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Abstract: Polymeric micelles have gained increasing interest as efficient drug delivery systems for
cancer treatment and diagnosis. The aim of the present study was to construct and to evaluate
novel polymeric nanosized drug carriers with tunable surface charges. Initially, amphiphilic triblock
copolymers with predetermined molar mass characteristics were synthesized by applying controlled
polymerization techniques. The copolymers self-assembled in aqueous media into core–shell spher-
ical micelles, comprising a biodegradable hydrophobic poly(D,L-lactide) core, positively charged
middle layer of poly((2-dimethylamino)ethyl methacrylate), and an outer shell of neutral hydrophilic
poly(oligo(ethylene glycol) methyl ether methacrylate), with various densities of the short polyether
side chains. The block copolymer micelles with average diameters of about 70 nm and surface
charges varying from strongly positive to neutral were characterized and loaded with the model,
natural, hydrophobic drug curcumin. Characteristics such as drug loading efficiency, in-vitro drug
release profiles, and stability under physiological conditions were evaluated and discussed in terms
of nanocarriers’ composition. As a result, the most promising candidates for potential application in
nanomedicine were identified.

Keywords: amphiphilic block copolymers; synthesis; micelles; stability; curcumin; drug delivery;
nanocarriers

1. Introduction

Bioavailability is a key pharmacokinetic property of drugs defining the part of initially
introduced amount of active drug which is available for systemic circulation and subse-
quently reaches the target site of action [1]. Drugs characterized with a poor bioavailability
are not able to reach the concentration required to reveal their pharmacological action.
Low drug bioavailability usually is due to poor aqueous solubility, since more than 70% of
newly developed drug candidates are hydrophobic in nature [2]. Other factors affecting
drug bioavailability are inappropriate hydrophilic–lipophilic balance (HLB), metabolism
of a drug before it reaches systemic circulation, and degradation in the gastrointestinal
tract [3–5]. The increasing interest of applying nanotechnology in various biomedical
applications, including in drug delivery, has led to improved drug efficacy by selecting ap-
propriate nanocarriers for achieving a controlled release and higher bioavailability [6]. The
optimal size range of nanoparticles used as drug carriers is usually within 10–200 nm [7].
Thus, they can selectively accumulate within the tumor site, penetrating the leaky vas-
cular walls in cancer tissues via the so-called enhanced permeability and retention (EPR)
effect [8,9]. The spontaneous accumulation and retention of the administrated drug nanocar-
riers into the solid tumors’ vicinity is usually associated with the term “passive targeting”.
Historically, liposomes were among the first nanosized drug delivery systems studied [10].
Other classes of nanostructured materials used for drug delivery or imaging applica-
tions include polymeric (micelles, dendrimers, or polymersomes) and inorganic (quantum
dots, silica, or metal) nanoparticles [11]. Polymeric micelles formed via self-assembly of
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amphiphilic macromolecules in aqueous media have numerous features making them
attractive for drug delivery. These include biodegradability, controlled or sustained release,
biocompatibility with tissues and cells, and tunable particle size [12]. If appropriately cho-
sen, they could be relatively nontoxic, nonimmunogenic, and stable in the blood stream [13].
Thus, a number of biopolymers such as chitosan, cellulose, collagen, albumin, alginate, and
gelatin have been utilized in drug delivery systems due to their inherent biocompatibility
and biodegradability [14]. Synthetic polymers, on the other hand, offer great possibilities
for fine tuning the nanocarriers’ properties, depending on the specific application. With the
development of controlled polymerization and modification methods, a precise control over
the copolymer composition, dispersity, functionality, hydrophilic–hydrophobic balance,
and pharmacokinetics of the nanocarriers could be achieved [15–17]. The polymer mi-
celles are usually characterized as core–shell structures with hydrophobic cores comprising
biodegradable macromolecules that are capable of drug accommodation and determining
the stability and release properties. Typically, the core forming hydrophobic polymers
are polyesters such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-
glycolic acid) (PLGA), polycaprolactone (PCL), or various poly(amino acid)s [18,19]. The
hydrophilic surface (“corona”) of self-assembled amphiphilic copolymer nanostructures,
usually comprising poly(ethylene glycol) (PEG), imparts the so called “stealth” effect [20].
As a result, a prolonged nanocarriers’ blood circulation is achieved due to the minimized
risk of their opsonization followed by reticuloendothelial system uptake [21]. Although
PEG is one of the most widely used corona-forming hydrophilic synthetic polymers due
to its biocompatibility and antifouling properties, its presence on the nanocarrier surface
could also result in reduced cellular uptake and endosomal escape [22]. Therefore, various
neutral or charged hydrophilic polymers such as poly((2-dimethylamino)ethyl methacry-
late) (PDMAEMA), poly(N-vinyl-2-pyrrolidone) (PVP), poly(2-hydroxyethyl methacrylate)
(PHEMA), poly(2-oxazoline)s, or poly(acrylic acid) (PAA) have been explored as micelles’
corona forming blocks [23–27]. A positively charged surface of the nanocarriers is benefi-
cial for their enhanced cellular uptake through the strong interaction with the negatively
charged cell membrane [28]. On the other hand, there is an increased possibility of surface
charged particles’ rapid elimination from the blood stream before reaching the target cells
through protein adsorption and rapid clearance by the mononuclear phagocytic system [29].

Curcumin (Curc) is a hydrophobic polyphenolic compound (diferuloylmethane) iso-
lated from the roots of the plant Curcuma longa. It has gained significant popularity due to
its numerous biological activities [30–32]. As a result of its anticancer, antioxidant, antidi-
abetic, anti-inflammatory, and other properties, Curc has been considered as a potential
multipurpose drug. In attempts to overcome the drug’s inherent poor aqueous solubility,
photodegradability, and chemical instability at physiological conditions Curc has been
incorporated into polymer carriers such as complex microparticles [33], nanocapsules [34],
and nanospheres [35]. However, in most cases, the drug was encapsulated into the hy-
drophobic core of various amphiphilic diblock or triblock copolymer micelles, characterized
either with neutral (mostly PEG) [36–42] or positively charged corona [43–46].

The current work deals with the design and preparation of new triblock copolymer
micelles with tunable surface charge comprising a biodegradable hydrophobic block of
poly(D,L-lactide), positively charged central PDMAEMA-block and a neutral hydrophilic
block of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA). The applied
controlled polymerization methods allowed us to finely tune the copolymer’s composition.
The copolymers obtained self-assembled in aqueous media, forming stable micelles with
sizes in the 60–70 nm range and surface charge from strongly positive to neutral depending
on the POEGMA content. The copolymer micelles were physico-chemically characterized
and loaded with the model drug curcumin. Characteristics such as drug loading efficiency,
drug loading capacity, and drug release profiles were evaluated in the light of potential
application of the triblock copolymer micelles as nanocarriers in drug delivery systems.
Overall, the main advantage of the presented amphiphilic triblock copolymers with tunable
length of the POEGMA blocks is in the feasible control over the formed micelles’ surface
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charge, which would be much more difficult to achieve from a synthetic point of view if
PEG was used as a hydrophilic neutral block.

2. Materials and Methods
2.1. Materials

All reagents and other substances used in the study were obtained from Sigma-Aldrich
(St. Louis, MO, USA). D,L-lactide (LA, 99%) was purified through recrystallization from
95:5 v/v toluene/ethyl acetate. Oligo (ethylene glycol) methyl ether methacrylate (OEGMA,
Mn ~ 500 Da) was passed under an argon pressure firstly through a column packed with a
neutral Al2O3 and then through a column packed with a basic Al2O3 in order to remove
the inhibitors. N,N-Dimethylaminoethyl methacrylate (DMAEMA, 98%) was purified by
passing it through a column packed with Al2O3. The phenethyl alcohol (PEA, ≥99%)
initiator was purified by vacuum distillation just before use. Triethylamine (TEA, 99%) was
distilled and kept over KOH. The solvents dichloromethane (DCM, 99.5%), tetrahydrofuran
(THF, ≥99%), toluene (98%), and anisole (≥99%) were purified by applying standard pro-
cedures. The catalyst tin(II) 2-ethylhexanoate (Sn(Oct)2, 92.5–100%), the initiator 2-bromo-
2-methylpropionyl bromide (BIBB, 98%), 1,1,4,7,10,10-hexamethyltriethylenetetramine
(HMTETA, 97%), (N,N,N′,N”,N”-pentamethyldiethylenetriamine (PMDETA, 99%), cop-
per(I) bromide (CuBr, 99.999%), copper(I) chloride (CuCl, 99.999%), and the model drug
curcumin were used without further purification.

2.2. Synthesis of the Hydrophobic Polyester Block (PLA)

The modified literature procedure was performed as follows [47]: LA (2 g, 13.9 mmol)
was placed into a Schlenk tube, dried in vacuum for 1 h, and dissolved in 7 mL of toluene un-
der an inert atmosphere upon slight heating. The PEA initiator (0.055 mL, 0.467 mmol) and
Sn(Oct)2 (0.06 mL, 0.185 mmol) solution in 1 mL of toluene were added. The polymerization
proceeded at 90 ◦C for 24 h. The solvent was removed, the crude product was redissolved
in DCM, poly(D,L-lactide) was precipitated in chilled methanol and dried under reduced
pressure. Yield: 1.88 g (94%). 1H NMR (600 MHz, CDCl3, δ, ppm): 7.30–7.15 (Ar, C6H5),
5.21–5.15 (CH-(CH3)-O), 4.36 (CH-(CH3)-OH + Ar-CH2-CH2-O), 2.94 (Ar-CH2-CH2-O), 1.55
(CH-(CH3)-O), 1.49 (CH-(CH3)-OH).

2.3. Conversion of PLA into a Macroinitiator (PLA-Br)

TEA (0.177 mL, 1.27 mmol) was added to a PLA (1.5 g, 0.326 mmol) solution in
DCM (20 mL). In the next step, BIBB (0.12 mL, 0.978 mmol) solution in DCM (5 mL)
was slowly added to the reaction mixture via a dropping funnel following previously
described procedure [48]. The reaction proceeded for 24 h at 25 ◦C. The reaction mixture
was concentrated on a rotary evaporator to 1/3 of the initial volume and an activated
charcoal (~10 mg) was added using the tip of a small spatula. The mixture was stirred
overnight, filtrated and the macroinitiator was precipitated from the clear solution into cold
methanol. Yield: 1.16 g (77%) 1H NMR (600 MHz, CDCl3, δ, ppm): 7.30–7.15 (Ar, C6H5),
5.21–5.15 (CH-(CH3)-O), 4.36 (CH-(CH3)-OH + Ar-CH2-CH2-O), 2.94 (Ar-CH2-CH2-O), 1.98
(C-(Br)-(CH3)2), 1.55 (CH-(CH3)-O).

2.4. Synthesis of Amphiphilic Diblock Copolymer (PLA-b-PDMAEMA)

The second block was polymerized according to an already reported procedure [49].
The macroinitiator PLA-Br (0.5 g, 0.104 mmol) and CuBr (0.015 g, 0.104 mmol), were
placed into a Schlenk tube, dried under vacuum for an hour and dissolved in 3 mL of
THF. In the next step, DMAEMA (0.35 mL, 2.08 mmol) was added, and the reaction
mixture was degassed by bubbling argon through a syringe for one hour. Finally, HMTETA
(0.057 mL, 0.208 mmol) was injected into the reaction mixture via a degassed syringe.
The polymerization proceeded for 5 h at 60 ◦C (oil bath) in an argon atmosphere. The
reaction mixture was passed through a column containing neutral aluminum oxide in
order to remove the catalytic complex. The clear solution was concentrated on a rotary
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evaporator and the product was precipitated in cold hexane. Yield: 0.66 g (80%) 1H NMR
(600 MHz, CDCl3, δ, ppm): 7.30–7.12 (Ar, C6H5), 5.21–5.15 (CH-(CH3)-O), 4.34 (CH-(CH3)-
OH + Ar-CH2-CH2-O), 4.08 (O-CH2-CH2-N), 2.94 (Ar-CH2-CH2-O), 2.62 (O-CH2-CH2-N),
2.32 (N-(CH3)2), 1.90–1.82 (CH2-C-(CH3)), 1.55 (CH-(CH3)-O), 1.05–0.90 (C-(CH3)2 + CH2-
C-(CH3)).

2.5. Synthesis of Poly(D,L-Lactide)-b-Poly(N,N-Dimethylaminoethyl
Methacrylate)-b-Poly(Oligo(Ethylene Glycol) Methyl Ether Methacrylate)
(PLA-b-PDMAEMA-b-POEGMA) Amphiphilic Triblock Copolymer

The third block was polymerized by modifying a literature procedure [50]. Typi-
cally, CuCl (0.017 g, 0.075 mmol) was added to a solution of PLA-b-PDMAEMA (0.3 g,
0.0375 mmol) and OEGMA (0.375 g, 0.75 mmol) in anisole (2.5 mL). The oxygen was
eliminated by degassing the mixture with an Ar for 30 min. Separately, a 0.15 M solution
of PMDETA in anisole was prepared, degassed, and 0.5 mL were transferred via syringe
into the reaction vessel. The combined solution was further degassed for another 30 min
and immersed into a preheated to 60 ◦C oil bath. The polymerization was completed
in 24 h. The solvent was removed on a rotary evaporator, the residue was redissolved
in 15 mL of ethanol, and mixed with 50 mL of water. The mixture was subjected to
ultrafiltration using a membrane with molecular weight cut-off 1000 Da. The purified
triblock polymer was isolated from the solution through lyophilization. Yield: 0.44 g (65%)
1H NMR (600 MHz, CDCl3, δ, ppm): 7.30–7.18 (Ar, C6H5), 5.20–5.15 (CH-(CH3)-O), 4.35
(CH-(CH3)-OH + Ar-CH2-CH2-O), 4.25–4.07 (COO-CH2-CH2-O + O-CH2-CH2-N), 3.64
(O-CH2-CH2-O), 3.37 (-CH2-CH2-O-CH3), 2.94 (Ar-CH2-CH2-O), 2.65 (O-CH2-CH2-N), 2.36
(N-(CH3)2), 1.90–1.83 (CH2-C-(CH3)PDMAEMA + CH2-C-(CH3)POEGMA), 1.56 (CH-(CH3)-O),
1.24-0.87 (CH2-C-(CH3)POEGMA + C-(CH3)2 + CH2-C-(CH3)PDMAEMA).

2.6. Characterization

Proton nuclear magnetic resonance (1H NMR) analyses were performed using a Bruker
Avance II+ 600 MHz spectrometer (Billerica, MA, USA). Size exclusion chromatography
(SEC) was run on a Shimadzu Nexera XR (Kyoto, Japan) HPLC instrument in tetrahy-
drofuran at a flow rate of 1 mL min−1. The polymers’ molar-mass characteristics were
determined using a RID-20A differential refractive index detector on the following set
of columns: 10 µm PL gel mixed-B, 5 µm PL gel 500 Å, and 50 Å. Narrow dispersity
polystyrene (PS) standards were applied for the instrument’s calibration and for the cal-
culations. The ultraviolet-visible (UV/Vis) spectrophotometric analyses were performed
using a DU 800 Beckman Coulter (Brea, CA, USA) instrument with a Peltier temperature
controller. The infrared spectra were obtained from an IRAffinity-1 Fourier transform
infrared (FTIR) spectrophotometer (Shimadzu, Kyoto, Japan). Transmission electron mi-
croscope (TEM) images were taken on a high-resolution scanning JEM-2100 analytical
electron microscope (JEOL, Tokyo, Japan) with variable accelerating voltage (80–200 kV).
The samples’ preparation was done by drop-casting of the micellar dispersions onto TEM
grids, followed by solvent evaporation. The images were recorded using a charge-coupled
device camera (GATAN Orius 832 SC1000, Pleasanton, CA, USA) and were processed via
GATAN Microscopy Suite® Software. The statistical analysis of the images obtained was
completed using the ImageJ software. The dynamic light scattering (DLS) measurements
were performed on a NanoBrook Plus PALS (Brookhaven Instruments, Holtsville, NY,
USA) particle size and zeta (ζ) potential analyzer. The instrument operated at λ = 660 nm
and 90 degrees scattering angle via the incorporated high power 35 mW diode laser. The
average hydrodynamic diameters (dH) of the block copolymer micelles were obtained by
applying the Stokes-Einstein equation:

dH = kT/(3πηD) (1)

(k—Boltzmann’s constant; T—temperature (K), η—viscosity, D—diffusion coefficient).
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The phase analysis light scattering was utilized to determine the electrophoretic
mobility of the surface charged micelles’ dispersions. Thus, the particles’ ζ-potentials were
derived by applying the Smoluchowski equation:

ζ = 4πηµ/ε (2)

(ζ—zeta potential (mV); η—viscosity; µ—electrophoretic mobility, ε—solvent’s dielec-
tric constant).

The size and size distribution measurements were triplicated per run and were aver-
aged from three independent runs. The zeta potential measurements were also triplicated
per run and averaged from twenty runs.

2.7. Copolymer Micelles Preparation

The formation of nanosized micelles through a self-assembly of the amphiphilic
triblock copolymers was achieved as follows: the respective copolymer was dissolved in
a volatile organic solvent (acetone) and the concentration was adjusted to 10 mg mL−1.
Afterwards, the copolymer solution (0.5 mL) was added slowly via a syringe to ~4 mL of
vigorously stirred (900 rpm) water (ultrapure grade, 18.2 MΩ cm, pH 6.5). The acetone
was easily removed from the mixture using a rotary evaporator and the formed aqueous
dispersion concentration was adjusted to 1 mg mL−1 by the addition of ultrapure water.
The micellar dispersions were filtered (0.45 µm pore size) and subjected to characterization.

2.8. Evaluation of the Critical Micelle Concentration (CMC)

The onset of the triblock copolymers’ self-association was evaluated in an aqueous
milieu using the solubilization of a hydrophobic dye upon the micelles’ formation [51].
Briefly, a series of block copolymer solutions with gradually increasing concentrations
(from 0.001 to 2.0 mg mL−1) were prepared followed by the addition of 10 µL from 0.4 mM
solution in methanol of 1,6-diphenyl-1,3,5-hexatriene (DPH). After 18 h of incubation in the
dark, the samples were subjected to UV spectroscopic analysis. The absorption intensity of
DPH at λmax = 356 nm was plotted as a function of copolymer concentration. The CMC
values for the different triblock copolymers were obtained as the intersection point of the
two straight lines from the absorption intensity vs. concentration plots.

2.9. Drug Loading Procedure and In Vitro Drug Release Profiles

The curcumin loading procedure for the triblock copolymer micelles was similar
to that of the empty micelles. Initially, a Curc solution in acetone, with concentration
1 mg mL−1, was prepared. In the next step, the triblock copolymer (10 mg) was dissolved
into 1 mL from the drug solution. Afterwards, 0.5 mL from the solution containing both
Curc and the triblock copolymer was slowly added via a syringe to ~4 mL of vigorously
stirred (900 rpm) ultrapure water, followed by the organic solvent elimination and con-
centration adjustment to 1 mL−1. The drug-loaded nanocarriers (micelles to curcumin
ratio–10:1 w/w) were passed through 0.45 µm syringe filter to remove the unloaded Curc
and were recovered via lyophilization. The dried micelles were weighed, redissolved in
acetone, and subjected to UV−Vis spectroscopic analysis. The extinction coefficient value,
ε = 61,882 M−1 cm−1 (λmax = 418 nm), of Curc obtained from a calibration curve in acetone
was applied to calculate the amount of encapsulated into the nanocarriers’ drug. The drug
loading efficiency (DLE) and drug loading capacity (DLC) were calculated by applying
Equations (3) and (4):

DLE (wt%) = (the mass of encapsulated Curc /the input mass of Curc) × 100 (3)

DLC (wt%) = (the mass of encapsulated Curc/total mass of the micelles) × 100 (4)

The in vitro release profile of Curc was followed by applying the biphasic dissolution
model. Typically, 6 mL of the aqueous Curc-loaded micelles’ dispersion (0.5 mg mL−1)
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were thermostated in vials at 37 ◦C. Then, 3 mL from the release media (chloroform) were
added. At defined time intervals, 1 mL from the organic layer was withdrawn via syringe
and analysed by UV/Vis spectroscopy (λmax 415 nm, ε = 53 703 M −1 cm−1). After each
sample withdrawal, 1 mL of chloroform was added in order to keep the release media
volume constant.

2.10. In Vitro Stability and Protein Adsorption

The in vitro stability and protein adsorption of Curc-loaded nanoparticles were in-
vestigated in phosphate-buffered saline (PBS) and in fetal bovine serum (FBS) solutions.
Typically, 1 mL of PBS (pH 7.4) or 10% (v/v) FBS were added to equal volumes of nanocar-
rier dispersions (1 mg mL−1). The dispersions were gently mixed at 37 ◦C and the changes
in the average particle diameters were followed by DLS measurements at predetermined
time intervals (0, 3, 6, 24, and 48 h).

3. Results and Discussion
3.1. Synthesis and Characterization of Amphiphilic PLA-b-PDMAEMA-b-POEGMA
Triblock Copolymers

The three-step synthetic procedure for the preparation of well-defined amphiphilic
triblock copolymers with a tunable composition is presented in Scheme 1.
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Initially, the hydrophobic poly(D,L-lactide) was synthesized via ring-opening poly-
merization of the corresponding cyclic lactide monomer, applying a modified literature
procedure [47]. The polymerization was initiated by phenethyl alcohol, a functional initiator
with easily detectable aromatic protons in NMR, and Sn(Oct)2 was used as a catalyst. The
polymerization was performed in solution at an elevated temperature for 24 h. After the
product purification via extraction, it was subjected to characterization. The PLA number
for average molar mass was calculated from the ratio of the integral intensities of aromatic
protons of the initiator at 7.30–7.15 ppm and methine protons of LA-repeating units of
the polymer at 5.21–5.15 ppm (Figure 1a). Furthermore, the strong bands at 1082, 1184,
and 1748 cm−1, corresponding to C-O-C (symmetric and asymmetric) and C=O stretching
vibrations that are characteristic for the polyesters, are clearly visible in the FTIR spectrum
of the product (Figure 2a).
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Figure 2. FTIR spectra of: (a) poly(D,L-lactide) (PLA, DPn = 22); (b) the corresponding amphiphilic
PLA-b-PDMAEMA diblock copolymer (D2); (c) amphiphilic triblock PLA-b-PDMAEMA-b-POEGMA
copolymer (T2-3).

SEC analyses demonstrated the formation of polymer with monomodal molar mass
distribution and narrow dispersity (Figure 3a). The hydroxyl end-functionality of PLA
was reacted with BIBB by applying a previously described procedure, thus converting the
polymer into a macroinitiator for atom-transfer radical polymerization (ATRP) [48]. It was
used in the second synthetic step to initiate the controlled polymerization of a methacrylic
DMAEMA monomer (Scheme 1). The polymerization was performed in an oxygen-free
atmosphere in THF for 5 h in the presence of a CuBr/HMTETA catalytic complex [49].
The purified product was characterized via 1H NMR analysis. With the knowledge of the
macroinitiator’s degree of polymerization, the average length of the polycationic block was
calculated as a ratio of the integral intensities of methylene protons of DMAEMA-units at
4.03 ppm and PLA methine protons at 5.21–5.15 ppm (Figure 1b).
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Figure 3. SEC elugrams of: (a) PLA-macroinitiator (M2, Ð = 1.15); (b) the corresponding am-
phiphilic PLA-b-PDMAEMA diblock copolymer (D2, Ð = 1.22); (c) amphiphilic PLA-b-PDMAEMA-
b-POEGMA triblock copolymer (T2-3, Ð = 1.38) in tetrahydrofuran (vs. narrow PS standards).

The second block polymerization was also demonstrated by FTIR spectroscopic analy-
sis of the purified product. (Figure 2b). The intense and characteristic bands that appeared
at 1747 and 1732 cm−1 indicate the presence of carbonyl groups from both the PLA and
PDMAEMA blocks. The bands at 1184 and 1085 cm−1, on the other hand, were assigned to
the asymmetric and symmetric stretching vibrations of C-O-C functional groups.

The formation of diblock architecture was confirmed by SEC analysis. The elugrams
of the diblock copolymers reveal a distinctive peak shift toward lower elution volumes
corresponding to higher molar masses, whereas the molar-mass distribution remains
monomodal with a slightly increased but still narrow dispersity (Figure 3b).

In the third synthetic stage, the inherent halogen end-functionality of the PLA-b-
PDMAEMA diblock copolymer was used to initiate the ATRP of OEGMA-macromonomer
(Scheme 1). The polymerization proceeded in anisole for 24 h in the presence of CuCl/PMDETA
catalytic complex under modified conditions from the literature [50]. The product was
purified via ultrafiltration in water and the degree of OEGMA polymerization was deter-
mined from the relative intensities of oxyethylene protons at 3.65 ppm and the methylene
protons of DMAEMA repeating units at 4.03 ppm (Figure 1c). An additional strong band at
1100 cm−1 appeared in the FTIR spectrum of the product, corresponding to the vibrations
of ether functional groups from the oligoethylene glycol side chains. (Figure 2c). The SEC-
elugram of the final product shows a further shift toward higher molar mass and slightly
higher dispersity when compared to the diblock precursor, depending on the degree of
OEGMA polymerization (Figure 3c). The molar mass characteristics of the precursors and
the triblock copolymers obtained are listed in Table 1.
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Table 1. Molar mass characteristics of macroinitiators and the amphiphilic diblock and triblock
copolymers.

Macroinitiators
(PLA-Br)

Diblock Copolymers
(PLA-b-PDMAEMA)

Triblock Copolymers
(PLA-b-PDMAEMA-b-POEGMA)

Code DPn
a

(LA)
Mn

a

(g mol−1) ÐM
b Code DPn

a

(DMAEMA)
Mn

a

(g mol−1) ÐM
b Code DPn

a

(OEGMA)
Mn

a

(g mol−1) ÐM
b

M1 34 5000 1.08 D1 20 8150 1.27 T1 2 9150 1.32
M2 22 3300 1.15 D2 16 5800 1.22 T2-1 2 6800 1.28

T2-2 6 8800 1.33
T2-3 12 11,800 1.38

a Number of average molar masses (Mn) and polymerization degrees (DPn), calculated from the 1H NMR
spectra. b Molar mass dispersity (ÐM), estimated from the SEC analyses performed in tetrahydrofuran vs. narrow
PS standards.

3.2. Triblock Copolymers Self-Assembly

Because of their amphiphilic character, the synthesized polymers are prone to self-
assembly in aqueous media. The nanoprecipitation technique was applied for the polymer
micelles’ formation. Thus, a predetermined amount of the triblock copolymers was dis-
solved in an organic solvent (acetone), which is capable of dissolving all the copolymer
segments. Moreover, it is miscible with water and can be easily removed from the mixture.
The copolymer solutions were slowly added to a stirred water media, and, after the acetone
elimination, the concentration of the formed micelles was adjusted to be 1 mg mL−1.

The micelles’ characterization is an essential step to be performed following their
preparation. The critical micelle concentration (CMC) is a fundamental parameter used
to characterize the thermodynamic stability of the micelles. Lower CMC values indicate
greater thermodynamic stability. The values defining the micellization onset of the newly
synthesized amphiphilic triblock copolymers were estimated by applying a hydrophobic
dye signal spectroscopic detection technique, due to its ability to operate at very low poly-
mer concentrations [51]. The appearance and the following changes in the UV-absorbance
of DPH as result of its solubilization into the forming micelles was monitored as a function
of the triblock copolymer concentration (Figure S1). The onset of micelles’ formation for
the copolymers was estimated to be in the 0.07–0.24 mg mL−1 (7.5–20.5 µM) concentration
range. The obtained data are in a good agreement with the copolymers’ hydrophilic–
lipophilic balance, which was estimated according to the empirical model proposed by
Griffin (Table 2) [52,53]. The CMC of the amphiphilic polymer micelles can be lowered
by adjusting the length of the hydrophobic segment. Thus, the lowest CMC value of
0.069 mg mL−1 (hence micelles exhibiting the best thermodynamic stability) is demon-
strated by the triblock copolymer T1, characterized by a longer hydrophobic block and the
lowest HLB value of 9.07. For further characterizations in aqueous media, the concentration
used for micelle dispersions preparation was 1 mg mL−1, a value significantly exceeding
the determined onset of the micellization for all copolymers studied.

Table 2. Characteristics of triblock copolymer micelles before and after the drug loading.

Empty Micelles Drug Loaded Micelles

Code HLB a CMC b

(mg mL−1)
d c

(nm) PdI c ζ c

(mV)
d c

(nm) PdI c DLE d (%) DLC d (%)

T1 9.07 0.069 72.26 ± 0.21 0.158 21.49 ± 4.17 74.14 ± 0.21 0.135 75 7.3
T2-1 10.29 0.088 65.42 ± 1.01 0.198 22.11 ± 3.60 82.88 ± 1.14 0.170 60 5.9
T2-2 12.50 0.129 66.83 ± 0.22 0.193 8.25 ± 1.25 71.46 ± 0.70 0.156 67 6.5
T2-3 14.41 0.243 71.73 ± 0.29 0.200 0.98 ± 0.34 73.94 ± 0.63 0.217 63 6.1

a Hydrophilic–lipophilic balance (HLB) determined from the ratio between the molar mass of the hydrophilic
segments and the overall copolymer molar mass, and multiplied by 20. b Critical micelle concentration determined
spectroscopically. c Average micelles’ diameters (d), size distributions (PdI) and zeta potentials (ζ) obtained from DLS
measurements. d Drug loading efficiency (DLE) and drug loading capacity (DLC) determined spectroscopically.
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The DLS measurements were run both on the diblock and the corresponding triblock
copolymer aqueous dispersions. In both cases, the instrument detected particles with sizes
in the nanometer scale and relatively narrow size distributions (Table 2). The precursors self-
assembled into micelles with diameters of 52 and 60 nm, whereas the triblock copolymer
micelles formed micelles with sizes in the 65–72 nm range. The average micelles’ diameter
increased after the polymerization of the third hydrophilic block (Figure S2).

Moreover, the size increased gradually with the degree of polymerization of the third
block initiated by the same diblock copolymer (D2), indicating the formation of a thicker
POEGMA outer shell (Figure 4a). Furthermore, the formation of a POEGMA shell with
an increasing thickness is demonstrated by the micelles’ surface charge measurements
(Figure 4b). The triblock copolymer micelles’ zeta potentials decreased gradually from
strongly positive values (close to those of the diblock copolymer precursor) for the copoly-
mers containing only a few OEGMA-units, to a completely shielded surface charge for the
copolymer containing a longer POEGMA block.
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Figure 4. Micelles’ size distributions (a), and zeta potentials (b) obtained from dynamic light scatter-
ing analysis of aqueous dispersions (1 mg mL−1) of the diblock copolymer precursor D2 (d = 52 nm,
PdI: 0.180, ζ = 29.78 mV) and the corresponding amphiphilic triblock copolymers: T2-1(d = 65 nm,
PdI: 0.198, ζ = 22.11 mV), T2-2 (d = 67 nm, PdI: 0.193, ζ = 8.25 mV), T2-3 (d = 72 nm, PdI: 0.200,
ζ = 0.98 mV).

Thus, by applying controlled polymerization techniques it is possible to control the
degree of the triblock copolymer micelles’ surface charge. This, together with the optimal
sub-100 nm average diameters of the particles obtained could be advantageous regarding
their possible application in nanomedicine. It has been already shown that nanoparticles
with similar sizes achieve an optimal cellular uptake as a result of the EPR effect when
compared to smaller or bigger particles of the same nature [54].

Transmission electron microscopy was used to provide useful information on the
structure/morphology of the formed micelles (Figure 5). The images revealed the presence
of clusters of aggregated nanoparticles with a spherical shape. The measured average
diameters are somewhat smaller but still in good correlation with the DLS results, taking
into consideration the different conditions of the specimen that each technique requires.
The visualized smaller particles by TEM are due to their shrinkage upon drying during
the sample preparation. The shape of the individual copolymer micelle can be seen more
clearly on the inset of Figure 5a.
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micelles (d = 63.32 ± 4.75 nm), obtained from the amphiphilic triblock copolymer T2-1.

3.3. Curcumin Loading into the Copolymer Micelles

The triblock copolymer micelles of different composition were loaded with the natural
anticancer drug curcumin (Curc). The procedure was similar to that applied for the
micellization. The only difference is that predetermined amounts from both the triblock
copolymer and Curc were initially dissolved in acetone, forming a common solution. The
organic solution was added slowly to ultrapure water upon stirring and, after acetone
elimination, the dispersion concentration was adjusted by adding ultrapure water. The
unloaded drug was separated from the dispersion by filtration. After lyophilization, the
micelles were destroyed via dissolving them into acetone and the DLE and DLC were
calculated according to Equations (3) and (4). The amount of the loaded curcumin into
the micellar core was determined spectrophotometrically using a standard curve obtained
by measuring the UV-absorption of different Curc concentrations in acetone (Figure S3).
The calculated values for the drug loading efficiency ranged from 60 to 75%, depending on
the triblock copolymer composition. The highest DLE value was obtained for the loaded
nanocarriers formed from the triblock copolymer containing a longer PLA-block (T1) and
a larger hydrophobic core. The calculated values for DLC were 7.3, 5.9, 6.5, and 6.1%
for T1, T2-1, T2-2, and T2-3, respectively. The Curc-loaded polymeric nanocarriers were
subjected to DLS analysis as well. The results indicate a slight increase in their average
sizes, most likely due to the hydrophobic core expansion as a result of drug encapsulation.
TEM analysis of the loaded copolymer micelles confirmed that there was no change in
particles’ morphology as a result of curcumin encapsulation, just a slight increase of the
average diameters (Figure 5b). Furthermore, there were no statistical changes in the
measured zeta potentials of the drug-loaded micelles (not shown) when compared to their
empty analogues, indicating that curcumin was located mainly within the nanocarriers’
hydrophobic core. The characteristics of triblock copolymer micelles before and after the
drug loading are summarized in Table 2.

3.4. In Vitro Drug Release and Stability Measurements

The in vitro dissolution tests were performed in a hydrophobic organic solvent (chlo-
roform) as a release media. Although well known, the so-called biphasic dissolution model
for drug release monitoring is not frequently used, due to the existing possibility of micelles’
partial destruction at the water/organic solvent interface [55,56]. However, our attempts
to perform in vitro drug release evaluations in PBS (pH = 7.4) as a release media using
dialysis membrane and additives (different wt.% of ethanol or Tween® 80) failed, due to
adsorption of Curc onto the membrane material. Thus, in order to achieve comparable
results, we applied the above-described biphasic method.

The release media analysis of the series of triblock copolymer micelles with the same
hydrophobic core and same middle PDMAEMA layer (T2-1, T2-2, and T2-3) revealed
the achievement of a plateau for the released Curc, with 88–93% released drug after 72 h
(Figure 6). The profiles were similar and two stages of Curc release was observed. Within
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the first eight hours, a rapid drug release took place, followed by a sustained release over
the next hours. The effect of the initial rapid release was, however, more pronounced
for the Curc encapsulated into the core of the nanocarriers formed from T2-2 copolymers
than those of the T2-1- and T2-3-loaded micelles. In particular, 53 and 52% of Curc were
released for 8 h from T2-1 and T2-3 micelles, respectively, while the initially released drug
from T2-2 micelles was 60%. The higher initial burst release from T2-2 nanocarriers might
be connected to their higher drug-loading efficiency relative to the other two analogues
(Table 2). The release profile of Curc-loaded micelles of the amphiphilic triblock copolymer
T1, characterized by the longer hydrophobic block (bigger micelle core), on the other
hand, revealed a further decrease in the initial burst rate (48% for 8 h), despite the highest
estimated drug-loading efficiency. This could be attributed to the enhanced stability of the
nanocarrier (see CMC values in Table 2).
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Furthermore, the incorporation of a significant amount from the hydrophobic drug
into the micelle core could lead to a further stabilization of the structure. As a result,
an overall of 74% of Curc was released after 72 h under the biphasic system conditions,
which is much less than that achieved by the series of micelles obtained from the triblock
copolymers T2-1, T2-2, and T2-3, characterized by smaller hydrophobic cores and higher
HLB. Thus, by properly tuning the triblock copolymers’ composition, it is possible to
achieve the desired balance between the contradicting requirements for the nanocarriers,
namely the needed stability during the cargo transport through the blood stream and the
efficient drug release at the site of action.

The nanocarriers’ stability was further evaluated mimicking the post-intravenous
injection blood conditions, where the protein adsorption could result in micelles’ disassem-
bly and unwanted drug release. Thus, selected drug-loaded micelles (from the least and
the most POEGMA-functionalized triblock copolymers T2-1 and T2-3, as well as from the
triblock copolymer T1 with the longer hydrophobic block) were incubated in phosphate-
buffered saline, and DLS measurements were performed at predetermined time intervals
to monitor the variations in micelles’ dimeters (Figure 7a). The results indicate that the
loaded nanocarriers with a thick, non-charged corona (T2-3) and those comprising bigger
hydrophobic core (T1) remain stable at physiological conditions during the period of evalu-
ations. The Curc-loaded micelles with positively charged coronas and smaller hydrophobic
cores (T2-1) started to increase their sizes on the third hour of evaluation, and on the 48th
hour, they reached average diameters close to 900 nm, indicating a lack of stability in PBS.
The same copolymer micelles showed a 20 nm increase of the average dimeters upon drug
loading, which is also an indication of stability loss (Table 2). Therefore, for the following
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protein adsorption evaluation, only the Curc-loaded copolymer micelles of T1 and T2-3
copolymers were incubated in fetal bovine serum (FBS) solutions. The copolymer micelles
with the thick POEGMA corona (T2-3) showed minimal fluctuations in their sizes up to the
sixth hour of incubation in FBS, whereas the Curc-loaded micelles with a positively charged
corona (T1) demonstrated a significant size increase from the initial moment of incubation
(Figure 7b). Since the isoelectric point of FBS is lower than the experimental pH, the protein
is negatively charged and immediately adsorbs onto the oppositely charged surface of
T1-micelles. The fluctuations in both particle sizes could be attributed to protein adsorption
and desorption processes on the micelles’ surface during the period of incubation.
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After the 24th hour, even the T2-3 copolymer micelles dramatically increased their sizes
due to FBS adsorption. However, it was demonstrated that the maximum micellar accumu-
lation in the vicinity of the tumor site occurs within the 6 h after the injection [57]. Thus, as
a result of series of controlled polymerizations and physico-chemical characterizations, it
might be concluded that the micelles formed from the amphiphilic triblock copolymer, with
densely grafted OEGMA units on the surface (T2-3), is a promising candidate for further
in vitro and in vivo evaluations and for application in nanomedicine.

4. Conclusions

Amphiphilic triblock copolymers with predetermined compositions, comprising
biodegradable poly(D,L-lactide), polycationic poly(N,N-dimethylaminoethyl methacry-
late), and neutral poly(oligo(ethylene glycol) methyl ether methacrylate) hydrophilic blocks,
were successfully synthesized by applying a three-step controlled polymerization proce-
dure. The newly synthesized copolymers self-assembled in aqueous media into core–shell
spherical micelles with average diameters of around 70 nm and tunable surface charges.
They were used to encapsulate the natural hydrophobic model drug curcumin. The tri-
block copolymer micelles before and after the curcumin loading were physico-chemically
characterized. It was demonstrated that parameters such as drug loading efficiency, drug re-
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lease profiles, and micelles’ stability at physiological conditions can be modulated through
the length of the copolymer’s hydrophobic block and the degree of particles’ surface
charge. Moreover, the amphiphilic triblock copolymer with an optimal composition for
the formation of stable nanocarriers of hydrophobic drugs with a potential application in
nanomedicine was identified for further studies as an efficient drug delivery vehicle.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12030434/s1, Figure S1: Effect of block copolymer concen-
tration on the absorption intensity of DPH at 356 nm in aqueous media for: (a) amphiphilic triblock
copolymer T1 (HLB = 9.07); and (b) amphiphilic triblock copolymer T2-3 (HLB = 14.41). Figure S2:
Size-distribution curves obtained from DLS measurements of 1 mg mL−1 aqueous micellar disper-
sions of the amphiphilic diblock copolymer precursor D1 (d = 60 nm, PdI: 0.154, ζ = 35.64 mV) and
the corresponding triblock copolymer T1 (d = 72 nm, PdI: 0.158, ζ = 21.49 mV). Figure S3: Calibration
curve constructed from the UV-absorption of different curcumin concentrations in acetone.
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