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Despite the significant progress that has been made to eliminate vertical HIV infection,
more than 150,000 children were infected with HIV in 2019, emphasizing the continued
need for sustainable HIV treatment strategies and ideally a cure for children. Mother-to-
child-transmission (MTCT) remains the most important route of pediatric HIV acquisition
and, in absence of prevention measures, transmission rates range from 15% to 45% via
three distinct routes: in utero, intrapartum, and in the postnatal period through
breastfeeding. The exact mechanisms and biological basis of these different routes of
transmission are not yet fully understood. Some infants escape infection despite
significant virus exposure, while others do not, suggesting possible maternal or fetal
immune protective factors including the presence of HIV-specific antibodies. Here we
summarize the unique aspects of HIV MTCT including the immunopathogenesis of the
different routes of transmission, and how transmission in the antenatal or postnatal
periods may affect early life immune responses and HIV persistence. A more refined
understanding of the complex interaction between viral, maternal, and fetal/infant factors
may enhance the pursuit of strategies to achieve an HIV cure for pediatric populations.
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INTRODUCTION

Pediatric AIDS was first described in 1982, shortly after the first adult cases were reported (1). Of the
estimated 37.5 million people currently living with HIV-1 as of 2020, 1.7 million of those individuals
are children (2). While heterosexual transmission is the major transmission mode in adults, the
majority of pediatric infections occur through mother-to-child transmission (MTCT) during
pregnancy, labor and delivery, and postpartum through breastfeeding. Tremendous progress has
been made in both prevention and treatment of HIV in children. However, despite the
implementation of prevention of mother-to-child transmission (PMTCT) measures that decrease
the risk of vertical HIV transmission to less than 5% (3, 4), approximately 150,000 children were
newly infected with HIV in 2020, the majority of whom live in sub-Saharan Africa (5). As with HIV
infection in adults, the primary targets for infection are activated CD4+ T cells expressing the
org October 2021 | Volume 12 | Article 7574001

https://www.frontiersin.org/articles/10.3389/fimmu.2021.757400/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.757400/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.757400/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.757400/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ann.m.chahroudi@emory.edu
https://doi.org/10.3389/fimmu.2021.757400
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.757400
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.757400&domain=pdf&date_stamp=2021-10-21


Amin et al. Understanding MTCT: Implications for Cure
CCR5 co-receptor. Risk of MTCT transmission is influenced by
geography, maternal viral load, co-infections, delivery mode, and
breast-feeding (6), among other factors. The precise mechanisms
of MTCT and how its timing influences establishment of
HIV infection and persistence have not been fully elucidated.
In this review, we aim to summarize what is known about HIV
MTCT, the immunologic and virologic factors involved in
HIV transmission in the fetal and neonatal/infant periods, and
provide implications for HIV cure strategies targeting perinatally
infected children.
ROUTES AND MECHANISMS OF
VERTICAL TRANSMISSION

Mother-to-child transmission (MTCT) remains the most
important route of pediatric HIV acquisition and, in the
absence of preventative measures, transmission rates range
from 15% to 45% via three distinct routes: in utero,
intrapartum, and in the postnatal per iod through
breastfeeding. Overall, it is estimated that 20-25%, 35-50% and
25-45% of perinatal HIV transmissions occur in utero,
intrapartum, and through breastfeeding, respectively (7–9). It
is important to note that despite the prolonged exposure to HIV
during fetal development, delivery, and breastfeeding, MTCT of
HIV is relatively inefficient, and many children born to women
with HIV do not become infected, even in absence of
preventative services. Here, we will discuss the biological
mechanisms of HIV MTCT and with emphasis on the factors
influencing transmission. While this is still an active area of
research, further elucidating these mechanisms of transmission is
likely to inform cure approaches that should be considered for
the almost 2 million children living with HIV.

In Utero Transmission
Transmission of HIV in utero is the least efficient route of
MTCT, accounting for an estimated absolute rate of 5-10% of
MTCT for women not receiving antiretroviral therapy (ART) (7,
8). The major risk factors for in utero transmission are high
maternal viral loads and placental inflammation (8, 10, 11). The
mechanisms of in utero HIV transmission are incompletely
understood, but some have been proposed. Early studies
suggested that in utero transmission may occur though HIV in
the amniotic fluid coming into contact with fetal mucosal
surfaces (12). Although the fetal gastrointestinal tract is
populated with targets for HIV infection (e.g., CD4+CCR5+ T
cells) (13), more recent studies have found that even in women
with detectable virus in the plasma, HIV is not detected in the
amniotic fluid (14–16). Another study found that amniotic fluid
has innate inhibitory activity against the replication of HIV (17).
Consequently, it is more likely that in utero transmission occurs
primarily through the placenta. The placenta is a highly effective
barrier that successfully inhibits most pathogens from reaching
fetal circulation through various protective mechanisms.
The placenta is composed of fetal-derived trophoblast
progenitor cells that differentiate into specialized cell layers.
Frontiers in Immunology | www.frontiersin.org 2
These specialized trophoblasts have broad antiviral activity in
addition to acting as a physical barrier to pathogens (18).
Maternal blood comes into direct contact with the placenta by
10-12 weeks of gestation when trophoblasts form the placental
villi and mediate the exchange of gases, nutrients, and waste
products between maternal and fetal tissue (18).

While in utero transmission of HIV has been documented to
occur as early as 8 weeks gestation (19), the vast majority of
transmissions via this mode occur in the third trimester (20, 21).
There are two mechanisms of transplacental transmission:
infection of the trophoblasts and transcytosis across the
trophoblastic layer. Although trophoblasts have low to no
expression of CD4 receptors, multiple studies have detected
HIV in these cells (22–24). More recent evidence suggests that
transmission occurs primarily through cell-associated virus, as
trophoblasts appear to be naturally nonpermissive to cell-free
HIV (25). In a study designed to mimic the complex cellular
architecture of the placenta, transcytosis and infection of the
trophoblastic layer were only accomplished by cell-associated
virus (26). New evidence suggests that cell-associated HIV enters
trophoblasts via fusion with maternal lymphocytes (27). This
cell-fusion mediated spread of HIV may be less sensitive to ART
than cell-free infection, causing the placenta to become a
potential reservoir for the virus during pregnancy (27). It is
important to note that even when HIV successfully traverses the
placenta, transmission to the fetus is not guaranteed. Studies
have shown that both infected and uninfected infants had
maternal cells with HIV DNA in their dried cord blood, and
there was no significant difference between the rate of infection
and the presence of HIV-infected cells in cord blood (28, 29).
These findings suggest that there are likely more factors, some of
which we will discuss in later sections of this paper, governing in
utero transmission of HIV.

Intrapartum Transmission
The most common route of HIV MTCT occurs during labor and
delivery, accounting for an absolute rate of 10-20% of infections
in children born to women not receiving ART (7, 8). A major risk
factor for intrapartum transmission is again maternal viral load
(30–32), and while in the United States the current standard of
care is delivery by Caesarian section unless women are on ART
with low viral loads, most women deliver vaginally elsewhere in
the world (33). Although multiple mechanisms of intrapartum
transmission have been proposed, most of the evidence supports
infection via exposure of infant mucosal surfaces to maternal
secretions and blood during birth. The fetal intestines are
populated with high levels CD4+CCR5+ T cells (13), and
evidence suggests that higher viral loads in the birth canal
correlate with increased transmission rates (10). Additionally,
factors that would increase contact of fetal mucosal surfaces with
maternal viral secretions also increase transmission rates. For
example, genital ulcers have been shown to cause an increase in
intrapartum transmission rates (34). This association remained
significant even after adjusting for plasma HIV viral load. Several
possible mechanisms are thought to explain this association
including increased recruitment of HIV-infected CD4+ T cells
to the mucosal surface of the genital lesions resulting in increased
October 2021 | Volume 12 | Article 757400
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viral load in the genital tract (35, 36). Finally, the protective effect
of elective Caesarian section against MTCT of HIV is attributed
to the reduction of fetal contact with the birth canal (37–39).

Another proposed mechanism of intrapartum transmission is
maternal-fetal microtransfusion (also called placental
microtransfusion) causing fetal exposure to maternal blood
containing both cell-free HIV RNA and cell-associated HIV
DNA. Although the cause is unknown, microtransfusions
occur at or near time of delivery when there is a disruption of
the placental barrier and are thought to increase when uterine
contractions intensify causing membranes to rupture. One study
done using placental alkaline phosphatase (PLAP) as a marker
for microtransfusions found that in women who had vaginal
deliveries, high levels of PLAP were associated with higher
intrapartum transmission risk (40). However, there was no
significant association between PLAP (microtransfusion) levels
and perinatal transmission as a whole. As described above,
further studies designed to detect maternal cells in dried fetal
cord blood as a proxy for microtransfusion also found no
correlation (28, 29). Maternal-fetal microtransfusions are still
relatively understudied, however.

Postpartum Transmission
Breastfeeding contributes to a considerable proportion of
pediatric HIV infections accounting for an estimated absolute
rate of 5-15% of MTCT for women not receiving ART (8).
Premastication, where an adult chews foods before feeding it to
the child, is also a risk factor for MTCT and this risk is associated
with predisposing oral conditions that lead to the presence of
blood in the mouth (41). It was recognized early on
that breastfeeding was a potential mechanism for HIV
transmission; however, the World Health Organization
recommends that women in sub-Saharan Africa (with high
HIV prevalence) breastfeed their children due to lack of
consistent access to a safe water supply (42). Other factors
such as the cost of formula and the stigma associated with not
breastfeeding play into this decision (7). In order for MTCT to
occur during breast feeding, the virus must first pass through the
mammary epithelium, remain infectious within breast milk,
traverse the infant mucosal barriers and establish infection.
Studies in ex vivo organ tissue model systems and in vivo
animal models have provided evidence that transmission can
occur via the oral route (43, 44). Oral inoculations of simian
immunodeficiency virus (SIV) have been shown to cause
infection in infant rhesus macaques, providing proof of
concept, although often these experimental inoculums
contained higher doses of virus than would be seen in normal
levels in breast milk (45–47). Cord blood and neonatal blood
contain low levels of CD4+ T cells expressing CCR5, but, as
described above, CD4+CCR5+ T cells populating the fetal
intestines are abundant (13), a finding that has also been
described in infant rhesus macaques (48–50). The mammary
epithelium, like the placenta, however, successfully inhibits many
pathogens from entering the breast milk through various
protective mechanisms. Additionally, there is evidence that
breast milk and saliva have innate inhibitory activity
that restricts HIV transmission (51–54). The protective
Frontiers in Immunology | www.frontiersin.org 3
mechanisms of the maternal and fetal immune responses that
limit breast milk transmission will be discussed in more
detail below.

One major risk factor for MTCT during breastfeeding is viral
load in the breast milk (10), and both cell-free and cell-associated
HIV are thought to contribute to transmission. HIV RNA levels
in breast milk correlate with plasma levels but are generally 100-
fold lower (8, 55). Conditions that increase breast milk viral
shedding are associated with higher transmission rates.
Nonexclusive breastfeeding and infrequent emptying of the
breast can lead to breast inflammation secondary to milk
stasis, which in turn increases the viral load and has a strong
association with increased MTCT (56–61). However, conflicting
research found that nonexclusive breast feeding and mastitis
do not significantly increase viral loads in breast milk (56). Still,
HIV transmission was increased in breastfed infants who also
received solid foods when compared to exclusively breastfed
children (58). This mixed feeding is thought to cause disruption
of the infant’s gut mucosal lining secondary to the introduction
of non-breast-milk foods and early introduction of pathogens or
foreign antigens, leading to immune activation and increased
susceptibility to infection (62–64). Microbiome differences
between mixed fed and exclusively breastfed infants may
also impact transmission (65). Multiple studies suggested
that cell-associated viruses also have a role in transmission
during breastfeeding (66, 67). Understanding these biological
mechanisms of breast milk viral spread is an important first
step in characterizing the establishment of HIV reservoirs
during this period. Further, it should be recognized that
breastfeeding transmission can occur outside of the neonatal
period and infants may be diagnosed after more time has elapsed
since infection than occurs with in utero and intrapartum
transmission. This later diagnosis, coupled with rapid
immune system changes in early life, likely leads to a unique
immunovirologic environment defining HIV persistence in
children infected through the breastfeeding route.
FACTORS INFLUENCING VERTICAL
TRANSMISSION

MTCT is multifactorial, with different viral, maternal, and fetal/
infant factors at play that influence the risk of HIV transmission
(Figure 1). Knowledge of these risk factors and understanding of
their roles in MTCT have been crucial to develop preventative
measures and here we postulate that their consideration should
also inform the investigation into curative approaches.

Viral Factors Impacting MTCT
Viral Burden
Maternal viral load has been shown to be the strongest predictor
of perinatal HIV transmission. Many studies have demonstrated
increased risk of transmission with high levels of maternal
viremia and high p24 antigenemia (68–71). Acute infection
during pregnancy is associated with increased risk of perinatal
transmission and is likely related to the high viral loads in plasma
October 2021 | Volume 12 | Article 757400
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and the genital tract (72). Consequently, maternal viral
suppression via use of ART during pregnancy has been proven
to lower the risk of perinatal transmission. This was first
supported by the 076 trial which showed that administration
of zidovudine during pregnancy, delivery, and to the newborn
for the first 6 months of life reduced transmission by nearly 70%
in women with HIV who did not breast-feed (73). Subsequent
studies have indicated that transmission is reduced even further
with triple-drug regimens (74). Several studies have tried to
establish a threshold of maternal viral load below which
transmission does not occur (75); however, it has been
demonstrated that transmission can occur in some cases where
women have low levels of HIV RNA in the blood, indicating
the presence of other factors influencing the transmission
Frontiers in Immunology | www.frontiersin.org 4
process. In one study that included 320 women from 18
different centers in France showed that perinatal transmission
occurred in 12% of the women at less than 1000 copies/ml
compared to 29% in women with more than 10,000 copies/ml
(76). In contrast, in Bangkok 281 pregnant women were followed
and no transmission occurred in those with virus load less than
2,000 copies/ml (77).

Several behavioral practices have been associated with
increased risk of maternal to infant HIV transmission due to
resultant increases in viral load. These behavioral factors include
illicit drug use (IDU), cigarette smoking, and alcohol use. IDU is
associated with increased risk of MTCT (78–81). Alcohol and
drug use like heroin, amphetamine and cocaine, may be
associated with failure to control viral load in the presence of
FIGURE 1 | Factors influencing vertical transmission.
October 2021 | Volume 12 | Article 757400
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ART, hence increased transmission rate (82–85). Additionally,
transmission may be increased through drug interactions with
ART and placental injury (86). Some have demonstrated an
association between IDU and lack of adherence to ART which
can lead to increased viral load (83, 85–87).

In addition to plasma viral load, viral levels in cervicovaginal
fluid and breast milk are also thought to influence transmission
risk in the intrapartum and postnatal periods (56, 88–90). As
referenced above, levels of HIVDNA in breast milk cells (ie, CD4+
T cells) are positively correlated with postnatal transmission, and
this intracellular HIV DNA is not significantly reduced by
maternal ART. Risk of transmission is higher during early
lactation due to the increased cellular content of colostrum (91).
Both maternal ART and extended infant prophylaxis (at least with
a single agent) during breastfeeding significantly reduces but does
not eliminate MTCT, an observation that likely reflects virus
persistence in CD4+ T cells (92–97).

Viral Genotype and Phenotype
Several studies of viral variants in mothers and infants attempted
to characterize HIV quasispecies associated with MTCT and
have yielded conflicting results. Major, minor, and multiple
variant transmission events have been described (98–100).
Most evidence suggests that a single or restricted subset of
maternal viral variants establish infection in the infant
suggesting selective pressure during the transmission process.
However, the basis and the factors controlling MTCT bottleneck
are not yet fully understood. Different properties of virus
populations have been reported in studies analyzing vertical
transmission stratified by timing, with transmission during the
intrapartum period found to be primarily associated with the
transmission of minor maternal variants while in utero
transmission was more likely to occur with single or multiple
HIV variants (100–104). Maternal antiretroviral drug resistance
is associated with transmission during breastfeeding, but not
during the in utero/intrapartum periods (105).

Phylogenetic analyses of HIV env in infected infants showed
that they have a more homogenous virus population when
compared to their mothers (106, 107). Studies have also shown
that macrophage-tropic and non-syncytium-inducing (NSI) or
CCR5-utilizing HIV viral strains are selectively transmitted
(108). Another characteristic found in transmitted viruses was
shorter variable loops and fewer putative N-linked glycosylation
(PNG) sites encoded in env (70, 109–111). Different HIV
subtypes may also have distinct MTCT rates. Work conducted
in Tanzania showed that subtype C is preferentially transmitted
from mother to child compared to subtype A and D (100). In
another study from Kenya, the MTCT rate appeared to be higher
among mothers infected with subtype D compared with subtype
A (112). However, no such differences have been observed in
other cohorts (100, 112–115).

Host Factors Impacting MTCT
Genetic Factors
Genetic polymorphisms in the coding and regulatory regions of
HIV receptors and their ligands influence the risk of HIV
acquisition. Infants with a single nucleotide polymorphism
Frontiers in Immunology | www.frontiersin.org 5
(SNP) in the CD4 gene at position C868T that may modify the
tertiary structure of CD4 were more likely to acquire HIV
compared to infants with wild type CD4 (116). In the setting
of MTCT, most of the transmitted viruses use CCR5 as a
coreceptor (117). As has been shown for horizontal infection
in adults, the presence of a 32-bp deletion in the coding region of
the CCR5 gene (CCR5-D32) in the homozygous state in infants
results in non-functional coreceptors and confers protection
from vertical infection (118, 119). Heterozygosity also exerts a
protective effect when carried by mothers due to lower maternal
viral burden (107). Conversely, polymorphisms in the CCR5
promoter region at positions 59029 and 59353T increase the
expression of CCR5 leading to increased risk of MTCT when
carried by infants (120–123).

Increased risk of vertical transmission was also seen with
genetic polymorphisms resulting in decreased expression of the
natural ligands for HIV coreceptors (CCL3, CCL4, and
CCL5) (124).

Genetic variations affecting innate immunity may also
influence MTCT. Defensins are antimicrobial peptides that are
expressed by epithelial cells, known for innate mucosal defense
and antiviral activities. Defensins inhibit HIV infection via
different mechanisms including direct binding to virions as
well as disturbing intracellular signaling by modulation of host
cell surface receptors. Three SNPs in the 5′ untranslated region of
b-defensin-1 (DEFB1) gene were reported to modulate risk of
MTCT: −52G/A, -20(G/A) and −44C/G (125–127). Braida et al.
described an association between -44(C/G) and HIV infection in
Italian pediatric population (125). Another study found a lower
copy number of DEFB104 among HIV-infected children when
compared to HIV-exposed children and healthy controls,
suggesting that DEFB104 may have a potential protective role
against vertical transmission (128).

Multiple studies have investigated the influence of HLA
concordance between mother and infant on vertical transmission
and as well as risk of disease progression in infected infants (129–
131). Specific maternal HLA polymorphisms, including B4901,
B5301, A2/6802 and B18, have also been associated with decreased
risk of MTCT (132–134). HLA-G, a non-classical class I MHC
gene highly expressed in placental trophoblasts, has several SNPs
found to be associated with decreased risk of vertical transmission
(135, 136). Certain class II MHC alleles have also been reported to
influence MTCT among certain ethnicities such as DQB1*0604,
DR3, DR13, DRB1*1501 (137–139).

Gender specific differences in MTCT have been reported in
several cohorts (140, 141). Female infants are reported to have
two- to three-fold increased risk of infection at birth compared to
male infants (7, 140, 141). This increased susceptibility has been
linked to subversion of innate immunity, with female fetuses
acquiring maternal variants resistant to type I interferons (142).
Sex-specific differences in in utero infection have also been
attributed to the fact that in utero mortality rates of HIV-
infected male infants are disproportionately higher and thus
more HIV-infected female infants are liveborn. It is also
proposed that a minor histocompatibility reaction between
infant male Y chromosome-derived antigens and maternal
lymphocytes reduce the risk of MTCT to boys (140).
October 2021 | Volume 12 | Article 757400
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Maternal Co-Infections
Several coexisting maternal infections have been found to be
associated with increased MTCT of HIV. Multiple studies
demonstrated an increased risk of vertical transmission in the
setting of chorioamnionitis (143–145), primarily related to
disruption of the placental barrier and entrance of HIV-
infected cells into the amniotic fluid (143, 144, 146).
Chorioamnionitis complications including preterm labor and
premature rupture of membranes can also lead to increased risk
of MTCT related to immaturity of the skin and mucosal
membranes as well as the premature fetal immune system. In a
multicenter prospective cohort, clinical and biologic factors that
contributed to MTCT were studied. Histologic chorioamnionitis
was found to be a major risk factor for transmitting HIV (147).

Adachi and colleagues evaluated the effect of sexually
transmitted infections (STIs) on risk of MTCT in a large
cohort of HIV-infected pregnant women and found increased
rates of HIV transmission in the presence of a another sexually
transmitted disease (148). In general, inflammation of the
maternal genital tract mucosa has been shown to increase rate
of vertical transmission independent of maternal plasma HIV
load (59). Infections resulting in genital ulcer disease such as
HSV-2 are also associated with increased genital shedding of
HIV (35, 149, 150). Conflicting data exist regarding maternal
syphilis infection and MTCT of HIV. A study in Zimbabwe
showed that active maternal syphilis at the time of delivery was
not associated with intra-partum MTCT risk while several other
groups have demonstrated an increased risk of vertical HIV
acquisition in the setting of maternal syphilis (146, 151). HIV
and Hepatitis B virus (HBV) co-infection are associated with
increased HBV, but not HIV transmission to the infant. Maternal
Hepatitis C virus (HCV) co-infection has been linked to higher
rates of vertical HIV transmission (152–160).

Unprotected sexual intercourse during pregnancy itself is
thought to be associated with increased risk of MTCT (161,
162). Bulterys et al. conducted a prospective cohort study in
Rwanda that showed that unprotected sexual intercourse with
multiple partners before and during pregnancy in a population
with high HIV-1 seroprevalence may increase risk of
transmission from infected mother to infants (161). Another
study by Burns and colleagues also found higher frequency of
intercourse during pregnancy among women transmitting HIV
to their infants (163). Potential mechanisms include increased
HIV strain diversity (i.e., superinfection) (164, 165) and vaginal
or cervical inflammation due to microabrasions or STIs that
result in chorioamnionitis and/or increased viral shedding in
genital fluids (164).

Tuberculosis (TB) is one of the most important causes of
mortality and morbidity in HIV infection, especially in women
residing in TB endemic areas. Active TB infection increases HIV
viral load which is a known risk factor for perinatal transmission
(166–168). Gupta et al., found a 2.5-fold increase in the odds of
MTCT of HIV in pregnant women with TB/HIV coinfection,
after adjusting for maternal and infant factors (169). Similarly,
malaria and HIV coinfection is associated with an increased risk
of adverse outcomes in pregnant women (170) as well as
Frontiers in Immunology | www.frontiersin.org 6
increased HIV viral load (171). As such, a few studies have
suggested an increased risk of perinatal transmission with
maternal malaria (172–174), yet others failed to demonstrate
this relationship (144, 175, 176). Finally, other common viral
infections, such as Cytomegalovirus (CMV), may play a critical
role in influencing MTCT. One described mechanism has been
through enhancement of placental susceptibility to HIV
infection (177).

Maternal Immunological Factors
There are multiple maternal immunological factors associated with
increased risk of perinatal transmission, including low CD4+ T cell
count, CD4+ T cell percentage, and CD4/CD8 ratio (178). Shivakoti
et al. showed that high maternal soluble CD14 concentration during
the peripartum period was associated with increased risk of MTCT,
independent of maternal viral load, CD4+ T cell count and ART
exposure (179), implicating immune activation in transmission.

Adaptive immune responses play an important role in
transmission from mother to infant. MTCT is a unique setting
where HIV-1 acquisition occurs in the presence of naturally
elicited HIV-specific antibodies that are passively transferred
prior to birth. Several studies have examined the impact of
maternal antibodies on MTCT; however, there have been
conflicting results and their role in protecting infants against
HIV-1 transmission remains unclear. These contradicting results
may be explained by small cohort sizes, lack of control for the
other known risk factors for HIV transmission, timing, and
methods used in infant diagnosis, and potential clade-specific
differences in virus–antibody interactions. Initial studies
demonstrated that higher levels of maternal HIV-1 envelope
(Env)-specific IgG antibody responses were associated with
reduced transmission risk (180, 181).This association was not
observed in subsequent studies and research focus was shifted to
examine the effect of neutralizing antibodies (nAbs) and their
role in modulating the risk of transmission (182, 183). Work
conducted in nonhuman primates showed that passive
immunization of infants with a cocktail of HIV-1-neutralizing
antibodies provided partial protection against oral simian-
human immunodeficiency virus transmission (184).
Subsequent human studies showed that high levels of maternal
nAbs were correlated with reduced MTCT rates while others
failed to confirm this association (185–188). However, founder
viruses in infants are generally more resistant to neutralization
by maternal antibodies (189, 190), suggesting that the
transmitted variants are able to escape nAbs and supportive of
the idea that maternal antibodies may confer partial protection.

In a large cohort of non-breastfeeding HIV-1 infected women
enrolled in the pre-ART era Women and Infant Transmission
Study (WITS), Permar and her group found that maternal V3-
specific IgG binding responses and CD4 binding site-blocking
responses correlated and were independently predictive of
reduced MTCT risk (191). They also found that both binding
and neutralizing responses targeting the C-terminal region of
HIV envelope (Env) were associated with decreased risk of
transmission (191). Antibody effector functions beyond
neutralization have also been examined for their contribution
October 2021 | Volume 12 | Article 757400
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to MTCT. Maternal antibody-dependent cellular cytotoxicity
(ADCC) is thought to have a role in protection against HIV-1
transmission. In one such investigation, plasma and breast milk
obtained soon after delivery from 9 transmitting and 10 non-
transmitting women in Kenya demonstrated that breast milk
Env-specific IgG responses with ADCC activity were associated
with decreased MTCT risk (192). However, Pollara et al. found
no association of ADCC-mediating responses and MTCT risk in
HIV clade C breastfeeding women in Malawi (193). In addition
to antibodies and antibody effector functions, Lohman-Payne
et al. also reported breast milk HIV gag-specific IFNg responses
to be associated with protection fromMTCT via breastfeeding in
a Kenyan cohort (194).

Infant Immunological Factors
Most infants born to HIV-1 infected mothers do not become
infected despite having an immature immune system and repeated
exposures to HIV-1 throughout the peripartum and breastfeeding
periods. To survive to term, the developing fetus must avoid
generating an inflammatory response to the many foreign
maternal antigens to which it is exposed during development
resulting in a predominantly tolerogenic immune system in the
fetus and newborn (195). The tolerogenic environment is
facilitated by high levels of anti-inflammatory cytokines such as
TGFb and IL-10 (196), which likely subvert immune activation
and establishment of infection upon HIV exposure. TGFb also
directs naïve CD4+ T cell to differentiate to Tregs resulting in a
larger Treg pool in infants, representing 15% of fetal blood T cells
compared to 5% of adult blood T cells. These Tregs promote
immune tolerance and are long-lived (196, 197). Much of these
regulatory cells reside in intestinal tissue and are critical for
mucosal immune homeostasis. In addition to higher levels of
Tregs, the CD4+ effector cells of infants are predominantly of the
Th17 and Th2 phenotype (rather than Th1 as in adults) (198, 199).
Th17 cells are critical to maintaining the integrity of the intestinal
mucosal barrier and may thus restrict dissemination of infection.
Conversely, Tugizov and colleagues have reported lower levels of
innate proteins that restrict infection, such as defensins, in infant
compared to adult oral epithelia (43).

In the mother-child transmission pair, the infant may be
disadvantaged in that the transmitted virus in has already
adapted to evade a genetically similar immune system. Anti-
HIV-1 antibodies and T cells transferred to the child either
in utero or through breastmilk have pre-adapted to the transmitted
virus and may be ineffective. Additionally, because of shared HLA
alleles the transmitted virus may be preadapted to escape CD8+
T cells targeting HIV epitopes restricted by HLA alleles inherited
from the mother further complicating pediatric HIV-1 infection
(200, 201). HIV-specific cellular immune responses are detected in
exposed uninfected infants, but their role in influencing virus
acquisition is uncertain (202, 203).
IMPLICATIONS FOR CURE APPROACHES

The World Health Organization recommendations state that
all infants and children under two years of age with confirmed
Frontiers in Immunology | www.frontiersin.org 7
HIV-1 begin ART immediately at the time of diagnosis
irrespective of CD4+ T cell counts (204). Despite this
recommendation, HIV-1-infected children are one third less
likely to receive ART than infected adults (205). Reasons for
this include fewer drugs available for use by children, higher
treatment cost, and dependence on a caregiver to provide
ART (206). These factors can complicate the design and
implementation of cure studies in children.

Amajor barrier to HIV cure is the establishment of a reservoir
of HIV-infected cells that persists despite suppressive ART and
can give rise to rebound viremia if ART is interrupted. In adults,
it is well documented that viral reservoirs are established during
early stages of HIV infection (207) and this finding is supported
by the SIV/macaque model in which rapid seeding of the viral
reservoir within 3 days of infection has been described (208).
Furthermore, rebound of viremia is almost always seen after
ART discontinuation in both horizontally infected adults and
perinatally-infected children (209–211). However, little is known
about the exact timing of reservoir seeding in different MTCT
settings and whether there are differences in reservoir
establishment in relation to time of infection and mode of
transmission. Increased understanding of these factors may aid
in the development of approaches to eradicate viral reservoirs
and/or induce viral remission (sustained viral suppression in
absence of ART) in children.

The uniqueness of the in-utero transmission window allows
for rapid detection and treatment as children born to women
with HIV can be screened at birth. Such early detection is not
generally feasible in adult transmissions. Infants diagnosed at
birth via rapid point-of-care testing can begin ART within the
first few hours of life (212). Infections arising from intra- or post-
partum transmission will not be detected at the time of birth, so
follow-up care and repeated testing are required to monitor these
transmission modes. In these instances, early ART initiation is
not as practical in resource limited settings, although current
United States guidelines recommend triple drug prophylaxis
(given at therapeutic dosing) for neonates with high risk of
acquiring HIV infection.

Contemporary studies of HIV reservoirs in perinatally
infected infants and children have focused on in utero
transmission, following the description of the ‘Mississippi
child’. This child received ART between 30 hours and 18
months of age, and then remained persistently aviremic for 27
months after discontinuation of ART before rebound (209, 213).
In utero infection was documented, but the child did not develop
HIV-specific antibody or T cell responses, thought due to the
very early initiation of ART. Despite the eventual rebound, this
partial remission led to several clinical trials of very early ART
(typically considered to be within 48 hours) to limit the size of
the HIV reservoir and investigate the possibility of achieving
post-treatment control after ART interruption. Results from the
Early Infant Treatment (EIT) study in Botswana have
demonstrated that very early ART leads to an exceptionally
small reservoir of intact proviral HIV DNA as well as an
improved innate and adaptive antiviral immune response
compared to delayed ART (214). As of this writing, results
from the ART interruption phase of the very early ART trials,
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including EIT and IMPAACT P1115 (215), have not been
published. Kuhn and colleagues describe challenges in meeting
predetermined virologic and immunologic criteria for ART
interruption in the LEOPARD trial of very early/early ART
conducted in South Africa (216).

The South African Children with HIV Early antiRetroviral
therapy (CHER) trial (217), that included children with in utero
and intrapartum HIV infection, has led to a number of key
findings regarding persistent HIV reservoirs. One report
demonstrated rare intact proviral sequences in children after 6-
9 years of ART initiated after 2 months of age but within the first
year of life using near full-length proviral amplification and
sequencing (218). This group further identified clones of infected
cells shortly after birth that could also be detected after almost a
decade on ART, suggesting that clonal expansion of reservoir
cells maintains HIV persistence in children as it does for adults
(219). Two additional case reports of long-term HIV remission
have emerged, one from the CHER trial, with unknown timing of
infection (in utero vs intrapartum) (220) and the other from a
French cohort, with presumed intrapartum transmission (221),
both of whom started ART at 2-3 months of life.

There have been relatively fewer studies of reservoir
characteristics in children infected postpartum through
breastfeeding. However, presently over half of new infections
occur postnatally through breast milk (9). As this route has
become predominant in perinatal HIV infection, a nonhuman
primate model has been established to better understand virologic
and immunologic features of lentivirus infection following
postpartum transmission, more precisely define anatomic sites of
virus persistence, and test strategies to promote reservoir eradication
or remission (46, 47, 222–224). These and other ongoing studies
may inform the design of future cure-directed clinical trials in
children with HIV infection acquired through breast milk.

Regardless of the mode of transmission earlier ART is
generally associated with a smaller reservoir during viremia
suppression (210, 214, 225–237), although starting ART within
14 days of life may not lead to significantly greater HIV DNA
persistence compared to within 48 hours of life (238). ART
initiation within 8 days has also been associated with a faster HIV
DNA decay compared to ART started at 5 months (239). Female
sex and maternal acute HIV infection during pregnancy have
been associated with higher levels of persistent HIV DNA (240).

While protocol-specified ART interruption has not occurred
in recent clinical trials, studies of intermittent viremia vs.
sustained viral suppression can be informative to identify
biomarkers that may be predictive of viral rebound dynamics.
These findings are by nature complicated by behavioral factors,
including adherence to ART regimens. Millar and colleagues
assessed factors associated with intermittent viremia in in utero
infected infants started on early ART (in the first 3 weeks of life)
(240). A smaller reservoir size as measured by total HIV DNA in
PBMCs was not correlated with maintained viral suppression
whereas a longer time to initial viral suppression was, implicating
immunologic contributions to aviremia, although this finding
may have been influenced by ART nonadherence. In children in
the EIT study who started on ART at < 7 days of life, sustained
Frontiers in Immunology | www.frontiersin.org 8
HIV RNA suppression was associated with negative HIV
serostatus and negative qualitative HIV DNA PCR at ~20
months (225). HIV seronegativity has also been described in
other studies of early or very early ART and has been proposed as
an estimate for reservoir size (227, 228, 241–244).

Identification of cure strategies that target latently infected cells,
allow immune recognition and clearance of the reservoir, and/or
promote viral remission are currently considered extremely high
priority for the field. Unlike in adults, few cure strategies have been
tested in children to date, with the exception of very early ART that
it is now understood is insufficient to lead to cure in the majority of
individuals. However, there are several approaches that may provide
benefit in the setting of perinatal HIV transmission, and their study
should be carefully considered for certain populations (Figure 2).
The design of such studies should take into consideration not only
the timing of ART initiation, but also the duration of ART (and
therefore age of the trial participant), as well as the known or
presumed mode of HIV transmission (in utero, intrapartum, or
postpartum). For example, a neonate infected in utero and initiating
very early ART is likely to be vastly different both virologically and
immunologically from an adolescent who acquired HIV through
breastfeeding with delayed ART initiation and periods of
unsuppressed viremia over years. In the former case, adding the
cure directed therapy at the time of early ART initiation may lead to
an extremely small reservoir size (or even prevent reservoir
establishment in the best-case scenario). This cure-directed
therapy might include one or multiple broadly neutralizing
antibodies delivered by passive (as is being tested in IMPAACT
2008 (215) or active immunization along with ART. A novel
proposed strategy, termed “surge and purge,” combines very early
ART, passive antibody administration, and immune stimulation to
destabilize reservoir establishment (245). Infants and children with
very small reservoirs may also be good candidates for approaches
designed to silence HIV expression (“block and lock”). For the
school aged or adolescent child with a larger reservoir size, the “kick
and kill” approach may be more effective, with a latency reversal
agent used to reactivate virus expression followed by immune-based
clearance of infected cells. Studies in nonhuman primates support
the notion that pre-existing reservoir size as well as age-related
factors may influence susceptibility to latency reversal (246, 247).
Therapeutic HIV vaccines designed to boost antiviral T cell
responses may have benefit in kick and kick strategies targeting
established infection (223, 248) and possibly in limiting reservoir
size early in infection, although in both settings the impact may
depend on the child’s age at vaccination, the timing of ART, and the
degree of immune exhaustion present. Results from the
HVRRICANE trial are forthcoming, in which a prime-boost
vaccine strategy will be tested in combination with a TLR4
adjuvant (hypothesized to reverse latency) in HIV-1-infected
children with history of early ART or previous immunization
with one of the vaccine components (215).

In summary, HIV MTCT is promoted by distinct
immunopathogenesis for the three different routes of
transmission that may also affect HIV persistence. Consideration
of the complex interaction between viral, maternal, and fetal/
infant factors may enhance the pursuit of strategies to achieve an
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HIV cure for pediatric populations. Future preclinical and clinical
trials from the neonatal period through adolescence will further
elucidate how MTCT influences the potential for HIV cure.
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