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Abstract: High Content Screening (HCS) and High Content Analysis (HCA) have emerged over the past 10 years as a 

powerful technology for both drug discovery and systems biology. Founded on the automated, quantitative image analysis 

of fluorescently labeled cells or engineered cell lines, HCS provides unparalleled levels of multi-parameter data on 

cellular events and is being widely adopted, with great benefits, in many aspects of life science from gaining a better 

understanding of disease processes, through better models of toxicity, to generating systems views of cellular processes. 

This paper looks at the role of informatics and bioinformatics in both enabling and driving HCS to further our 

understanding of both the genome and the cellome and looks into the future to see where such deep knowledge could take 

us. 
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INTRODUCTION 

 Completed in 2003, the Human Genome Project (HGP) 
resulted in the sequencing of the 30,000 genes contained in the 
entire human genome [1], while this was a remarkable effort, 
we are only at the beginning of our understanding of the role of 
all these genes in living systems. Functional genomics, the role 
of genes in complex traits and disease, gene regulation and 
complex systems biology are just some of the questions that 
were raised by the HGP and are the subject of much research. 
The cell can be considered as the simplest unit of life that is 
amenable to the study of many of the questions raised by the 
HGP. However “sequencing” the cell, i.e. deep understanding 
of cellular processes, interactions, signaling, death etc., 
represents a technological challenge akin to sequencing genes- a 
challenge many have termed the ‘cellome’. The emergence of 
HCS with its ability to quantitatively measure what, where and 
when an event occurs in a cell offers just that richness of data 
from which many of the key questions about gene function may 
be answered. However, in the same manner that genomics 
solved the problem of high throughput data acquisition but then 
hit a bottleneck with respect to infrastructure and tools to 
manage and mine that data for knowledge, so HCS is now 
reaching the same status. 

 HCS systems typically scan a multi-well plate with cells 
or cellular components in each well, acquire multiple images 
of cells, and extract multiple features (or measurements) 
relevant to the biology, resulting in a large quantity of data 
and images. The amount of data and images generated from 
a single microtiter plate can range from hundreds of 
megabytes (MB) to multiple gigabytes (GB). Large numbers 
of plates are typically analyzed in screening operations and 
large scale system biology experiments, often resulting in  
billions of features and millions of images with a need for 
multiple terabytes (TB) of storage in a short period of time. 
 
 

*Address correspondence to this author at Cellular Imaging & Analysis, 

Thermo Fisher Scientific, 100 Technology Drive, Pittsburgh PA 15219, 

USA; Tel: 412 770 2252; Fax: 412 770 2450;  

E-mail: mark.collins@thermofisher.com 

 While the management of this kind of data is becoming 
commonplace, tools to generate ‘omic knowledge from 
billions of cellular measurements are less mature and we 
believe may hinder HCS from achieving its full potential of 
solving the cellome. 

 Our goal in this chapter is to provide a brief overview of 
informatics for managing HCS data, then to provide a series 
of examples of the use of HCS to solve key discovery 
problems and how informatics and bioinformatics are 
playing a role in this. Finally we look to the future to see 
how computational modeling and simulation could impact 
our insight of the cellome. 

THE MID MODEL FOR HCS INFORMATICS 

 In order to best describe the role of informatics and 
bioinformatics and the impact on driving the adoption and 
penetration of HCS into discovery, we have considered tiers 
of functionality, with each tier contributing to the overall 
systems view. 

• Management – this tier provides the foundation for 
all the other tiers and deals with more of the 
informatics infrastructure for handling large data sets 
of considerable complexity together with associated 
images 

• Interpretation – builds on the management tier and 
deals with primarily informatics tools, techniques and 
algorithms for analysis of multivariate HCS data to 
yield cell biology insights 

• Discovery – the highest tier deals with bioinformatics 
and data mining tools to allow cellular knowledge 
generation in large scale multi-discipline studies. 

 This MID model provides a simple way to discuss the 
relative functionality needed to appropriately deal with HCS 
data and the impact derived in terms of gaining value from 
HCS. 
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MANAGEMENT 

 HCS data, derived from some form of automated 
instrument can easily consume many terabytes of disk space. 
HCS data can be classified into 3 categories [2] 

1. Image Data – these are the images acquired at each 
channel for each field within a well. 

2. Derived Data – these are the measurements that result 
from performing an analysis on an image with image 
analysis algorithms (e.g., well features, cell features, 
etc.). 

3. Meta-data – these are the associated data that provide 
context for the other two categories of data (i.e., 
meta-data is data that describes other data). For 
example, assay type, plate information, protocols, 
operators, calculated data such as dose response 
values, as well as annotations imported from other 
systems (e.g., sample identifiers and properties). 

 From a data volume perspective, the data to be saved per 
sample is primarily based on the Image data and the Derived 
data, Meta data is negligible in proportion from a storage 
perspective but is highly value for providing context. 

 Management of HCS data is the foundation of being able 
to derive value from it. Poor data management impacts both 
the ease of performing the other steps as well as the 
scientific robustness of the conclusions drawn from that data. 
Fig. (1) shows how HCS data must be considered together 
with other kinds of data in order for true value to be 
obtained. Ideal HCS data management ensures that all these  
 

disparate sources of data can be federated together to provide 
the knowledge with which to make biological decisions. 

 From an information technology perspective, 
management of large volumes of images and associated 
derived and meta-data represents a challenge and certainly 
when HCS was in its infancy this issue represented a 
bottleneck to the adoption of HCS. However, for the most 
part, with the move towards reliable, scalable ‘n’ tier 
architectures for HCS image and data management [2], this 
bottleneck has mostly been mitigated. 

 However, there remain two major challenges to HCS data 
management that will need to be solved if the cellome is to 
be achieved, the challenges relate to the format of HCS data 
storage, and how HCS data can be integrated in meaningful 
ways with other data such as chemical structures, gene 
sequences and pathway information. Key to solving both 
these issues is the role of standards. Many disciplines such as 
genomics and proteomics have proposed and adopted 
standards for recording and describing data, chief amongst 
these standards are the Minimum Information Standards [3-
5] as well as the Open Microscopy Environment (OME) for 
describing data derived from images [6]. The minimum 
information and the OME standards provide a way to both 
store HCS data and images in an open and self describing 
format (XML) to facilitate data interchange such that images 
and meta-data acquired on one platform may be analyzed 
and interpreted by a wide variety of tools. Flow cytometry 
has used standard file formats and data models for many 
years [7] which has resulted in a variety of tools to analyze 
flow data. In many ways flow data is very comparable to  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Knowledge generation from HCS data requires that a number of disparate date sources are federated together with HCS data itself in 

order to make better decisions – HCS data is not an island. Data from HCS experiments is federated together with data about (i) samples, 

such as sample type, annotations indicating cell type, control type and so on; (ii) data about the cells used, how the plate preparation was 

performed as well as information about dyes, antibodies and other reagents; (iii) gene sequence data and other functional data (from Medline 

MESH descriptors for example); (iv) Pathway data and chemical structures also allow cell based SAR, pharmacophore modeling etc., to be 

layered into HCS knowledge. 
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HCS Derived and Meta data and so many of tools used for 
flow data may well contribute to the analysis of HCS data. 
Recently the flow community proposed its own minimum 
information standard (MIFlowCyt) [8]. 

 The HCS community has yet to adopt a standard though 
MIAHA (Minimum Information about a High Content 
Assay) has been proposed [9]. 

 Once data are available in an open and self describing 
form, analysis and interpretation are possible, however, key 
to this is the semantic meaning of the data. Whole cellome 
analysis of HCS data, perhaps bringing together data from 
different HCS platforms, imaging tools as well as data 
sources (chemical structures, gene sequences) will not be 
possible unless clear semantic meaning can be assigned. 
Indeed this is not just a challenge for HCS, genomics and 
proteomics face many of the same issues. Overcoming the 
problem of assigning meaning requires the use of ontologies, 
essentially frameworks of controlled vocabularies that 
provide annotations to data and meta data to facilitate 
analysis. The Open Biological Organization (OBO) [10] for 
example defines multiple ontologies for biology and brings 
together a number of previously developed ontologies (e.g., 
GO – the gene ontology). Once ontologies are agreed they 
can be adopted as part of the standards process. 

INTERPRETATION 

 To be clear we discuss here interpretation and analysis of 
the derived and meta data, there is no discussion of the 
image analysis involved in HCS. 

 Leveraging the foundation of robust data management for 
HCS, the analysis tier provides the basic insights into HCS 
data, allows for quality control and statistical analyses and 
most importantly utilizes the multi-parameter data to make 
decisions. It is also important to consider that, knowledge 
generation from HCS data must be considered a multistep 
workflow, requiring a number of functional stages from the 
basic gathering of data through QA, visualization, annotation 
and data mining. Fig. (2) explains these functional units and 
we discuss the tiers in the context of that workflow. 

 

Basic Interpretation of HCS Data 

 Basic interpretation of data covers the initial part of the 
HCS workflow from quality control, visualization and basic 
reporting to annotations (Fig. 2). Such relatively simple 
functional steps have allowed HCS to be well integrated into 
many lead selection campaigns, either at the primary 
screening stage or at the secondary screening and lead 
prioritization stages. Although good tools exist for analysis 
of HTS data [12], some of which can be applied to HCS, 
HCS data presents some interesting challenges and 
opportunities, due to the more than one value per well. Early 
analyses of HCS data focused on reducing the data to a 
single measurement at the well level, and this reflected the 
fact that early on, HCS was often the only way to perform a 
hitherto intractable assay (e.g., neurite outgrowth). The 
multiple measurements of HCS allow not only activity at the 
target to be elucidated, but simple toxicity (measuring cell 
number for example) as well as off target effects to be 
determined. Traditional HTS approaches, such as thresholds 
based on descriptive statistics ignore the value of this multi 
parameter data, yet simple statistical and data visualization 
methods can be used to refine hit selection for HCS [11]. 
Allowing scientists to merely view all the HCS data in a 
variety of visualizations together with the image provides 
useful information on small numbers of plates and allows the 
user to drill down though the well level multi-parameter data 
to the cell subpopulation data (Fig. 3). Use of data 
visualization tools such as Spotfire

®
 allow more 

sophisticated visualizations, Fig. (4) shows a simple viewing 
technique where the target measurement is represented in 
one color and the number of cells in the well is the size of 
the spot. More sophisticated 3D plots can also quickly 
visualize multiple parameters, Fig. (5), providing useful 
toxicity data in addition to the target measurements. In 
addition to filtering and visualization, the concept of 
building rule sets to analyze multiple parameters can also be 
employed. For example, it has been possible to successfully 
classify hits in toxicology into late stage, early stage and 
reversible status [14] by simply using Boolean rule sets (i.e. 
parameter 1 >=50 AND parameter 2 <30 OR parameter  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Workflow in HCS knowledge generation requires an integrated set of functional steps. Informatics and bioinformatics software must 

provide some or all of these functional steps in order for knowledge generation to be facilitated. The workflow may require a number of 

tools. Such integrated workflows benefit from standard approaches to data integration. 
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3 >=200). Such rule sets are based on a priori knowledge 
however decision trees that are capable of being learned 
from data [13] offer greater flexibility and can often 
elucidate subtle effects. 

 The plethora of measurements possible with HCS using 
sophisticated image analysis often needs to be reduced to a 
smaller subset so as to determine the key parameters that 
separate the stimulated (positive biological effect) from the un-
stimulated (control effect). It is commonplace to make a number 
of measurements of the stimulated/un-stimulated biology during 
assay development and then determine which are the top 
parameters that separate those states. In an internal study at 
Thermo Fisher Scientific, we employed T-tests, Z’ 
measurements, Self Organizing maps (SOM) and K-nearest 
neighbor (K-NN) analyses to determine the optimal set of 
morphological parameters. Fig. (6) shows the results of using 
K-NN to separate un-stimulated populations from stimulated 
populations. The K-NN identifies 3 key parameters (from a set 
of 52) that allow maximal separation. Such data reduction 
techniques can then be used to reduce the number of 
measurements made in a screening campaign without losing any 
discriminatory power, while maintaining manageable data set 
sizes in screens that may generate billions of data points. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Simple visualization of multiple well level HCS 

parameters using Spotfire® DecisionSite™. Wells are coloured 

based on the target parameter (in this case a measure of nuclear 

intensity) and their diameter is set by the number of targeted cells 

meeting the assay criteria. Simple visualizations such as these allow 

‘at-a-glance’ determinations of multiple parameters, across multiple 

plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Multiple views on HCS data allow complex data sets to be easily visualized. Fig. (3) shows Thermo Scientific Cellomics
®

 View 

analyzing well based data for a number of measurements of cell health. Use of graphics, color and a link to the image with masks (overlays) 

is shown here. Dose response data is also shown in the top right panel. 
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 Whole well analysis of multiple parameters, while more 
sophisticated than a single number, ignores the value of the 
subpopulation effects inherent in cell based imaging assays. 
While descriptive statistics such as mean, median, standard 
deviation and standard error provide some insight into the 
variation of the underlying cell data, more powerful statistics 
such as K-S (Kolmogorov-Smirnov) [15] have been widely 
adopted to compare the significance of distributions of cell 
populations for up to two parameters across experimental 
conditions, e.g., test vs control. While these techniques still 
reduce the data to a single number they provide increased 
confidence that the single number reflects the cell based data 
variation and the K-S statistic has been used successfully by 
a variety of studies [16-18]. 

 In probably the first example of leveraging the power of 
more than one parameter in HCS studies. The authors [19] 
use relatively simple population density distributions of over 
30 shape, texture and location measurements of cells against 
a range of concentrations of several known anticancer 
compounds. Plotting the natural log of these parameters for 
various concentrations of the drugs allowed a ‘high content 
profile’ to be generated that allowed easy comparison of 
drug effects on various cellular processes. Further 
visualizations such as quadrant plots, dot plots and scatter 
plots of cell based data revealed new insights into the 

interactions of drugs at the cell level in unprecedented detail. 
Similar visualizations of a number of cell measurements 
demonstrated that a panel of cell based assays could detect 
and classify threat agents based on cellular responses in 
those assays [20]. 

The Power of Phenotypes 

 Early analyses of HCS data, described above, began to 
reveal the power of measuring multiple parameters and 
demonstrated that relatively simple statistics and 
visualizations (available in common informatics and 
statistical packages) could elegantly elucidate cellular 
responses. 

 It is now recognized that much of the power of HCS lies 
in generating cellular profiles or phenotypes from 
multivariate cell based data. Sophisticated informatics and 
bioinformatics techniques can be employed to analyses these 
phenotypes resulting in insights to cell biology. Such tools 
are represented further downstream in the HCS workflow 
(Fig. 2) and build on the conclusions and insights made 
earlier in the workflow. Data quality control is of particular 
importance since data driven methods such as those detailed 
in this section require robust data sets to avoid poor 
performance and potentially misleading conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). 3D visualization of cell cycle parameters in Spotfire® DecisionSite™. 3D plot allows interpretation of 5 parameters, the cell cycle 

phase (using DNA content), as well as an indicator of which cells might also be stressed based on measurements of shape. Smaller spheres 

indicate smaller cells. Color is used to provide another indication of shape by measuring cell perimeter to area ratio. In the plot, small, darker 

shaded spheres represent cells that have rounded up – indicating stress of some kind. 
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 Classifiers of one type or another (e.g., supervised, 
unsupervised, statistical and machine learning) are very 
powerful techniques for analyzing multi-parameter data and 
have been successfully used for HCS. In a study of 
morphological effects of 107 compounds, known to inhibit 
protein kinases on a panel of 5 cell lines, Principal 
Component Analysis (PCA) of the morphological 
phenotypes following treatment with known kinase 
inhibitors identified a novel compound that inhibited CRB1, 
an enzyme involved in cell signaling. What was interesting 
was the fact that the phenotype detected was different from 
the cell phenotype of the known compound, yet the 
compounds differed chemically by only one hydroxyl group, 
indicating that HCS is able to clearly differentiate a minor 
structure difference on the basis of analysis of complex 
phenotypes [15]. Availability of such complex phenotypes 
and their analysis is key to realizing the potential of HCS 
data and utilizing the subtle effects of multiple cellular 
measurements. In another study [42], factor analysis of cell 
phenotypes based on cell cycle measures was used to profile 
a compound library and infer, based on the phenotypic 
profiles, mechanism of action of compounds. This work also 
demonstrates that phenotypic profiles are rich enough to 
provide biological meaning. 

 In addition to PCA, other techniques such as Hierarchical 
Clustering have been used to classify cellular phenotypes in 

response to both drug and RNAi treatments [21] furthering 
the impact of HCS in combinatorial biology experiments. 
Classifiers have also been shown to play a valuable role in 
predicting actives and non-actives in a screen. Several 
classifiers were trained on the cell profiles of known 
reference compounds and then the classifiers were used to 
predict actives and inactives in a screen for neurite 
outgrowth. A combination of K-nearest neighbors (K-NN), 
Fisher Linear Discriminant Analysis (LDA) and support 
vector machines were used to create a system able to predict 
an “active phenotype” in screens five times better than using 
traditional hit selection methods [22]. 

 Highly complex data mining tools such as Support Vector 
Machines (SVM) [24] can be employed to analyze HCS data 
and may hold promise as they are tolerant to noise in data sets, a 
consideration of some importance for cell based measurements. 
SVMs have been successfully used to recognize phases of the 
cell cycle by classifying a set of fifty nine morphological 
measurements of cells. The SVM classification was compared 
with human annotations and demonstrated a high degree of 
accuracy and specificity in predicting mitotic sub-phases [23]. 
SVMs have also been successful in cellular multi-phenotypic 
mitotic analysis [39] as well as determining the best 
segementation of images from morphological measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Use of K-nearest neighbor analysis to determine which feature measurements separate stimulated populations of cells from un-

stimulated populations. K-NN identified 3 measurements able to separate un-stimulated (Red graph, panel 1) from three types of stimulated 

populations (Yellow graph panel 2, Black graph panel 3, Blue graph panel 4). 
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 There is no doubt that classification of cellular 
phenotypes can begin to unlock the types of cellular 
knowledge that are useful for both drug screening as well as 
systems biology [26]. 

Discovering Knowledge About the Cellome 

 From a pure systems engineering standpoint, biology 
from the ecosystem level to the genome level is a highly 
interconnected network. Attempting to probe such a highly 

interconnected system using a reductionist approach ignores 
this richness of connections and limits our ability to generate 
valuable knowledge. HCS provides sophisticated multi-
parametric probes that when coupled with powerful 
bioinformatics tools can yield an understanding of these 
connections. 

 Pathways represent some of the more complex 
connection networks and ones that are heavily involved in 

Table 1. Useful Statistical and Data Mining Tools for HCS Data. This Table Shows Technique Name and Abbreviation, a Brief 

Description as Well as Key References where the Technique has been Employed for HCS 

 

Data Mining Technique Description References 

Kolmogorov-Smirnov (KS) 
Statistic 

The Kolmogorov-Smirnov test (KS-test) is a non-parametric test that tries to determine if two datasets 
differ significantly. The KS-test has the advantage of making no assumption about the distribution of data, 

i.e. whether it is normally distributed or not. 

[16-18] 

Linear Discriminant Analysis 
(LDA) 

Linear Discriminant Analysis (LDA) is a method to discriminate between two or more groups of samples, 
e.g., controls and samples. The number of groups is not restricted to two, although the discrimination 

between two groups is the most common approach. Fisher LDA is perhaps the most famous. It has been 
used in HCS for separating hit and non-hit populations based on multiple cell measurements 

[22] 

Self Organizing Map (SOM) 

A self-organizing map (SOM) is a type of artificial neural network that is trained using unsupervised 
learning to produce a low-dimensional (typically two dimensional), discretized representation of the input 

space of the training samples, called a map. It is often used to present multi-dimensional data in a low 
dimensional (2D) fashion. It has applications in HCS for phenotypic analysis and data discovery as maps 

may be annotated. 

[2] 

K-Nearest Neighbor (K-NN) 

The k-nearest neighbor algorithm is probably the simplest of all machine learning algorithms and is a 
method for classifying objects based on closest training examples in the feature space. An object is 
classified by a majority vote of its neighbors, with the object being assigned to the class most common 

amongst its k nearest neighbors. K-NN can be used to rapidly create classes based on similarity. HCS data 
can be rapidly classified into phenotypic classes using this technique. 

[22] 

Principal Components 
Analysis 

Principal component analysis (PCA) is a mathematical method used to reduce multidimensional data sets 
to lower dimensions for analysis It is useful as a tool for exploring the classes in data and creating 2D 

pictures of high dimensional data while allowing the user to discover the principal factors underlying the 
structure of the data. PCA has been applied to HCS to determine which groups of measurements are 

related to each other as well as determine key clusters of features in phenotypic data 

[15, 21, 42] 

Hierarchical Cluster Analysis 
(HCA) 

Hierarchical cluster analysis is a statistical method for finding relatively homogeneous clusters of cases 
based on measured characteristics. It starts with each case in a separate cluster and then combines the 
clusters sequentially, reducing the number of clusters at each step until only one cluster is left. It groups 

like patterns with like patterns and separates those clusters of like patterns from other clusters. It is usually 
represented as a tree or dendrogram where each step in the clustering process is represented by a node in 

the tree. It is often used to analyze one set of data, e.g., gene sequence against another (cell measurement) 
to relate the two together. 

[17, 21] 

Decision Trees 

Decision trees are powerful and popular tools for classification and prediction. The attractiveness of 
decision trees is due to the fact that, in contrast to neural networks, decision trees represent rules that can 
be learned from data. Rules can be tested and reviewed by humans rather than the black box approach 

common in other machine learning approaches (e.g., neural networks). A decision tree is an example of an 
inductive classifier in the form of a tree structure that uses nodes to represent data and decisions, e.g., “cell 

is undergoing toxicity if nuclear fragmentation >=50 and membrane permeability <= 100.  

[41, 43] 

T-test 

The t-test assesses whether the means of two groups are statistically different from each other. This 
analysis is appropriate whenever you want to compare the means of two groups, and especially appropriate 
as the analysis for the determination of control vs sample data. Performing a t-test on multiple 

measurements from an HCS screen can be used to determine (based on t-test score) which feature 
measurements discriminate between control and sample populations. 

[22] 

Z prime (Z’) 

Z’ is a dimensionless calculation used to assess the quality of a high-throughput assay. It compares the 
mean value of the maximum signal control to the mean value of the minimum control, and will have a 

higher value when (a) there is a wide separation band between maximum and minimum controls, and (b) 
the standard deviations are low. For a good assay, Z’values for each plate should be greater than or equal 

to 0.5. A perfect assay would have a Z-prime value approaching 1.0. Calculating Z’ values for multiple 
HCS measurement allows for ranking of measurements that separate minimum signal control from 

maximum signal controls/samples 

[38] 

Support Vector Machines 
(SVM) 

SVMs are a set of related supervised learning methods used for classification and regression. A Support 
Vector Machine (SVM) performs classification by constructing an N-dimensional hyperplane that 
optimally separates the data into two categories. SVM models are closely related to neural networks. 

SVMs are particularly tolerant of noisy data sets and build robust classifiers of HCS data. 

[22, 25,  
39, 40] 
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cell regulation. A key regulatory network is the cell cycle 
and using a combination of HCS measurements of 
morphological changes in cell and RNAi knockdown of 
genes involved in cell cycle regulation complex phenotypic 
data sets have been generated. Analysis of these data sets 
using a combination of clustering and functional annotations 
showed a number of new pathways and processes involved 
in cell cycle and cell-size regulation [27], and identified a 
new translational inhibitor of the Cyclin/Cdk pathway. 
Generating these kinds of insights utilized data not just from 
HCS but from FACS as well as gene annotation, functional 
assignments and so on. Such system wide analysis using 
sophisticated tools are beginning to be used with great 
benefit, in areas such as transcriptional changes in breast 
cancer cells [28], modeling Parkinson’s disease [29] as well 
as the search for therapies for hepatocarcinomas [30]. 

 In recent years, pathway analysis and modeling tools 
have been adopted for a wide variety of approaches from 
elucidating pathways to genome wide association studies. 
For the most part these tools have used genomic data 
(expression profiles) as a data source [31], but there is an 
increasing demand to use HCS data as a model input. 

 In genome wide RNA screening of human kinases 
involved in neurodegeneration, HCS was used to identify 
candidate kinases involved in neurite outgrowth and 
retraction. The candidate kinases were then grouped and 
linked using pathway analysis software (PathwayArchitect – 
Strategene) to create a regulatory network of the kinases 
involved in signaling. By combining HCS data, RNAi 
knockdown and pathway analysis the authors were able to 
get the first overall picture of the signaling that occurs during 
neurite degeneration as well as identify novel cross-talk 
between unrelated signaling pathways. This would not have 
been possible without such sophisticated bioinformatics tools 
[32], and it is now clear that the richness of data available 
from HCS is starting spark interest in the modeling 
community. 

 The virtual cell [33] which is hosted at the National 
Resource for Cell Analysis and Modeling is a novel tool that 
combines computational biology with imaging. The tool 
allows scientists to model and simulate specific cellular 
functions from simple molecular motors to complex 
signaling, in a simple Java environment. At this time, it used 
together with images in order to model compartments, but 
this author considers that using HCS data instead of the 
images themselves could lead to a revolution in the 
complexity and breadth of cell modeling. Models are always 
seeking data to both improve the model as well as validate 
the model. The virtual cell brings together data from 
physiological models, cellular structures, reactions, fluxes, 
reactions and so on with spatial data (from images) as well 
as external data such as pathway analysis and external 
literature as well as sources such as KEGG [34] (which is a 
database of the building blocks of biological systems such 
as, pathways genes and so on). These biological facts are 
converted into mathematical models, and the simulation 
engine runs to provide information on time response, steady 
state data and sensitivities. These data can then be used to 
drive experiments, refine protocols, and do further modeling. 
To date, there are approximately 30 published paper using 
the virtual cell, covering a wide variety of topics from 

signaling [35] to cell structure dynamics [36] to calcium 
transport [37]. 

SUMMARY – IN SILICO BIOLOGY COMES OF AGE 

 HCS has come a long way in the past 10 years, and 
informatics and bioinformatics have played a key role, from 
its early use to perform assays that were intractable without 
imaging, through phenotype analyses, to today’s genome 
wide, multi disciplinary studies. 

 The next steps lie in leveraging this data to build models 
and perform simulations, as these methods allow the 
researcher to test many more conditions than are possible in 
the wet laboratory. It is highly conceivable that a future 
laboratory could take HCS data from many cell types as 
source data for pathway models as well as virtual cell 
models, opening up the tantalizing possibility of modeling 
gene function, compound mechanism of action and cellular 
responses in cells and tissues in silico, truly achieving the 
cellome. 
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