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Understanding the functional mechanisms underlying

genetic signals associated with complex traits and

common diseases, such as cancer, diabetes and Alz-

heimer’s disease, is a formidable challenge. Many genetic

signals discovered through genome-wide association

studies map to non-protein coding sequences, where their

molecular consequences are difficult to evaluate. This

article summarizes concepts for the systematic interpre-

tation of non-coding genetic signals using genome

annotation data sets in different cellular systems. We

outline strategies for the global analysis of multiple

association intervals and the in-depth molecular investi-

gation of individual intervals. We highlight experimental

techniques to validate candidate (potential causal) regu-

latory variants, with a focus on novel genome-editing

techniques including CRISPR/Cas9. These approaches

are also applicable to low-frequency and rare variants,

which have become increasingly important in genomic

studies of complex traits and diseases. There is a pressing

need to translate genetic signals into biological mecha-

nisms, leading to prognostic, diagnostic and therapeutic

advances.
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Introduction

The quest for identifying sequence variants associated with
complex traits including common diseases has been greatly
facilitated by technological progress in high-throughput DNA
analysis, such as genotyping arrays and next-generation
sequencing, complemented by advances in bioinformatics [1].
In recent years, researchers have systematically assayed
millions of common genetic variants across hundreds of
thousands of individuals in genome-wide association studies
(GWAS). In GWAS, the allele frequencies of a set of sequence
variants are statistically compared between individuals with
a phenotype of interest (such as a clinical condition) and
the general population. This results in the detection of
sequence variants that show association with the phenotype.
Despite the remarkable success of GWAS, there is a substantial
gap between the plethora of associated sequence variants and
our understanding of how most of these variants contribute
to complex trait biology [2–4]. At least three key issues have
impeded the functional translation of GWAS signals.

First, GWAS have focused on common SNPs (MAF> 5%).
SNPs either individually or in combination typically explain
only a small fraction of the genetic variance of most complex
traits [5, 6]. As a consequence, phenotypic effects due to the
perturbation of trait-associated SNPs are likely to be subtle.
This implies that large numbers of independent studies are
required to estimate quantitatively the phenotypic impact of
each genetic variant. Furthermore, highly sensitive assays in
sufficiently large sample sizes may be required for their
downstream assessment and validation.
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Second, the associated sequence variant identified in GWAS
may in fact only be linked to, rather than itself be, the causal
variant. This phenomenon is known as linkage disequilibrium
(LD) [7]. The alleles of the index (lead) SNP, i.e. the sequence
variant showing the strongest association with a trait of
interest, are correlated with the alleles of multiple nearby
proxy SNPs. The combination of these alleles form haplotypes
along the chromosome and are transmitted together.
Importantly, such haplotype structures are population-
specific [8–10]. On genotyping platforms, only a few selected
index SNPs per LD region are measured. In fact, the platforms
exploit LD patterns in a way that the selected SNPs capture
most of the genetic variation at any given locus [8]. In
individuals of Northern European ancestry, LD structure
extends to around 50kilobases (with substantial variation [10])
and usually harbors several genes and transcripts. Because
of LD, it may not be possible to discriminate statistically
between multiple variants associated with a phenotype at a
determined locus. As discussed in this review, the identifica-
tion of suitable functional genome maps may be particularly
helpful in prioritizing efforts for these loci.

Third, the vast majority (over 90%) of associated variants
have been found to localize outside of known protein-coding
sequences, thus impeding the direct interpretation of their
functional effects [11]. To this end, the trait-associated variant
may be involved in regulation of gene expression, which is
chiefly dependent on cell type identity, developmental stage
and environmental factors [12]. The variant may reside at gene
regulatory elements, such as promoters, enhancers, silencers,
and insulators, where it perturbs binding sites of transcription
factors, local chromatin structure or co-factor recruitment,
ultimately resulting in changes of transcriptional output of the
nearby gene(s) [12]. Trait-associated variants that are located
distal to transcription start sites at gene-dense regions are
particularly difficult to interpret. Here, literature search or
more precisely, experimental validation may determine
selection of a candidate gene. In our article, we mainly
discuss the influence of sequence variation on regulatory
elements of protein-coding genes, but we recognize that sites
affecting the transcription of non-protein coding RNAs may
also play an important role in gene regulation.

The challenge ahead is to carve out suitable strategies to
gain insights into cell type-specific molecular processes and
pathways underlying the discovered GWAS signals. In this
article, we (i) describe principles for interpreting non-coding
genetic signals using public genome annotation resources;
(ii) discuss considerations when using annotation data sets in
primary cells, cell lines, and – looking ahead – differentiated
induced pluripotent stem cells (iPSCs); and (iii) outline
current and emerging strategies to prioritize and experimen-
tally validate candidate regulatory variants and genes.

Genome annotation resources can guide
the interpretation of genetic variation

The genomic positions of GWAS index SNPs and proxy SNPs
can be compared to the positions of biochemical events
referenced in publicly available annotation resources to help

tease out the functional variant(s) from the vast number of trait-
associated variants in LD. Such biochemical events include
sites of transcription factor and micro RNA (miRNA) binding,
chromatin accessibility and modifications, DNA methylation,
and many other types. A trait-associated variant that overlaps
with a regulatory element may be functionally relevant. The
overlap also directly suggests a hypothesis with respect to the
mechanism underlying the association, which can be tested in
experimental assays. However, there are a number of caveats to
this approach that need to be correctly evaluated.

First, it must be noted that a large degree of non-functional
overlap can be expected, because of the widespread
distribution of the biochemical events. Thus, it is necessary
to use unbiased approaches to evaluate which of the overlaps
are functionally relevant and which occur by chance [13].

Second, regulatory elements that influence gene expres-
sion may operate in a spatial- and temporal-dependent
manner [14]. Therefore, annotation data should ideally be
retrieved for a cell type and developmental stage that is most
relevant to the trait under investigation. For example, genetic
signals associated with type 2 diabetes may be annotated
using data sets obtained in pancreatic islets [13, 15]. However,
for many complex traits including common diseases, the
identity of relevant cell types is not obvious (e.g. for height
or longevity), or appropriate cell types and tissues are
difficult – or even impossible – to obtain for experimental
assays (e.g. cells from the cerebral cortex in Alzheimer’s
disease). Several common disorders have been associated
with distinct developmental phases such as fetal stages in
metabolic syndrome and adult stages in age-related dis-
eases [16]. Indeed, a recent study showed enrichment of GWAS
signals associated with cardiovascular disease at regulatory
regions in fetal tissue, and depletion of signals linked to
breast cancer and Alzheimer’s disease [11].

More andmore genome annotation data sets are becoming
available, including those created by the Encyclopedia of DNA
Elements (ENCODE) Project Consortium [12], NIH Roadmap
Epigenomics Mapping Consortium [17], and the recently
launched BLUEPRINT Consortium [18]. While the ENCODE
data comprises mainly transformed cell lines (e.g. due to
practical reasons such as their wide availability and capacity
to produce large numbers of cells), the Roadmap Epigenomics
and BLUEPRINT data almost exclusively consist of a broad
selection of primary, ex vivo tissues corresponding to normal
tissues and organ systems that are involved in human disease
processes. These consortia have also contributed towards
setting standards for experimental protocols, reagents, and
bioinformatic tools. In particular, genome browsers are
valuable for accessing and visualizing the consortia’s multi-
dimensional data sets [19, 20].

The growing number of genome annotation data sets
will enable the functional interpretation of GWAS signals
in an increasingly context-specific manner. Alongside these,
it will be necessary to refine computational methods to
distil the vast amount of data into discrete segments of
interpretable biological function. Segmentation approaches
determine patterns and similarities between individual
chromatin data sets to summarize them into a small set of
“chromatin states” [21–23]. Nonetheless, the functionality
of the predicted chromatin states, such as “strong” and “weak
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enhancer”, as well as their predicted cell type specificity, need
experimental validation.

Choosing a suitable cellular system for
the annotation of GWAS loci

Genome-wide annotation data sets can be obtained in several
cellular systems, mainly from primary cell cultures and

transformed cell lines, while in the future,
differentiated iPSCs are likely to become
more prominent for this application [24].
Each cellular system has its pros and
cons when applied to the prioritization of
candidate regulatory variants at GWAS loci
(Fig. 1).

Primary cells are directly representative
of the tissues and organs from which they
were isolated. However, the isolation of
homogeneous cell populations is challeng-
ing, involving preparative procedures such
as fluorescent-activated sorting of cells.
Therefore, many primary cell populations
are available in limited quantities for
experimental assays. In addition, chroma-
tin maps generated in primary cells and

tissues represent only a snapshot of the development stage
during which they were isolated.

Cultured cell lines and transformed (immortalized) cell
lines mostly retain the characteristics of the primary tissue
from which they were derived. However, chromosomal
rearrangements, changes to chromatin structure, DNA
methylation, and gene expression profiles may arise through,
for example, serial subculturing of the cell lines [25]. These
non-physiological transformations can lead to the appearance
of artificial biochemical activities and misleading annotation

Figure 1. Genome annotation data in different cellular systems guide the functional
interpretation of genetic variation. The pros and cons of annotation data sets obtained in
different cellular systems are indicated on the left panel. Currently, publicly available
resources mainly consist of data sets derived from primary cell cultures and transformed cell
lines, while iPSCs may become more prominent in the future. Indeed, iPSC-derived cells
may represent the key technological advance for assaying inaccessible cell types for which
primary cultures cannot be obtained. Functional annotation of genetic signals at GWAS
intervals can be restricted to selected cell types that are most relevant to the trait of interest
(A), or unrestricted using all available cell types in an annotation resource (B). The latter
approach may be valuable if target cell types of the trait are not yet established. To gain
biological insights into the genetic architecture of complex traits, all GWAS signals may be
collectively analyzed and associated with gene pathways and networks using bioinformatic
tools (C). In parallel, individual GWAS intervals may be studied in depth using a range of in
vitro and in vivo experimental assays (D). The use of emerging genome-editing techniques is
illustrated in detail in Fig. 2. Abbreviations: LD, linkage disequilibrium; siRNA, small interfering
RNA; TALEN, transcription activator-like effector nuclease; CRISPR, clustered regularly
interspaced short palindromic repeats; 3C, chromosome conformation capture.
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of genetic variants. Indeed, we recently compared enrichment
patterns of hematological trait-associated variants at sites of
open chromatin in a selection of primary hematopoietic cells
and their representative cell lines [26]. We observed a much
larger number of both open chromatin sites and overlaps of
these sites with trait-associated variants in cell lines compared
to primary cells. The enrichment patterns in cell lines showed
decreased specificity with respect to cell type identity.

The prioritization of candidate regulatory variants at
GWAS loci by means of publicly available annotation
resources suffers from a trade-off between sensitivity and
specificity [27]. That is, GWAS signals can be annotated using
functional genome maps derived from either selected cell
types that are of most relevance to the phenotype of interest
(Fig. 1A) or from across all available cell types (Fig. 1B).
Limiting the annotation to selected cell types may only be
considered if extensive prior knowledge about the target cell
and tissue type exists. For example, this applies to some
extent to the cellular components of the well-characterized
hematopoietic system [26, 28]. Conversely, de novo identifica-
tion of target cell types (i.e. out of all available cell types
collected in an annotation resource) has emerged as key
application of the functional annotation of GWAS signals and
has already revealed novel target cell types for a number of
common diseases. These include IL-17-producing T helper
(TH17) cells in Crohn’s disease and CD19þ/CD20þ B cells in
multiple sclerosis. Indeed, this approach may recognize

pathogenic cell types without prior knowledge of disease-
relevant molecular processes [11].

“Scientists, choose your weapons”

Besides choosing a cellular system that is biologically relevant
for the screening of candidate functional variants at GWAS
loci, as outlined above, attention has to be paid to choosing a
suitable genome annotation mark. In this respect, we
advocate the use of a general hallmark of regulatory potential,
such as open chromatin provided by deoxyribonuclease I
(DNase I)-seq, formaldehyde-assisted isolation of regulatory
elements (FAIRE)-seq, or the recently introduced assay for
transposase-accessible chromatin (ATAC)-seq [29], as opposed
to an individual mark, such as transcription factor binding
provided by chromatin immunoprecipitation (ChIP)-seq.

Sites of open chromatin are associated with most classes of
active gene regulatory elements, and as such, are specific to
cell type, developmental stage, and other influencing
factors [30, 31]. In contrast, in transcription factor ChIP-seq
experiments, antibodies against a distinct DNA-binding protein
are applied. The application of open chromatin as a screening
tool for candidate functional variants is both informative and
cost-effective, because one would need to obtain a substantial
number of transcription factor ChIP-seq experiments to obtain a
comparable information value. Besides, ChIP-seq data thus far
generated by the ENCODEConsortiumare scarcewith respect to
the number of cell types in which most transcription factors
have been assayed. In addition, antibodies against particular
transcription factors may not be available or validated for ChIP.
The drawback of open chromatin assays is their lack of
specificity, as the identified sites typically correlate with the
binding sites of many different transcription factors [32].
Therefore, additional annotation data sets are required to verify
the presence and type of a regulatory element (e.g. enhancer vs.
promoter) and transcription factor-binding site. Here, in silico
predictions may guide the identification of the specific
transcription factor involved.

Alternatively, ChIP-seq of components of the gene
expression machinery may also be useful for the annotation

Figure 2. Investigating molecular consequences of candidate func-
tional variants using CRISPR/Cas9. The advent of novel genome-
editing techniques, such as CRISPR/Cas9, enables exciting new
opportunities for validating GWAS candidate regulatory sites and
genes. CRISPR/Cas9 in conjunction with customizable guide RNA
can be used to precisely target genomic sites of interest to induce
loss-of-function alterations. In addition, CRISPR-associated catalyti-
cally inactive Cas9 protein (dCas9) can be fused to different effector
domains, including VP64 (activation), KRAB (repression), LSD1
(histone demethylation, specifically H3K4me2 and H3K27ac), and
TET family proteins (DNA demethylation). Upon introduction of the
CRISPR/(d)Cas9-complex into a cellular system, the molecular
consequences of the genome editing can be further investigated.
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of candidate regulatory variants. For example, ChIP-seq of the
transcriptional co-activator protein p300 has been shown to
associate with active, cell type-specific enhancer sequen-
ces [33]. ChIP-seq of histone modifications that mark active
promoters and enhancers are informative, but their typical
broader peaks may impede precise screening and identifica-
tion of candidate functional variants.

Picking strategies for the prioritization of
candidate functional variants

To gain biological understanding of the genetic variants
associated with complex traits including disease susceptibility
and outcome, at least two strategies have been pursued. First,
the combined analysis and interpretation of all genetic signals
identified in a GWAS (Fig. 1C) and second, the in-depth
analysis of selected, individual GWAS loci (Fig. 1D). The two
strategies are described in detail in the following sections.

Global analyses of GWAS loci

Much biological insight from GWAS can be gained when
multiple association signals are collectively co-analyzed.
Rather than aiming to identify distinct molecular mecha-
nisms, these bioinformatic approaches focus on connecting a
selection of target genes and their products with knowledge
databases, e.g. concerning tissue-specific gene expression
signature, intracellular localization, citation in the literature
(PubMed abstracts) or gene ontology terms [34–36]. Potential
target genes in proximity to all index SNPs (p< 5� 10�8) or a
subset of SNPs reaching a certain significance threshold (e.g.
p<0.05) may be tested for association with shared gene
pathways and networks. Of course, identified associations are
not necessarily causal and require further validation. Findings
may also be biased towards well-studied and frequently
reported gene pathways. Nonetheless, these bioinformatic
tools may provide a powerful means of generating novel
hypotheses regarding molecular processes involved in disease
etiology. For example, an integrated pathway analysis
approach recently highlighted the striking role for host
responses to mycobacteria in inflammatory bowel disease [37].

Annotating GWAS signals with information on gene
expression can yield a better understanding of the regulatory
networks underlying the association. In studies on expression
quantitative trait loci (eQTLs), the alleles of the index or proxy
SNP are correlated with variation in transcript levels that are
quantitatively measured in unrelated individuals using gene
expression arrays or – more sensitively and accurately – RNA-
seq. SNPs that show a strong correlation with expression
levels for a specific gene are likely to mark an eQTL for that
gene. Both local- and distal-acting eQTLs can be identified,
but the identification of distal-acting eQTLs has been largely
unfruitful due to the inherent limited statistical power of the
approach [38]. Systematic studies have demonstrated the
practicality and efficiency of eQTLs as screening tool for
candidate regulatory variants [39, 40]. As a relatively large
number of individuals need to be sampled to gain statistical

confidence in the observed association, easily accessible cell
types (e.g. lymphoblastoid cells or monocytes) or cell types
that have been extensively characterized, are usually
chosen over the most relevant ones. However, it is important
to note that a substantial proportion of eQTLs identified are
cell type-restricted [41]. Furthermore, SNPs associated with
transcript levels may not be causal, as eQTL studies suffer
from LD structure. Although most eQTL studies have focused
on protein-coding RNAs, non-coding RNAs (i.e. large inter-
genic non-coding RNAs; lincRNAs) are equally relevant
candidates [42].

Instead of measuring gene expression levels across
individuals, allele-specific expression (ASE) analysis meas-
ures transcript abundance within an individual [43]. In this
powerful approach, transcript levels are assessed using RNA
samples derived from individuals that are heterozygous at a
particular eQTL SNP of interest. Transcripts that deviate from
the expected 1:1 ratio at heterozygous alleles (i.e. show “allelic
imbalance”) are likely candidate transcripts. For example,
ASE analysis has been applied to the asthma and autoimmune
disease risk locus on chromosome 17q12-q21 pinpointing
potential causal sequence variants [44].

Experimental investigation of individual
GWAS loci

Ascertaining an exhaustive account of common as well as low-
frequency variants is an important, initial step in the in-depth
molecular analysis of selected, individual GWAS intervals.
However, only a fraction of all genetic variants are examined
in GWAS. Genotype imputation exploits known LD patterns
and haplotype frequencies from reference data sets to estimate
genotypes for additional SNPs not directly assayed in the
initial genome-wide scan [45]. In addition to genotype
imputation, established association intervals may be fine-
mapped using dense, custom genotyping arrays. Such arrays
are based on the deep sequencing catalogue of the 1,000
Genomes Project [10] and contain essentially all common and
low-frequency variants at selected GWAS loci of a group of
related clinical conditions such as autoimmune and inflam-
matory diseases [46, 47]. Selected GWAS intervals may
be resequenced to enable sequencing-based genotyping.
However, the costs for such an experiment may be consider-
able (e.g. due to the relatively deep coverage and large number
of subjects required). We therefore argue for the application of
sequencing data from the 1,000 Genomes and UK10K Projects
(http://www.uk10k.org/), which should give sufficient ac-
count of low-frequency and rare sequence variation.

After the comprehensive assessment of genetic variation at
GWAS intervals, the variants are then overlapped with
genome annotation marks in order to identify candidate
functional variants. Importantly, mere annotation of genetic
variants using epigenomic data sets does not prove molecular
function and causality (that is, impact on organismal
phenotype). Candidate regulatory variants that overlap with
one or more annotation marks require substantial experimen-
tal validation. This should involve an integrated approach of
multiple experimental methods to gain confidence in the
observed effect. Most frequently applied in vitro cellular
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assays include luciferase reporter assays [15, 48–51], gel-shift
and super-shift assays [49, 50, 52], as well as allele-specific
chromatin assays [44, 53], which should be performed in
relevant cell types to avoid misleading biological interpreta-
tions (see above). Candidate regulatory sites may also be
tested using in vivo assays. For example, the activity of tissue-
specific enhancer sequences can be assessed in transgenic
mouse assays [54].

Regulatory variants potentially lie great distances from the
gene(s) they control, functioning through long-range regulato-
ry interactions [11, 55, 56]. Chromosome conformation capture
(3C) and descendedmethods (e.g. circular 3C, 4C; enhanced 4C,
e4C; and Hi-C), as well as chromatin interaction paired-end
tagging (ChIA-PET) techniques, examine long-range physical
interactions between distal gene regulatory elements and
promoter regions of target genes and have already been
successfully applied to non-coding GWAS signals [11, 55, 56].
These experimental tools, while technically challenging to
perform, provide an unprecedented view of the interplay
between regulatory variants and genes at GWAS intervals.

Once established, target genes may be further character-
ized with respect to the trait of interest. Here, traditional
assays to characterize gene function can be used including
gene knockdown using small interfering RNA (siRNA) or gene
overexpression using adeno-associated viral vectors [50]. For
a number of complex traits, e.g. hematological traits such as
platelet counts and volume, gene knockdown in zebrafish
(Danio rerio) embryos using morpholinos (antisense oligonu-
cleotides) has proved particularly insightful. In systematically
switching-off candidate genes at GWAS intervals, several
novel genes implicated in platelet formation were identified
and successfully validated [57].

Investigating the molecular mechanism of individual
GWAS loci is arduous, and arguably, scalable in vitro
approaches are needed to experimentally validate candidate
functional variants in a high-throughput manner. Indeed,
progress has been made in massively parallel reporter assays,
which use large-scale DNA synthesis and next-generation
sequencing to simultaneously measure the reporter activity of
many thousands of enhancer variants [58, 59].

Revolutionizing the functional translation
of GWAS signals by genome engineering

Despite remarkable technological advances for the discovery
of genetic variation, the experimental tools to study the
molecular mechanisms of candidate functional variants have
seen only little progress thus far. To this end, we envisage the
application of site-specific genome-editing techniques to be
game-changing. Transcription activator-like effector nucle-
ases (TALENs) [60–63] and clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated (Cas)
systems [64, 65] are novel classes of genome-editing
techniques. These methods enable the modification of any
genomic sequence of interest in mammalian cells and model
organisms.

TALENs comprise a FokI nuclease domain, which cleaves
DNA in a non-sequence-specific manner, fused to a modular

DNA-binding domain. The DNA-binding domain is composed
of highly conserved amino acid repeats, transcription
activator-like effectors (TALEs), which can be engineered to
recognize specific DNA sequences. The engineered nucleases
bind as a dimer to a target site, where they induce a DNA
double-strand break. In turn, DNA damage response path-
ways are triggered, such as non-homologous end-joining
(NHEJ) or homology-directed repair (HDR), which enable the
precise introduction, exclusion or alteration of gene alleles at
the target site. Bauer et al. applied TALENs to modulate the
activity of an enhancer sequence critical for erythroid
expression of BCL11A, a gene implicated in hemoglobin
disorders [66, 67]. The lineage-specific enhancer contains
common sequence variants identified through GWAS, which
impact erythroid transcription factor binding. The authors
suggest this GWAS-identified enhancer as potential therapeu-
tic target in hemoglobinopathies.

CRISPR/Cas systems have recently emerged as an
alternative to TALENs, vastly improving its cleavage efficiency
and ease of implementation at reduced cost [65, 68]. Type II
CRISPR/Cas systems use Cas9 nucleases that are guided to a
genomic sequence of interest via synthetic RNA molecules.
Thus, CRISPR’s application of guide RNAs supersedes the
need for engineering custom proteins. In addition to the
disruption of genomic sequence through nucleases, CRISPR/
Cas9may be provided with effector domains that exert distinct
regulatory functions. For example, the CRISPR-associated
catalytically inactive Cas9 protein, termed dCas9, can be fused
to activator domains [69, 70], repressor domains [69] or
potentially domains that alter different epigenetic states [71].
Such modified CRISPR/dCas9-fusion proteins, together with
guide RNA, can then be introduced to control the activity of
candidate regulatory elements that harbor GWAS signals or
candidate genes. In Fig. 2, we have summarized different types
of CRISPR/Cas9 constructs and their potential application to
examine regulatory elements at GWAS intervals.

For genome-editing techniques, the issue of specificity and
delivery is paramount. The desired genome modification
should ideally occur with high frequency in the cell
population and with no detectable off-target effects. Although
rapid progress has been made in this respect [72], further
improvements in molecular design and experimental proce-
dures are needed to please sceptical reviewers. Here, we
suggest light-inducible transcriptional effectors (LITEs) to
offer exciting possibilities for studying the function and
regulation of mammalian genomes in the near future. LITE
modules consist of the light-sensitive photoreceptor crypto-
chrome 2 (CRY2) that is fused to a customizable DNA-binding
domain based on the TALE or CRISPR/Cas9 systems. The
construct allows spatially and temporally precise, graded,
reversible and non-invasive modulation of gene transcription
and epigenetic states [73, 74].

CRISPR/Cas9 constructs can be introduced into human
somatic cells and iPSCs (via transfection) as well as various
model organisms (e.g. via injection of mouse zygotes [75]). For
application in human somatic cells, we suggest the use of cells
of defined genotype. Resources of healthy individuals, who
can be recalled on the basis of their genotype for donating
cellular components (e.g. immune effector cells) and subse-
quent functional studies, have proven valuable [51, 76].
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However, we advocate the use of CRISPR/Cas9 in conjunction
with iPSC technology. iPSCs are generated by reprogramming
mature adult cells, such as fibroblasts, into cells that hold
properties of embryonic stem cells. From this state of
immaturity, iPSCs have the potential to differentiate in vitro
into a wide range of specialized cell types. For example,
detailed protocols have been published describing the
differentiation of iPSCs into human cerebral cortex neu-
rons [77, 78] – cells that cannot be obtained from primary
sources. By differentiating iPSCs into distinct lineages, the
effect of CRISPR/Cas9 can be assessed under different genetic
programmes in the same cellular system. For example, an
annotated regulatory element containing a GWAS signal
associated with Alzheimer’s disease may be disrupted using
CRISPR/Cas9 in iPSCs. Following differentiation of the iPSCs
into cerebral cortex neurons, the functional consequences of
that genome alteration can be compared with the control iPSC
population, e.g. through transcriptome analysis. Further-
more, multiple implicated GWAS signals, regulatory elements
and genes can potentially be disrupted in combination to
examine their interaction or synergistic effects. Lastly, this
experimental design may be expanded to iPSCs derived from
patients, enabling the possibility to “cure” disruptive effects
of GWAS signals at the cellular level. The latter may be
boosted by, for example, the newly established UK Human
Induced Pluripotent Stem Cells Initiative (HipSci; http://
www.hipsci.org/). This open-access resource will create iPSC
lines derived from over 1,000 healthy individuals and
individuals with genetic diseases by 2016. Moreover, the
proposed approach would make currently available tools for
the correction of disease-causing mutations more efficient,
such as zinc finger nucleases (ZFNs) combined with piggyBac
transposons in iPSCs [79].

Striving towards the functional
interpretation of rare non-coding
sequence variation

Low-frequency (MAF, 1–5%) and rare (MAF< 1%) genetic
variants (not captured by GWAS) may explain a substantial
fraction of the genetic component of complex traits including
common diseases [80, 81]. Costs of next-generation sequenc-
ing applications have plummeted over the last years and with
innovative sequencing methods on the horizon, notably
nanopore DNA sequencing, genotyping-based methods will
likely be replaced by sequencing-based methods for detection
of trait-associated variants. Arguably, this will entail not only
challenges for the design of association analyses of low-
frequency and rare alleles linked to complex traits and
diseases (e.g. extreme trait resequencing or family-based
studies [80]), but also for the functional interpretation of the
implicated alleles. Compounded by both allelic and locus
heterogeneity [82], the sheer number of low-frequency, rare
and private variants will make identification of the causal
variants challenging. To increase statistical power, studies
thus far have therefore centred exclusively on variants of
apparent functional consequence, i.e. missense, nonsense,
frame-shift or splicing variants. However, it can be expected

that some of the causal sites will reflect gene regulatory
variants [83]. Akin to the functional classification of coding
variants, non-coding variants may be recognized as, for
example, disrupting transcription factor binding sites.
However, such sites are usually around 200 bp in size when
identified using ChIP-seq and sometimes only a fraction of
these sites harbor the known binding motif of the transcrip-
tion factor. In contrast, nucleotide-resolution techniques,
such as DNase I and ATAC-seq footprinting, allow for
identification of the exact location of the transcription factor
binding site [29, 84]. Therefore, we argue that these assays in
particular are ideally suited to systematically prioritize low-
frequency and rare alleles, due to the reduction of sequence
space with likely biological importance. However, we note
that in contrast to coding regions where rare variants that are
likely to be deleterious can be combined for statistical testing,
it is currently unclear how to categorize and test a large
number of rare variants across regulatory regions with
uncertain functional consequences.

Conclusions and outlook

We believe there is still substantial scope for performing
GWAS in the coming years. Well-powered meta-analyses of
GWAS detect novel small-effect association regions, and fine-
mapping approaches as well as studies in ethnic subgroups
refine existing ones. In parallel, we call for a boost in the
number of investigations into the molecular mechanisms of
confirmed associations. There is a pressing need to translate
genetic signals of complex traits and diseases into molecular
mechanisms, through both global meta-analysis of multiple
GWAS intervals and in-depth mechanistic studies of tran-
scription, chromatin structure and DNA methylation at
individual GWAS intervals. This functional translation is
crucial for the identification of novel “druggable” or reversible
components and pathogenic pathways. This in turn has the
potential to empower clinical care through, for example,
improved risk prediction, biomarker identification, disease
subclassification, drug development and dosing [85].

Despite the identification of over 2,000 robust associations
with more than 300 complex traits and diseases [85], only a
negligible fraction of discovered GWAS intervals have been
followed up in experimental studies. In most cases, the causal
variant(s) as well as gene(s) are unknown. With the advent of
clinical (http://www.genomicsengland.co.uk/) and personal
(http://www.personalgenomes.org/) whole-genome sequenc-
ing, an overwhelming number of sequence variants will be
identified at non-coding regions with potential regulatory
effects. Thus, efficient strategies for functional translation are
urgently needed. To this end, we expect that CRISPR/Cas9 will
play a pivotal role in unravelling molecular mechanisms for a
significant number of trait-associated genetic variants.
Although not discussed in detail in this article, we suggest
that proteomic tools could also be integrated in the functional
translation of GWAS findings. For example, the interaction
dynamics between a trait-associated variant and a transcrip-
tion factor complex may be characterized by mass spectrome-
try [86]. It is important to note that the subtle phenotypic
effects of trait-associated variants discovered through GWAS
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should not be inferred as indicative of subtle effects of the
regulatory element at which they reside. In contrast, they may
potentially have a strong phenotypic effect as part of a gene
regulatory complex [66].

Non-genetic factors, e.g. epigenetic variation, have been
suggested to have a substantial impact on complex trait
etiology. Similar to GWAS, such epigenetic variation (specifi-
cally, DNA methylation) can be assayed across many
individuals and tested for association with a complex trait
of interest in epigenome-wide association studies (EWAS) [87].
EWAS may be used to explore genetic risk alleles that mediate
their effects through epigenetic mechanisms [88, 89]. Thus,
integration of GWAS and EWAS presents a promising strategy
to unravel the underlying biological mechanisms of complex
traits and diseases [90–92]. Here, the newly formed Genetics of
DNA Methylation Consortium (GoDMC; http://www.godmc.
org.uk/) will bring together scientists studying the genetic
basis of DNA methylation and provide a centralized hub for
coordinating data analyses.
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