ℘�1ψðη, �F ðηÞÞdη
����

� T℘

Γð℘+1ÞLψ kF� �F k :

(14)

Eq. (14) implies
kBðFÞ�Bð �F Þ k� T℘

Γð℘+ 1ÞLψ kF� �F k : (15)

So B is contracted. Therefore, by the Banach contraction theorem, the proposed model
has a unique solution. □
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5 Series solution for model (2)

In this section, we will investigate the general solution and its numerical solution of the

proposed COVID-19 model (2), by using the Taylor’s series method.
5.1 General solution of COVID-19 model

For the general solution of the considered COVID-19 model (2), we will perform some

steps:

Step 1: First of all we compute the first derivative of the SðtÞ, I (t), RðtÞ, and DðtÞ as

S 0 ðt0Þ¼�rS0I0,

I
0 ðt0Þ¼ rS0I0�ða+dÞI0,
R

0 ðt0Þ¼aI0,

D
0 ðt0Þ¼dI0:

8>>>>><
>>>>>:

(16)

Step 2: We compute the second derivative of SðtÞ, I (t), RðtÞ, and DðtÞ as
S 0 0 ðt0Þ¼�r2S2
0I

2
0 + rS0I0ða+dÞ+ r2I20S0,

I
0 0 ðt0Þ¼ r2S2

0I
2
0 �2rS0I0ða+dÞ� r2S0I

2
0 + ða+dÞ2I0,

R
0 0 ðt0Þ¼arS0I0�aða+dÞI0,

D
0 0 ðt0Þ¼drS0I0�dða+dÞI0:

8>>>>><
>>>>>:

(17)

Step 3: We compute the third derivative of SðtÞ, I (t), RðtÞ, and DðtÞ as
S 0 0 0 ðt0Þ¼�r3S3
0I

3
0 + 2r

2S2
0I0ða+dÞ� r4S2

0I
3
0 � r2S0I

2
0 ða+dÞ

�rS0I0ða+dÞ2� r3S0I
3
0 + r

4S3
0I0 + r

2S0I
2
0 ða+dÞ2�2r2S2

0I
2
0 ða+dÞ,

I
0 0 0 ðt0Þ¼ 2r3S3

0I0�2r2S2
0I

2
0 ða+dÞ�2r3S2

0I
3
0 � r2S2

0I0ða+dÞ

+ rS0I0ða+dÞ2 + r2I20S0ða+dÞ�2r3S2
0I

2
0 + 2r

2S0I
2
0 + r

2I30S0� r2S2
0I0

+ rS0I0ða+dÞ+ r2S0I
2
0 ða+dÞ+ rS0I0ða+dÞ2� I0ða+dÞ3,

R
0 0 0 ðt0Þ¼ ar2S2

0I0�2aða+dÞrS0I0�ar2S0I
2
0 +aða+dÞ2I0,

D
0 0 0 ðt0Þ¼dr2S2

0I0�2dða+dÞrS0I0�dr2S0I
2
0 +dða+dÞ2I0:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(18)
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Step 4: We compute the fourth derivative of SðtÞ, IðtÞ,RðtÞ, and DðtÞ as
Sivðt0Þ¼�rS4

0I
4
0 + ða+dÞr3S3

0I0 + 3rI
2
0S3

0 + r
3ða+dÞS3

0I0

�r2ða+dÞS2
0I0�2r3ða+dÞI20S2

0�3r5S3
0I

3
0 + 3r

4ða+dÞS2
0I

3
0

+ 2r5I40S2
0 + r

3ða+dÞS3
0I0� r2ða+dÞ2S2

0I0�2r3I20S2
0� r3ða+dÞ2S2

0I0

+ rða+dÞ3S0I0 + r
2ða+dÞ2S0I

2
0 �2r3ða+dÞS2

0I
2
0 + 2r

2ða+dÞ2S0I
2
0

+ r3ða+dÞS0I30 �3r4S2
0I

3
0 + 3r

3ða+dÞS0I
3
0 + r

4I40S0 + 2r
5S4

0I
2
0

�2r4ða+dÞS3
0I

2
0 �3r5I30S2

0 + 2r
3ða+dÞ2S2

0I0�2r2ða+dÞ3S0I
2
0

�r3ða+dÞ3S0I
3
0 �4r2ða+dÞS3

0I
2
0 + 4r

3ða+dÞ2S2
0I

2
0 + 4r

3ða+dÞS20I30 ,
I ivðt0Þ¼ 2r4S4

0I0�2r3ða+dÞS3
0I0�6r4S2

0I
2
0 �4ða+dÞr3S3

0I
2
0

+ 4ða+dÞ2r2S2
0I

2
0 + 7r

3I30S2
0�6r4S3

0I
2
0 + 6r

3ða+dÞS2
0I

3
0

+ 4r4I40S2
0� r3ða+dÞI0S3

0 + 2r
2ða+dÞ2S2

0I0 + 2r
3S2

0I
2
0 + rða+dÞ2S2

0I0

�3rða+dÞ3S0I0�6r2ða+dÞ2S0I
2
0 �2r3ða+dÞS0I

3
0 + 4r

3ða+dÞS2
0I

2
0

�4r4S3
0I

2
0 + 4r

3ða+dÞS2
0I

2
0 + 4r

4I30S2
0 + 4r

3S2
0I

2
0 �4r2ða+dÞS0I

2
0

�2r3S0I
3
0 � r3S0I

4
0 �3r2ða+dÞS0I

3
0 � r3S3

0I0 + r
2ða+dÞS2

0I0

+ 2r3S2
0I

2
0 + r

2ða+dÞS2
0I0� rða+dÞS0I0� rða+dÞS0I

2
0 + ða+dÞ4I0,

Rivðt0Þ¼ar3S3
0I0�3aða+dÞr2S2

0I0�4ar3I20S2
0 + 3aða+dÞ2rS0I0

+ 4aða+dÞr2I20S0 +ar
3S0I

3
0 �aða+dÞ3I0,

Divðt0Þ¼dr3S3
0I0�3dða+dÞr2S2

0I0�4dr3I20S2
0 + 3dða+dÞ2rS0I0

+ 4dða+dÞr2I20S0 +dr
3S0I

3
0 �dða+dÞ3I0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(19)



Chapter 11 • Study of a COVID-19 mathematical model 201
Step 5: We compute the fifth derivative of SðtÞ, I (t), RðtÞ, and DðtÞ as

Svðt0Þ¼�r5S5
0I

5
0 + 4r

4ða+dÞS4
0I0 + 4r

4S5
0I

5
0 �4r3ða+dÞS4

0I
2
0

�5r3ða+dÞ2S3
0I0�17r4ða+dÞS3

0I
2
0 �9r2S3

0I
3
0 + 6r

2S4
0I

2
0

�6rða+dÞS3
0I

2
0 + 3r

2ða+dÞS3
0I0 + 14r

3ða+dÞ2S2
0I

2
0 �17r6S4

0I
3
0

+ 36r5ða+dÞS3
0I

3
0 + 17r

6S3
0I

4
0 �24ða+dÞ2r4S2

0I
3
0 �6ða+dÞr5S2

0I
2
0

�4r6S2
0I

5
0 �8r5ða+dÞS2

0I
4
0 + 4r

4I30S2
0�4r4S3

0I
2
0 + 4r

3ða+dÞS2
0I

2
0

�r4ða+dÞ2S3
0I0 + r

3ða+dÞ3S2
0I0 + 2r

4ða+dÞ2S2
0I

2
0

�rða+dÞ4S0I0�3r2ða+dÞ3I20S0 + 26r
4ða+dÞS2

0I
3
0

�4r2ða+dÞ3S0I
2
0 �14r3ða+dÞ2S0I

3
0 �4r4ða+dÞS0I

4
0 �9r5S3

0I
3
0

+ 6r5I40S2
0� r5S0I

2
0 �4r5S5

0I0 + 4r
6S5

0I
2
0 �16r5ða+dÞS4

0I
4
0

+ 24r4ða+dÞ2S3
0I

2
0 + 6r

6I40S2
0�9r6S3

0I
3
0 + 9r

5ða+dÞS2
0I

3
0

�12r3ða+dÞ2S3
0I

3
0 + r

4ða+dÞ2S0I
4
0 + 3r

3ða+dÞ3S0I
3
0 + 12r

4ða+dÞS3
0I

3
0

�12r3ða+dÞ2S2
0I

3
0 �8r4ða+dÞI40S20,

Ivðt0Þ¼ 2r5S5
0I0�4ða+dÞr4S4

0I0�28r5S4
0I

2
0 + 4ða+dÞ2r3S3

0I0

+ 37ða+dÞr4S30I20 + 42r5S3
0I

3
0 �8ða+dÞr4S4

0I
2
0 + 16ða+dÞ2r3S3

0I
2
0

+ 38ða+dÞr4S3
0I

3
0 �8ða+dÞ3r2S2

0I
2
0 �8ða+dÞ2r3I30S2

0�18r4S2
0I

4
0

+ 21r4S3
0I

3
0 �12ða+dÞr3I30S2

0�18r5S4
0I

3
0 + 18r

5I40S4
0

+ 18ða+dÞ2r3I30S0�28ða+dÞr4I40S2
0�ða+dÞr4S4

0I0 + 2ða+dÞr3S3
0I0

�4ða+dÞr2S2
0I0�33ða+dÞ2r3S2

0I
2
0 �30ða+dÞr3S2

0I
2
0 �14r4I30S2

0

+ r2ða+dÞS3
0I0� rða+dÞ3S2

0I0� r2ða+dÞ2S2
0I0 + 3ða+dÞ4rS0I0

+ 15ða+dÞ3r2S0I
2
0 + 23ða+dÞr3S0I

3
0 �30ða+dÞr4S2

0I
3
0 + r

4ða+dÞ2I40S0

�8r5S2
0I

4
0 + 8r

3S3
0I

2
0 + 11ða+dÞ2r2S0I

2
0 + 2r

4I40S0 + 4r
3ða+dÞS0I

4
0

+ r4S0I
5
0 + 9ða+dÞ2r2S0I

3
0 + r

4ða+dÞS0I
4
0 + rða+dÞ4S0I0�ða+dÞ5I0,

Rvðt0Þ¼ar4S4
0I0�4aða+dÞr3S3

0I0�11ar4S3
0I

2
0 + 20aða+dÞr3S2

0I
2
0

+ 6aða+dÞ2r2S2
0I0 + 11ar

4S2
0I

3
0 �4aða+dÞ3rS0I0�11aða+dÞ2S0I

2
0 r

2

�7aða+dÞr3S0I
3
0 �ar4S0I

4
0 +aða+dÞ4I0,

Dvðt0Þ¼dr4S4
0I0�4dða+dÞr3S3

0I0�11dr4S3
0I

2
0 + 20dða+dÞr3S2

0I
2
0

+ 6dða+dÞ2r2S2
0I0 + 11dr

4S2
0I

3
0 �4dða+dÞ3rS0I0�11dða+dÞ2S0I

2
0 r

2

�7dða+dÞr3S0I
3
0 �dr4S0I

4
0 +dða+dÞ4I0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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Now the solution for the first six terms is given by

SðtÞ¼Sðt0Þ+ tS0 ðt0Þ+ t2S
0 0 ðt0Þ
2!

+ t3
S 0 0 0 ðt0Þ

3!
+ t4

Sivðt0Þ
4!

+ t5
Svðt0Þ
5!

+⋯ ,

IðtÞ¼ Iðt0Þ+ tI 0 ðt0Þ+ t2 I
0 0 ðt0Þ
2!

+ t3
I
0 0 0 ðt0Þ
3!

+ t4
I ivðt0Þ
4!

+ t5
Ivðt0Þ
5!

+⋯ ,

RðtÞ¼Rðt0Þ+ tR0 ðt0Þ+ t2R
0 0 ðt0Þ
2!

+ t3
R

0 0 0 ðt0Þ
3!

+ t4
Rivðt0Þ

4!
+ t5

Rvðt0Þ
5!

+⋯ ,

DðtÞ¼Dðt0Þ+ tD0 ðt0Þ+ t2D
0 0 ðt0Þ
2!

+ t3
D

0 0 0 ðt0Þ
3!

+ t4
Divðt0Þ

4!
+ t5

Dvðt0Þ
5!

+⋯ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(21)

Substituting the values of Eqs. (3), (17)–(20) in Eq. (21), we have
SðtÞ¼Sðt0Þ+ t½�rS0I0�+ t2

2!
½�r2S2

0I
2
0 + rS0I0ða+dÞ+ r2I20S0�

+
t3

3!
½�r3S3

0I
3
0 + 2r

2S2
0I0ða+dÞ� r4S2

0I
3
0 � r2S0I

2
0 ða+dÞ

�rS0I0ða+dÞ2� r3S0I
3
0 + r

4S3
0I0 + r

2S0I
2
0 ða+dÞ2�2r2S2

0I
2
0 ða+dÞ�

+
t4

4!
½�rS4

0I
4
0 + ða+dÞr3S3

0I0 + 3rI
2
0S3

0 + r
3ða+dÞS3

0I0

�r2ða+dÞS2
0I0�2r3ða+dÞI20S2

0�3r5S3
0I

3
0 + 3r

4ða+dÞS2
0I

3
0

+ 2r5I40S2
0 + r

3ða+dÞS3
0I0� r2ða+dÞ2S2

0I0�2r3I20S2
0� r3ða+dÞ2S2

0I0

+ rða+dÞ3S0I0 + r
2ða+dÞ2S0I

2
0 �2r3ða+dÞS2

0I
2
0 + 2r

2ða+dÞ2S0I
2
0

+ r3ða+dÞS0I
3
0 �3r4S2

0I
3
0 + 3r

3ða+dÞS0I
3
0 + r

4I40S0 + 2r
5S4

0I
2
0

�2r4ða+dÞS3
0I

2
0 �3r5I30S2

0 + 2r
3ða+dÞ2S2

0I0�2r2ða+dÞ3S0I
2
0

�r3ða+dÞ3S0I
3
0 �4r2ða+dÞS3

0I
2
0 + 4r

3ða+dÞ2S2
0I

2
0 + 4r

3ða+dÞS2
0I

3
0 �

+
t5

5!
½�r5S5

0I
5
0 + 4r

4ða+dÞS4
0I0 + 4r

4S5
0I

5
0

�4r3ða+dÞS4
0I

2
0 �5r3ða+dÞ2S3

0I0�17r4ða+dÞS3
0I

2
0 �9r2S3

0I
3
0

+ 6r2S4
0I

2
0 �6rða+dÞS3

0I
2
0 + 3r

2ða+dÞS3
0I0 + 14r

3ða+dÞ2S2
0I

2
0

�17r6S4
0I

3
0 + 36r

5ða+dÞS3
0I

3
0 + 17r

6S3
0I

4
0 �24ða+dÞ2r4S2

0I
3
0

�6ða+dÞr5S2
0I

2
0 �4r6S2

0I
5
0 �8r5ða+dÞS2

0I
4
0 + 4r

4I30S2
0

�4r4S3
0I

2
0 + 4r

3ða+dÞS2
0I

2
0 � r4ða+dÞ2S3

0I0 + r
3ða+dÞ3S2

0I0

+ 2r4ða+dÞ2S2
0I

2
0 � rða+dÞ4S0I0�3r2ða+dÞ3I20S0 + 26r

4ða+dÞS2
0I

3
0

�4r2ða+dÞ3S0I
2
0 �14r3ða+dÞ2S0I

3
0 �4r4ða+dÞS0I

4
0 �9r5S3

0I
3
0

+ 6r5I40S2
0� r5S0I

2
0 �4r5S5

0I0 + 4r
6S5

0I
2
0 �16r5ða+dÞS4

0I
4
0

+ 24r4ða+dÞ2S3
0I

2
0 + 6r

6I40S2
0�9r6S3

0I
3
0 + 9r

5ða+dÞS2
0I

3
0

�12r3ða+dÞ2S3
0I

3
0 + r

4ða+dÞ2S0I
4
0 + 3r

3ða+dÞ3S0I
3
0 + 12r

4ða+dÞS3
0I

3
0

�12r3ða+dÞ2S2
0I

3
0 �8r4ða+dÞI40S2

0�+⋯ ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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IðtÞ¼ Iðt0Þ+ t½rS0I0�ða+dÞI0�+ t2

2!
½r2S2

0I
2
0 �2rS0I0ða+dÞ� r2S0I

2
0

+ ða+dÞ2I0�+ t3

3!
½2r3S3

0I0�2r2S2
0I

2
0 ða+dÞ�2r3S2

0I
3
0 � r2S2

0I0ða+dÞ

+ rS0I0ða+dÞ2 + r2I20S0ða+dÞ�2r3S2
0I

2
0 + 2r

2S0I
2
0 + r

2I30S0

�r2S2
0I0 + rS0I0ða+dÞ+ r2S0I

2
0 ða+dÞ+ rS0I0ða+dÞ2� I0ða+dÞ3�

+
t4

4!
½2r4S4

0I0�2r3ða+dÞS30I0�6r4S2
0I

2
0 �4ða+dÞr3S3

0I
2
0

+ 4ða+dÞ2r2S2
0I

2
0 + 7r

3I30S2
0�6r4S3

0I
2
0 + 6r

3ða+dÞS2
0I

3
0

+ 4r4I40S2
0� r3ða+dÞI0S3

0 + 2r
2ða+dÞ2S2

0I0 + 2r
3S2

0I
2
0 + rða+dÞ2S2

0I0

�3rða+dÞ3S0I0�6r2ða+dÞ2S0I
2
0 �2r3ða+dÞS0I

3
0 + 4r

3ða+dÞS2
0I

2
0

�4r4S3
0I

2
0 + 4r

3ða+dÞS2
0I

2
0 + 4r

4I30S2
0 + 4r

3S2
0I

2
0 �4r2ða+dÞS0I

2
0

�2r3S0I
3
0 � r3S0I

4
0 �3r2ða+dÞS0I

3
0 � r3S3

0I0 + r
2ða+dÞS2

0I0

+ 2r3S2
0I

2
0 + r

2ða+dÞS2
0I0� rða+dÞS0I0� rða+dÞS0I

2
0

+ ða+dÞ4I0�+ t5

5!
½2r5S5

0I0�4ða+dÞr4S4
0I0�28r5S4

0I
2
0

+ 4ða+dÞ2r3S3
0I0 + 37ða+dÞr4S3

0I
2
0 + 42r

5S3
0I

3
0 �8ða+dÞr4S4

0I
2
0

+ 16ða+dÞ2r3S3
0I

2
0 + 38ða+dÞr4S3

0I
3
0 �8ða+dÞ3r2S2

0I
2
0

�8ða+dÞ2r3I30S2
0�18r4S2

0I
4
0 + 21r

4S3
0I

3
0 �12ða+dÞr3I30S2

0

�18r5S4
0I

3
0 + 18r

5I40S4
0 + 18ða+dÞ2r3I30S0�28ða+dÞr4I40S2

0

�ða+dÞr4S4
0I0 + 2ða+dÞr3S3

0I0�4ða+dÞr2S2
0I0�33ða+dÞ2r3S2

0I
2
0

�30ða+dÞr3S2
0I

2
0 �14r4I30S2

0 + r
2ða+dÞS3

0I0� rða+dÞ3S2
0I0

�r2ða+dÞ2S2
0I0 + 3ða+dÞ4rS0I0 + 15ða+dÞ3r2S0I

2
0 + 23ða+dÞr3S0I

3
0

�30ða+dÞr4S2
0I

3
0 + r

4ða+dÞ2I40S0�8r5S2
0I

4
0 + 8r

3S3
0I

2
0

+ 11ða+dÞ2r2S0I
2
0 + 2r

4I40S0 + 4r
3ða+dÞS0I

4
0 + r

4S0I
5
0 + 9ða+dÞ2r2S0I

3
0

+ r4ða+dÞS0I
4
0 + rða+dÞ4S0I0�ða+dÞ5I0�+⋯ ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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RðtÞ¼Rðt0Þ+ t½aI0�+ t2

2!
½arS0I0�aða+dÞI0�+ t3

3!
½ar2S2

0I0

�2aða+dÞrS0I0�ar2S0I
2
0 +aða+dÞ2I0�+

t4

4!
½ar3S3

0I0

�3aða+dÞr2S2
0I0�4ar3I20S2

0 + 3aða+dÞ2rS0I0 + 4aða+dÞr2I20S0

+ar3S0I
3
0 �aða+dÞ3I0�+ t5

5!
½ar4S4

0I0�4aða+dÞr3S3
0I0

�11ar4S3
0I

2
0 + 20aða+dÞr3S2

0I
2
0 + 6aða+dÞ2r2S2

0I0 + 11ar
4S2

0I
3
0

�4aða+dÞ3rS0I0�11aða+dÞ2S0I
2
0 r

2

�7aða+dÞr3S0I
3
0 �ar4S0I

4
0 +aða+dÞ4I0� +⋯ ,

DðtÞ¼Dðt0Þ+ t½dI0�+ t2

2!
½drS0I0�dða+dÞI0�+ t3

3!
½dr2S2

0I0

�2dða+dÞrS0I0�dr2S0I
2
0 +dða+dÞ2I0�+

t4

4!
½dr3S3

0I0

�3dða+dÞr2S20I0�4dr3I20S
2
0 + 3dða+dÞ2rS0I0 + 4dða+dÞr2I20S0

+dr3S0I
3
0 �dða+dÞ3I0�+ t5

5!
½dr4S4

0I0�4dða+dÞr3S3
0I0

�11dr4S3
0I

2
0 + 20dða+dÞr3S2

0I
2
0 + 6dða+dÞ2r2S2

0I0 + 11dr
4S2

0I
3
0

�4dða+dÞ3rS0I0�11dða+dÞ2S0I
2
0 r

2�7dða+dÞr3S0I
3
0

�dr4S0I
4
0 +dða+dÞ4I0� +⋯ :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(24)

6 Numerical solution for Eq. (3)

In this section, we have to calculate numerical result of the Caputo arbitrary-order prob-

lem (3) and the presentation of iterative simulations will be established by the proposed

Euler’s or Taylor’s series iterative method. To achieve this, we apply the fractional-order

Caputo differentiation to get an approximate scheme for the graphical representation

of our chosen problem (3). To construct an approximate procedure, we go further with

the process for Eq. (3) as

CD℘
t SðtÞ¼℧1ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ¼�rSðtÞIðtÞ,

CD℘
t IðtÞ¼℧2ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ¼�rSðtÞIðtÞ�ða+dÞIðtÞ,

CD℘
t RðtÞ¼℧3ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ¼aIðtÞ,

CD℘
t DðtÞ¼℧4ðt,SðtÞ,IðtÞ,RðtÞ,DðtÞÞ¼dIðtÞ,

Sð0Þ¼ S0, Ið0Þ¼ I0, 0< θ� 1, t > 0:

8>>>>>>>><
>>>>>>>>:

(25)

Let [0, ℘] be an interval for computation of the series solution of system (25). We cannot
calculate the compartments SðtÞ, I (t), IðtÞ, DðtÞ solution of the initial value problem (25).

Instead of this, a set of points (tq, S(tq)) can be taken and their points are taken for our
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numerical scheme. Thus, we further subdivide the interval [0, ℘] into i small subintervals

[tq, tq+1] of the same length h¼℘/n only applying the nodes tq¼ qh, for q¼ 0,1,…,n. Con-

sider that

SðtÞ,IðtÞ,RðtÞ,DðtÞCD℘
t SðtÞ,CD℘

t IðtÞ,CD℘
t RðtÞ,CD℘

t DðtÞ
and
CD2℘
t SðtÞ,CD2℘

t IðtÞ,CD2℘
t RðtÞ,CD2℘

t DðtÞ,
are continuous on [0, T]. Using the general Euler’s or Taylor’smethod about t¼ t0¼ 0 to the
considered problem given in Eq. (25) and for all t taking a � (0, T), the mathematical form

for t1, we have

Sðt1Þ¼Sðt0Þ+℧1ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ +
CD2℘

t SðtÞjt¼a

t2℘

Γð2℘+ 1Þ ,

Iðt1Þ¼ Iðt0Þ+℧2ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ +
CD2℘

t IðtÞjt¼a

t2℘

Γð2℘+ 1Þ ,

Rðt1Þ¼Rðt0Þ+℧3ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ +
CD2℘

t RðtÞjt¼a

t2℘

Γð2℘+ 1Þ ,

Dðt1Þ¼Dðt0Þ+℧4ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ +
CD2℘

t DðtÞjt¼a

t2℘

Γð2℘ + 1Þ :

(26)

Taking the value of h very small thenwe omit the heist power of h, thenwemay remove the
high-order terms having h2θ and get Eq. (26) as

Sðt1Þ¼Sðt0Þ+℧1ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+1Þ ,

Iðt1Þ¼ Iðt0Þ+℧2ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ ,

Rðt1Þ¼Rðt0Þ+℧3ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ ,

Dðt1Þ¼Dðt0Þ+℧4ðt0,Sðt0Þ,Iðt0Þ,Rðt0Þ,Dðt0ÞÞ t℘

Γð℘+ 1Þ :

(27)

On writing again by the same method, a set of points that approximated the solution
ðSðtÞ, IðtÞ,RðtÞ,DðtÞÞ is obtained. The generalized formula on tq+1 ¼ tq + h is

Sðtq+ 1Þ¼SðtqÞ+℧1ðtq,SðtqÞ,IðtqÞ,RðtqÞ,DðtqÞÞ h℘

Γð℘+ 1Þ ,

Iðtq+ 1Þ¼ IðtqÞ+℧2ðtq,SðtqÞ,IðtqÞ,RðtqÞ,DðtqÞÞ h℘

Γð℘+ 1Þ ,

Rðtq+ 1Þ¼RðtqÞ+℧3ðtq,SðtqÞ,IðtqÞ,RðtqÞ,DðtqÞÞ h℘

Γð℘+ 1Þ ,

Dðtq+ 1Þ¼DðtqÞ+℧4ðtq,SðtqÞ,IðtqÞ,RðtqÞ,DðtqÞÞ h℘

Γð℘+ 1Þ ,

(28)

where q¼ 0,1,2,…,n�1.
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7 Computational of the numerical solution of the COVID-19
model for model (2)

In this section, we investigate the numerical solution of the COVID-19 model (2). For this

we need to take the following values for the concerned parameter of the model, and we

consider the initial values as: r ¼ 0.0000033, a ¼ 0.0000035, d ¼ 0.019, S0 ¼ 8:8 million,

I0 ¼ 0.57 million, R0 ¼ 0:53 million, and D0 ¼ 0:015 million as,

S 0 ðt0Þ¼�0:00001655,

S0 0 ðt0Þ¼ 0:000000314,

S0 0 0 ðt0Þ¼�0:00000000631,

Sivðt0Þ¼ 0:000000000923,

Svðt0Þ¼�0:000000002123:

8>>>>>>>><
>>>>>>>>:

(29)

I
0 ðt0Þ¼�0:01081544,

I
0 0 ðt0Þ¼ 0:0002022,

I
0 0 0 ðt0Þ¼�0:00000356,

I ivðt0Þ¼ 0:0000000471,

Ivðt0Þ¼�0:00000000635:

8>>>>>>>><
>>>>>>>>:

(30)

R
0 ðt0Þ¼ 0:00000199,

R
0 0 ðt0Þ¼�0:000000664,

R
0 0 0 ðt0Þ¼ 0:000000000717,

Rivðt0Þ¼�0:00003522,

Rvðt0Þ¼ 0:00000357:

8>>>>>>>><
>>>>>>>>:

(31)

D
0 ðt0Þ¼ 0:01083,

D
0 0 ðt0Þ¼�0:000205,

D
0 0 0 ðt0Þ¼ 0:00000389,

Divðt0Þ¼�0:0000000739,

Dvðt0Þ¼ 0:000000001125:

8>>>>>>>><
>>>>>>>>:

(32)
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Plugging the values of Eqs. (29)–(32) in Eq. (21), we obtain

SðtÞ¼ 8:8+ tð�0:00001655Þ+ t2

2!
ð0:000000314Þ+ t3

3!
ð�0:00000000631Þ

+
t4

4!
ð0:000000000923Þ+ t5

5!
ð�0:0000000002123Þ+⋯ ,

IðtÞ¼ 0:57+ tð�0:01081544Þ+ t2

2!
ð0:0002022Þ+ t3

3!
ð�0:00000356Þ

+
t4

4!
ð0:0000000471Þ+ t5

5!
ð�0:00000000635Þ+⋯ ,

RðtÞ¼ 0:53 + tð0:00000199Þ+ t2

2!
ð�0:000000664Þ+ t3

3!
ð0:000000000717Þ

+
t4

4!
ð�0:00003522Þ+ t5

5!
ð0:00000357Þ+⋯ ,

DðtÞ¼ 0:015+ tð0:01083Þ+ t2

2!
ð�0:000205Þ+ t3

3!
ð0:00000389Þ

+
t4

4!
ð�0:0000000739Þ+ t5

5!
ð0:000000001125Þ+⋯ :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(33)

The series solution uses the following values of the parameters: r ¼ 0.0000033, a ¼

0.0000035, d ¼ 0.019, S0 ¼ 8:8 million, I0 ¼ 0.57 million, R0 ¼ 0:53 million, and

D0 ¼ 0:015 million. We can write

SðtÞ¼
X∞
k¼0

Skðt0Þ
k!

tk, IðtÞ¼
X∞
k¼0

Ikðt0Þ
k!

tk,

RðtÞ¼
X∞
k¼0

Rkðt0Þ
k!

tk, DðtÞ¼
X∞
k¼0

Dkðt0Þ
k!

tk :

8>>>>><
>>>>>:

(34)

By using software like Mathematica, we plot the solution up to 100 terms as shown in Figs.
1–4. From the plot given in Figs. 1–4 we see that the Taylor’s series is a powerful technique

for finding the numerical solution of the nonlinear problem.

In Figs. 1–4, we have provided graphical representations of different classes for the pro-

posed model.
8 Graphical results and discussion for model (3)

To present the concerned approximate solutions (28) of the model under consideration,

we recall some numerical values for the parameters in Table 1. Figs. 5–8 are the represen-

tations of all the four compartments of themodel (3) at various fractional orders by Euler’s

method using data I, similar to the data used for the integer-order problem (2). Both the

approaches of the integer-order model and the fraction-order model are comparable with

each other and by increasing the fractional values will converge to the integer values. Also

in data I we can see that r< a + d; this means that the infection will vanish, as can be seen

from Fig. 6.
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FIG. 1 Dynamical behavior of susceptible class.
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FIG. 3 Dynamical behavior of recovered class.
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FIG. 2 Dynamical behavior of infected class.



= 0.75

= 0.85

= 0.95

= 1.0

Time t (days)

FIG. 5 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data I.

Table 1 Parametric values for our model (3).

Parameters Data I Data II Data III

S0 8.8 million 8.8 million 8.8 million

I0 0.57 million 0.57 million 0.57 million

R0 0.53 million 0.53 million 0.53 million

D0 0.015 million 0.015 million 0.015 million

a 0.0000035 0.00000030 0.00003

d 0.019 0.00000033 0.000003

r 0.0000036 0.00000003 0.00058
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FIG. 4 Dynamical behavior of death class.
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FIG. 7 Graphical representation of numerical solution for RðtÞ at various arbitrary order of ℘ for data I.
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= 0.95
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FIG. 6 Graphical representation of numerical solution for I (t) at various arbitrary order of ℘ for data I.
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Figs. 9–12 are representations of different compartments of model (3) at different frac-

tional orders for data II. In this case r ¼ a + d, which implies that if SðtÞ¼ 1 then no pan-

demic will occur, as can be seen from Fig. 10, or there will be very small amounts of

infection.
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= 1.0

FIG. 8 Graphical representation of numerical solution for DðtÞ at various arbitrary order of ℘ for data I.
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FIG. 9 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data II.

Chapter 11 • Study of a COVID-19 mathematical model 211
Figs. 13–16 are the representation of all agent of model (3) for data III at different frac-

tional orders of ℘. Here r > a + d, which means that the infection will occur and will be

increasing as can be seen from Fig. 14.
9 Concluding remarks

In this chapter, we have studied a four-compartmental mathematical model of COVID-19

in both integer and fractional orders. The concerned model consist of susceptible,
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FIG. 11 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data II.
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FIG. 12 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data II.
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FIG. 10 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data II.
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FIG. 13 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data III.
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FIG. 14 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data III.
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infected, recovered, and death classes. The feasibility and stability analysis of the pro-

posed fractional-order model has been achieved by the techniques of basic reproduction

number. The fractional-order model has also been analyzed for existence and uniqueness

of solution using some well-known theorems of fixed-point theory. We have investigated

the general and numerical solution for the proposed COVID-19model through the Taylor’s

series method to compute a series solution to the considered models of integer and
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FIG. 15 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data III.
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FIG. 16 Graphical representation of numerical solution for SðtÞ at various arbitrary order of ℘ for data III.
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fractional order, for three different values of parameter in the considered model. The pro-

pose schemes have been simulated to show the validity of our proposed schemes and the

investigation of fractional-order calculus. Both the numerical schemes are comparable

with each other. The proposed techniques of qualitative, stability, and numerical analysis

may be applied to various integer and fractional-order differential equations or mathe-

matical models representing some real-world phenomena.
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