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Abstract

Microscopic examination of pathology slides is essential to disease diagnosis and biomedical 

research. However, traditional manual examination of tissue slides is laborious and subjective. 

Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and 

produces massive data that capture tumor histologic details at high resolution. Furthermore, the 

rapid development of deep learning algorithms has significantly increased the efficiency and 

accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming 

a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment 

provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic 

targets. Nucleus segmentation and classification are critical to pathology image analysis, 
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especially in characterizing and quantifying the tumor microenvironment (TME). Computational 

algorithms have been developed for nucleus segmentation and TME quantification within image 

patches. However, existing algorithms are computationally intensive and time consuming for WSI 

analysis. This study presents Histology-based Detection using Yolo (HD-Yolo), a new method 

that significantly accelerates nucleus segmentation and TME quantification. We demonstrate that 

HD-Yolo outperforms existing WSI analysis methods in nucleus detection, classification accuracy, 

and computation time. We validated the advantages of the system on 3 different tissue types: lung 

cancer, liver cancer, and breast cancer. For breast cancer, nucleus features by HD-Yolo were more 

prognostically significant than both the estrogen receptor status by immunohistochemistry and the 

progesterone receptor status by immunohistochemistry. The WSI analysis pipeline and a real-time 

nucleus segmentation viewer are available at https://github.com/impromptuRong/hd_wsi.
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Introduction

Histopathologic examination of tissues is the cornerstone of disease diagnosis and prognosis. 

In this procedure, a pathologist examines cells, their spatial organization and tissue 

structure, under a microscope, seeking hints of disease and its effect on the tissue. It 

requires experienced pathologists to identify and interpret subtle morphologic patterns 

in histopathology slides. Manual examination of pathology slides is laborious and time 

consuming; moreover, the results are subjective among hospitals and individuals. With 

advances in imaging technology, whole-slide image (WSI) scanning of tissue slides is 

becoming a routine clinical procedure. Advanced whole-slide scanners are capable of 

rapidly producing massive numbers of WSIs that capture histopathologic details in high 

resolution. As a result, digital pathology has seen increasing adoption in clinical practice and 

diagnosis. Recently, deep learning algorithms have been developed and used for pathology 

image analysis.1-3 The advanced algorithms have been applied in primary diagnosis,4-6 

prognosis studies,7,8 and association analyses between pathology image and genomic data.9

A tumor is a mass of tissue with complex structures consisting of cancer cells and 

surrounding nonmalignant cells, which form the tumor microenvironment (TME). Studying 

and characterizing TME can offer valuable insights into the initiation, progression, and 

metastasis of tumors, as well as potential therapeutic targets. Nucleus segmentation and 

classification are key steps in digital pathology image analysis. Several algorithms have 

been developed to precisely identify nuclei in pathology image analysis, which enable 

researchers to characterize and quantify TME by extracting TME-related imaging features 

and associating these features with patient outcomes and genomic information. For example, 

Wang et al10 proposed the Histology-based Digital (HD) Staining algorithm for nucleus 

localization, classification, and masking. HD-Staining relies on the Mask R-CNN11 instance 

segmentation algorithm. Mask R-CNN is constructed from the following components: (1) 

a deep convolutional neural network (CNN) backbone with a feature pyramid network 

(FPN)12 to extract imaging features from the raw image, (2) a region proposal network13 
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to localize potential objects, (3) a detection head to classify detected objects into different 

types, and (4) a mask head to segment the boundary of detected objects. Mask R-CNN 

processes object localization and classification separately, and therefore, it is considered 

a 2-stage object detection algorithm. Alternatively, algorithms that merge the second and 

third components are considered 1-stage object detection algorithms. In earlier years, 1-

stage object detection algorithms had the advantage in computational efficiency, whereas 

2-stage object detection algorithms achieved better accuracy and coverage by sacrificing 

speed, especially on small objects. Using Mask R-CNN as its main nucleus segmentation 

algorithm, HD-Staining takes hours to analyze a single slide and is inefficient at analyzing 

large-scale data sets.

To reduce the computational cost of nucleus segmentation, Graham et al14 proposed HoVer-

Net, an approach that directly applied 3 distinct branches atop image features extracted by 

a VGG (Visual Geometry Group) backbone: a nucleus classification branch, a nucleus pixel 

branch, and a HoVer branch. HoVer-Net relied on energy-based post-processing to generate 

nucleus masks from the outputs of the nucleus pixel branch and HoVer branch. Owing to 

its network design and memory cost, HoVer-Net accepts relatively small patches (80 × 80 

pixels) as input and takes significant computational time for its post-processing masks.

Both HD-Staining and HoVer-Net algorithms perform well in the analysis of pathology 

image patches. However, their computational requirements are prohibitively large for WSIs, 

which greatly limits their application to WSI analysis. Recent developments in deep learning 

brought forth more efficient object detection algorithms applicable to varying speed and 

accuracy requirements. For example, Cascade R-CNN15 provides high-quality 2-stage 

detection for dense and occluded objects. EfficientDet16 improves detection efficiency and 

accuracy under resource constraints by automatically selecting network designs through a 

compound scaling approach and achieves the highest performance in comparison to other 

networks across multiple benchmarks. FCOS17 simplifies 1-stage detection by completely 

avoiding anchor box operations. DETR18 and deformable-DETR19 are end-to-end object 

detectors by directly applying a transformer encoder—decoder on top of feature maps. 

Accounting for algorithm stability and efficiency, the most widely used 1-stage detection 

algorithms are that of the Yolo family.20 With advanced training and network design, 

(Scaled-)Yolov4,21,22 YoloR,23 YoloX,24 Yolov6,25 and Yolov726 enable 1-stage detection 

algorithms to achieve comparable performance to that of 2-stage algorithms.

In this study, we developed Histology-based Detection using Yolo (HD-Yolo), an algorithm 

for nucleus detection, segmentation, classification, and TME-related feature extraction 

for WSI analysis. HD-Yolo enhances computational efficiency and enriches slide-level 

TME features. HD-Yolo provides 3 key contributions: (1) HD-Yolo enables simultaneous 

detection and segmentation by including a segmentation module within the traditional Yolo 

architecture. (2) HD-Yolo significantly increases the computation speed and reduces the 

requirement of computational resources for WSI analysis. (3) HD-Yolo uses a density-based 

TME feature extraction module to summarize WSI-level and region of interest (ROI)—

level features. We demonstrated the performance of HD-Yolo by applying it to different 

tissue types: lung cancer, liver cancer, and breast cancer. We further applied HD-Yolo to 

The Cancer Genome Atlas—Breast Cancer (TCGA-BRCA) data set27 and illustrated the 
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prognostic value of image features extracted by HD-Yolo through survival analysis. Finally, 

to demonstrate its usage, we developed a web front end that implements HD-Yolo and 

displays WSI results.

Materials and Methods

Data Sets

Lung Adenocarcinoma Data Set—The lung adenocarcinoma data set curated in the 

HD-Staining paper10 contains 127 patches (500 × 500 pixels) extracted from 39 pathologic 

ROIs in the National Lung Screening Trial data set.28 Image patches were split into training, 

validation, and testing sets based on slide ID. Specifically, 105 patches from 29 slides were 

assigned to training, 12 patches from another 5 slides were assigned to validation, and the 

other 10 patches from the remaining 5 slides were reserved for testing. Nuclei in these image 

patches were manually labeled and segmented by a board-certified pathologist (L.J.) into 

6 different categories: tumor nuclei, stromal nuclei, lymphocyte nuclei, macrophage nuclei, 

red blood cells, and karyorrhexis. More than 12,000 cell nuclei were included in the training 

set (tumor nuclei 24.1%, stromal nuclei 23.9%, lymphocytes 29.5%, red blood cells 5.8%, 

and others 16.7%), whereas 1227 and 1086 nuclei were included in the validation and testing 

sets, respectively.

Liver Tissue Data Set—The liver tissue data set is curated from 76 hepatic hematoxylin 

and eosin (H&E) slides (×40 magnification) in liver tissues. These slides consist of 2 

normal mouse liver slides, 9 normal human liver slides, 2 cirrhotic human liver slides 

without hepatocellular carcinoma, and 63 cirrhotic human liver slides with hepatocellular 

carcinoma. Fifty-one image patches (500 × 500 pixels) in nonmalignant regions were 

randomly selected, and nuclei in these patches were manually labeled by pathologist (L.J.) 

into 4 categories: hepatocyte nuclei, stroma nuclei, lymphocyte nuclei, and red blood cells. 

The 51 image patches were split into 35 for training, 8 for validation, and 8 for testing.

Breast Cancer Data Set—The publicly available NuCLS data set29 consists of many 

image patches extracted from breast cancer images from the TCGA Data set.27 Image 

patches were split into single-rater and multi-rater data sets (inferred P-truth testing 

data set). Nuclei within the patches were annotated through the collaborative effort of 

pathologists, pathology residents, and medical students. The corrected single-rater data set 

was collected with high-quality annotations from a team of 25 nonpathologists and further 

corrected and approved by 1 of the 7 experienced pathologists. The single-rater data set 

was split into 5 different folds (fold1-fold5) for training and validating nucleus detection 

and segmentation algorithms. The multi-rater data set is a relatively smaller cohort validated 

by multiple pathologists and is, therefore, suitable as an independent testing data set. The 

corrected single-rater data set contains 1744 image patches, 54,916 annotations with class 

labels, and 27,976 unlabeled annotations. The multi-rater evaluation data set contains 53 

image patches, 1203 annotations with class labels, and 150 unlabeled annotations. The 

nuclei were assigned to 20 subcategories and 4 superclasses: tumor, stromal, stromal tumor-

infiltrating lymphocytes (sTILs), and others. All models compared in this study were trained 

and validated on fold1 in the corrected single-rater data set and further evaluated on the 
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multirater data set. Here, we report superclass performances for ease of comparison with 

other models and the statistics reported in the original papers.

The Cancer Genome Atlas—Breast Cancer Data Set—We analyzed the prognosis 

of breast carcinoma based on the H&E slides and patient clinical information available 

in the TCGA-BRCA data set. Among all 1061 patients with pathology images, 653 

infiltrating ductal carcinoma (IDC) and 169 infiltrating lobular carcinoma (ILC) female 

patients with confirmed tumor stage information were used in this study. Patients were split 

into 80% training (658 patients) and 20% testing (164 patients) stratified by histologic types. 

Supplementary Table S1 summarizes the patient demographic and clinical information in the 

training and testing data sets.

Methodology in Histology-Based Detection Using Yolo Framework

Figure 1 illustrates the overall workflow of the HD-Yolo system. For each slide, we first 

divided the whole tissue region into small patches (640 × 640 pixels at ×40 magnification). 

We used a Yolo-based object segmentation algorithm (Fig. 1A) to quickly locate nucleus 

coordinates, identify nucleus type, and extract shape morphologic features. We then 

summarized the above information into spatial TME features using the feature extraction 

pipeline (Fig. 1B). The feature extraction pipeline focuses on selected image patches in the 

ROI and analyzes the entire slide for a comprehensive characterization of the TME.

Histology-Based Detection Using Yolo Nucleus Segmentation Model Architecture

The nucleus detection and segmentation model in the HD-Yolo system were constructed 

under the Yolo architecture with a customized design, as illustrated in Figure 1A. We used 

Yolov5’s CSPDarkNet as the backbone for image feature extraction.22 CSPDarkNet uses 

Cross Stage Partial Network layers to partition and merge the original feature maps in 

DarkNet for cross-stage communication. We then applied the Bi-FPN16 to blend backbone 

feature maps at different resolutions. We further used the YoloX decoupled detection 

head24 to localize and classify objects. As 1-stage object detection algorithms, the Yolo 

family cannot directly provide object masks for detected objects; therefore, we built an 

additional multi-ROIAlign + fully convolutional network (FCN) head on top of the detection 

workflow. For the nucleus detection task, we observed that the YoloX anchor-free decoupled 

detection head achieved better accuracy than the merged head used in Yolov3 to Yolov5. 

The decoupled head was capable of further splitting nucleus location and type information 

for representative analysis. For the segmentation task, our segmentation balanced accuracy 

and speed. The Bi-FPN head provides rich information for both nucleus masking and 

background segmentation. Compared with the Mask R-CNN mask head, we reduced 

the number of convolutional layers and channels to greatly increase the computational 

speed and memory cost. Compared with prototype-based method deployed in YoloACT,30 

YoloACT++,31 and Yolov5 segmentation, our approach can generate more accurate masks 

for occluded nuclei with competitive speed. With the mask head added, HD-Yolo is not 

strictly considered a 1-stage object detection algorithm. However, its overall computational 

speed is competitive with that of the latest Yolo variations and is still much faster than 

existing nucleus segmentation algorithms.
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Whole-Slide Image Nucleus Density-Based Tumor Microenvironment Feature Extraction

Owing to computational speed limitations, most existing TME analysis systems are 

deployed on a limited number of randomly selected patches when analyzing large-scale 

high-resolution slides. For instance, the HD-Staining pipeline characterizes nucleus spatial 

organization by building Delaunay triangle graphs and summarizes nuclei connections in 

100 patches (1024 × 1024 pixels) randomly sampled from the ROI. This approach relies on 

human-labeled ROIs, and the results would be potentially biased according to the size and 

number of available patches inside the ROI. When ROIs are large, important subregions may 

be ignored from calculation. In contrast, when ROIs are small, overlapped subregions are 

likely to be analyzed multiple times. To alleviate the overlapping issue, one may sample a 

small number (eg, 10) of larger patches (2048 × 2048 pixels) to include more connections in 

a single image, but this increases variance during summarizationSampling a higher number 

(eg, 100) of smaller patches (1024 × 1024 pixels) reduces between-patch variance but 

excludes connections at the patch border from the calculation. Our HD-Yolo system enables 

fast nucleus segmentation over whole slides and thus makes summarizing spatial properties 

globally feasible. We refined the procedure of Delaunay triangulation by automatically 

selecting the ROI based on nucleus densities without human labeling. In addition to ROI-

based TME features, we expanded several slide-level TME features by analyzing nucleus 

distribution and densities over all nuclei in the slide (Fig. 1B).

The following comprises HD-Yolo’s TME feature extraction process. First, the nucleus 

segmentation algorithm is run on whole slides, and the coordinates, types, and sizes of all 

detected nuclei are recorded. Each type of nuclei is then allocated into a 2D point cloud, 

and kernel smoothing32 is applied based on nucleus size to generate a density map. These 

density maps reflect the distribution of different types of nuclei in the slide. To extract slide-

level TME features, the following intensity features are calculated for each pair of nuclei 

type_i and type_j based on their density maps map_i and map_j: (1) the dot product between 

map_i and map_j, which summarizes the overall interactions between type_i and type_j; 
(2) the projection from map_i to map_j, which represents the level of type_j influenced 

by type_i and vice versa; and (3) the cosine similarity between map_i and map_j, which 

represents the interaction intensity between type_i and type_j. These density features are 

irrelevant to the size and number of patches sampled and are robust to ROI size variation. 

To extract ROI-based TME features, the above analysis is used to automatically decide ROIs 

and build a Delaunay triangle graph in each region. By default, regions with high tumor 

densities and regions with high interaction intensities are potential ROIs. Delaunay triangle 

triplets are calculated in each region, and the edge probabilities for each pair of nuclei type_i 
and type_j are averaged over all regions.

Histology-Based Detection Using Yolo Performance Evaluation Criteria

Evaluation of Nucleus Detection and Segmentation Performance—We compared 

HD-Yolo with existing models using the following statistics:

• Detection coverage: the percentage of ground truth nuclei detected by the model

• Nucleus classification accuracy: the percentage of ground truth nuclei that was 

further correctly classified by the model
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• Matthews correlation coefficient (MCC): a score of the model’s overall 

performance considering accuracy and coverage among different classes

• Median intersection over union (mIoU): the mIoU between the predicted mask 

and the original mask measures the segmentation similarity between detected 

nuclei and ground truth nuclei

• Precision: the percentage of true nuclei among detected nuclei

• Recall rate: how many ground truth nuclei are detected

• F1 score: the harmonic mean of precision and recall

• Time per image: the mean inference speed for the whole data set on a Tesla V100 

GPU with 32 GB of memory.

Coverage, accuracy, MCC, precision, recall, and F1 score were evaluated at thresholding, 

with the intersection over union of the ground truth box and prediction box >0.5. For 

precision, recall, and F1 score, we eliminated the unbalancing between each class by 

calculating the class-specific statistics and then averaging the scores over all classes. For 

time per image, we recorded the total computational time from when the image was loaded 

into the model to when the results of the whole data set were exported and then averaged 

over the number of images. More specifically, we included the postprocessing time of each 

model in the calculation, whereas file reading, plotting, and result exporting times were 

excluded. We selected the highest batch size and number of processors to allow maximal 

computational resources (GPU, CPU, etc.) for each model.

Evaluation of Whole-Slide Image Analysis and Feature Extraction—We 

compared the WSI inference and feature extraction times of different algorithms when 

processing slides of different sizes from the TCGA-BRCA data set. The regularized Cox 

proportional hazard (CoxPH) model33-35 was used to analyze prognosis hazard ratios, and 

the ElasticNet algorithm was used for feature selection. We applied 2 prognosis analyses 

separately on IDC patients alone and on all IDC and ILC patients. As there were 0 death 

events for ILC in the testing data set, we did not perform separate analyses for ILC. For 

each data set, we built multiple survival models with different sets of features: (1) clinical 

features only; (2) clinical features plus Delaunay graph-based TME features defined in HD-

Staining; (3) clinical features plus density-based TME features as defined in the Whole-Slide 

Image Nucleus Density-Based Tumor Microenvironment Feature Extraction section; and (4) 

ElasticNet-selected features from all features listed above.

For each survival model, the C index is used to quantify the model’s ability to correctly 

provide a reliable ranking of the survival times by calculating the concordance between 

predicted risk scores and overall survival. We first used a grid search strategy to select the 

best hyperparameters according to the 10-fold cross-validation C index and then applied the 

model with the highest cv C index to the testing data set. We report the cross-validation C 

index in the training data set and the C index (mean ± SE) in the testing data set to measure 

the performance of each survival model. Moreover, we have calculated the time-dependent 

receiver operation characteristic curve and determined the area under the curve (mean ± 
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SE) on the testing data set for the survival analysis. The feature coefficients, permutation 

importance, and P values are also provided to demonstrate the feature selection results.

Histology-Based Detection Using Yolo Implementation Details

HD-Yolo was developed in Python 3.9. The Yolo-based nucleus segmentation 

algorithm was modified from the official YoloX (https://github.com/MegEngine/YOLOX) 

and Yolov5 repositories (https://github.com/ultralytics/yolov5, commit: 7f5724ba4b3e42 

1d4c9162742810c52248d06ecd). We modified the Bi-FPN backbone and YoloX head with 

our mask support and immigrated the model into the Yolov5 distributed data infrastructure. 

We further reimplemented the training, validation, and testing pipeline to support intensive 

data augmentation, joint detection, and segmentation training and customized the data 

with missing and unclassified labels/masks and whole-slide inference. Major packages 

used in HD-Yolo development and evaluation include PyTorch 1.10.1, torchvision 0.11.2, 

scikit-image 0.18.3, scikit-learn 1.0.2, and openslide 3.4.1. For training and inference, we 

distributed the data across 4 × 32 GB Tesla V100 GPUs and deployed the model on a 

Tesla V100 GPU. The regularized CoxPH model was built with the scikit-survival 0.17.2 

package, and the permutation importance score was calculated with ELI5 0.11.0 in Python. 

The survival statistics C index and P value were calculated using the R packages survival, 
glmnet, and survcomp in R 3.6.1.

For comparison purposes, we implemented the following algorithms as described in their 

original publications and default settings in GitHub:

• HD-Staining: https://github.com/matterport/Mask_RCNN (Mask R-CNN with 

resnet50 backbone, commit: 3deaec5d902d16e1daf56b62d5971d428dc920bc)

• Mask R-CNN: We customized the PyTorch Mask R-CNN with EfficientNet-B3 

backbone36 and softNMS37 for better accuracy and faster speed

• HoVer-Net: https://github.com/vqdang/hover_net

• Yolov7: https://github.com/WongKinYiu/yolov7

• Yolov6: https://github.com/meituan/YOLOv6

• ScaledYolov4: https://github.com/WongKinYiu/ScaledYOLOv4

• FCOS: https://github.com/Adelaide-AI-Group/FCOS

• Deformable-DETR: https://github.com/open-mmlab/mmdetection

• EfficientDet: https://github.com/rwightman/efficientdet-pytorch

• Cascade R-CNN: https://github.com/open-mmlab/mmdetection.

Results

Histology-Based Detection Using Yolo Nucleus Segmentation Performance

We compared HD-Yolo’s performance on the lung cancer data set with that of 3 existing 

nucleus segmentation algorithms: HD-Staining, PyTorch Mask R-CNN, and HoVer-Net. 

All models were evaluated using 500 × 500 image patches at ×40 magnification. Nuclei 
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were detected, segmented, and classified into 6 categories: tumor nuclei, stromal nuclei, 

lymphocyte nuclei, macrophage nuclei, red blood cells, and karyorrhexis. The performance 

and speed of each model on the testing and validation data sets are listed in Table 138 and 

Supplementary Table S2.

We observed that HD-Yolo achieved superior performance and speed among all models: 

HD-Yolo has ~5% greater coverage on ground truth nuclei than HD-Staining and HoVer-

Net, HD-Yolo achieves ~6% higher accuracy than HD-Staining and ~12% higher accuracy 

than HoVer-Net, and HD-Yolo is 15 times faster than HD-Staining (0.01 seconds vs 0.15 

seconds) and 100 times faster than HoVer-Net (0.01 seconds vs 1 second).

For the task of nucleus segmentation, HD-Yolo generated smooth, round masks for different 

types of nuclei and provided accurate masks for occluded nuclei. HD-Yolo’s mIoU is 

competitive with that of HD-Staining and Mask R-CNN and is significantly higher than 

that of HoVer-Net and Yolov5 segmentation. As shown in Figure 2, we observed that 

HoVer-Net failed to segment occluded nuclei and tended to split 1 large nucleus into 

several smaller ones. Yolov5 segmentation tends to generate rectangle-shaped nuclei for 

occluded objects. We ascribe the success of our segmentation head to the following 

reasons: (1) Detection features are generally distinct from segmentation features, especially 

for 1-stage detection algorithms, and Bi-FPN provides important intrinsic image features 

for precise segmentation. (2) Nucleus morphologic features are relatively similar across 

different types, and a light-weight FCN can provide satisfactory masks at a considerable 

low computational cost. (3) The ROIAlign + FCN-based mask heads (used by HD-Yolo, 

HD-Staining, and Mask R-CNN) are more robust than heuristic post-processing (HoVer-Net) 

and prototype-based mask head (YoloACT, Yolov5 segmentation) on irregularly shaped 

nuclei and occluded nuclei.

We further used transfer learning to build a liver nucleus segmentation model from the above 

lung cancer HD-Yolo model (Fig. 3A). The liver cancer data set contained only 35 training, 

8 validation, and 8 testing patches, which is relatively small compared with the lung cancer 

study. The model achieved 0.9287 coverage and 0.8437 accuracy on the testing data set after 

only 10 epochs of fine-tuning (Fig. 3B), demonstrating HD-Yolo’s generalizability.

Histology-Based Detection Using Yolo Object Detection Performance

In addition, we compared HD-Yolo detection performance with that of advanced object 

detection algorithms on the large-scale NuCLS benchmark data set. The NuCLS data set 

contains missing labels and lacks complete mask annotations; moreover, not all models 

included in this comparison were able to provide masks without extra modification. 

Therefore, we focused only on detection performance based on 3 predefined superclasses: 

tumor, stromal, and sTILs. As shown in Table 2, HD-Yolo achieved similar performance 

to that of a variety of advanced object detection algorithms. We observed that 1-stage 

algorithms (HD-Yolo, Yolov6, and Yolov7) and 2-stage algorithms (EfficientDet and 

Cascade R-CNN) achieved the highest F1 score. However, HD-Yolo, Yolov6, and Yolov7 

outperformed other models in computational speed. Surprisingly, FCOS and deformable-

DETR maintained comparable precision but had significantly lower coverage compared 

with other methods. This could be because of FCOS and deformable-DETR’s use of heat 
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map and transformer-based approaches, which are not suitable for cases where the same 

type of nuclei at different sizes are densely overlapped. Overall, we believe that HD-Yolo 

can achieve state-of-the-art performance compared with currently available object detection 

algorithms and provide reliable breast cancer WSI analysis results.

Histology-Based Detection Using Yolo Whole-Slide Image Analysis

HD-Yolo Whole-Slide Image Inference With Single and Ensembled Models—
Ensemble modeling is a common method for improving overall inference performance by 

combining multiple models without altering the network structure. To build a more accurate 

breast cancer model, we ensembled 5 independent nucleus segmentation models trained 

and validated on 5 predefined splits (fold1-fold5) in the NuCLS corrected single-rater data 

set. During inference, the input images went through 5 different models, and duplicated 

detections were filtered by nonmaximum suppression. We further halved the inference speed 

without influencing performance by switching from singleprecision (float32) models to 

half-precision (float16) models. Table 3 shows the performance and speed of the ensembled 

model and every independent model on the inferred P-truth testing data set. The ensemble 

model achieved even higher performance, with an ~5% higher detection rate (coverage), 

~7% higher detection accuracy, ~6% higher recall, and ~7% higher MCC compared with 

the single models. Therefore, we believe that both the single models and the ensembled 

model can be generalized to large-scale breast cancer whole-slide analysis for TME feature 

extraction; single models may be used for fast screening, whereas the ensembled model can 

provide more accurate nucleus detection results. Performance for each superclass (tumor, 

stromal, and sTILs) and confusion matrices are summarized in Supplementary Tables S3 and 

S4.

We analyzed all H&E slides in the TCGA-BRCA data set and compared inference speeds 

between HD-Yolo single, HD-Yolo ensemble, HD-Staining, and HoVer-Net. For HD-Yolo 

and HD-Staining, we roughly extracted the tissue region from each slide by thresholding 

and scanned the slides with a 512 × 512 window. For HoVer-Net, we used the default 

tissue extraction and patch preparation pipeline as defined in the original repository. For 

HD-Staining and HoVer-Net, we used the maximum possible batch size that fit in a 32-GB 

memory GPU and the maximum amount of CPU for postprocessing. For HD-Yolo, we 

limited GPU memory to <16 GB (for a 512 × 512 window with a batch size of 32) and 

used at most 32 CPU threads (16 core) to mimic a small server setup with balanced CPU 

and GPU resources. An example of HD-Yolo’s whole-slide inference results can be found in 

Supplementary Figure S1. Table 4 summarizes whole-slide inference speeds for all models 

on the TCGA-BRCA data set based on tissue sizes under different quantiles: minimum, 

median, 95% quantile, and maximum. The HD-Yolo single model took only 1/30 to 1/25 of 

the time used by HD-Staining and 1/130 to 1/50 of the time used by HoVer-Net. The more 

accurate ensemble HD-Yolo model took double the processing time of the single version. 

Accounting for the substantial processing time expended when exporting the morphologic 

results of tens of thousands of nuclei, HD-Yolo’s overall speed is about 10 to 15 times 

faster than HD-Staining and 50 times faster than HoVer-Net. It is noteworthy that in this 

comparison, HD-Yolo uses only half of the computational resources used by HD-Staining 

and HoVer-Net but is already 50 to 100 times faster. We expect even greater improvement on 
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large slides with more GPU memory and CPU cores by increasing image patch size, batch 

size, and industrial/organizational workers. As the majority of slides (>95% quantile) took 

<5 minutes to process with the single model and ~10 minutes with the ensemble model, the 

whole data set (1061 slides) took about 12 hours with the single model and 1 day with the 

ensemble model on a server with 4 GPUs. The same task would take 1 to 2 weeks with 

HD-Staining and longer with HoVer-Net.

The Cancer Genome Atlas Breast Cancer Survival Analysis Based on Clinical and Nucleus 
Spatial Features

We extracted TME features based on the nucleus segmentation results from the fast HD-

Yolo single model computed in the Histology-Based Detection Using Yolo Whole-Slide 

Image Analysis section and built a CoxPH model for breast cancer prognosis. For each 

slide, we constructed a spatial density map based on the nucleus type, location, and shape 

morphologic features of nuclei belonging to the 3 superclasses: tumor, stromal, and sTILs. 

We include in the analysis the 15 Delaunay graph-based interaction features defined in 

HD-Staining and the 12 nucleus density-based TME features in HD-Yolo defined in the 

Whole-Slide Image Nucleus Density-Based Tumor Microenvironment Feature Extraction 

section. In addition to the image-based TME features, the following clinical features are 

included in the analysis: age at diagnosis, American Joint Committee on Cancer pathologic 

tumor stage (American Joint Committee on Cancer tumor stage), estrogen receptor status by 

immunohistochemistry (IHC), progesterone receptor status by IHC, and human epidermal 

growth factor receptor 2 by IHC. Detailed information regarding the TME and clinical 

features can be found in Supplementary Table S5.

We applied the regularized CoxPH model to analyze prognosis hazard ratios and used 

the ElasticNet algorithm for feature selection. The cross-validation C index, the testing C 

index (mean ± SE), and the testing time-dependent area under the curve (mean ± SE) for 

different models and feature sets can be found in Figure 4A. We observed that, despite 

the clinical features of age at diagnosis and tumor stage, tumor-infiltrating lymphocytes 

(TIL)-related TME features defined by HD-Yolo are highly correlated with survival 

outcomes (Supplementary Table S6 provides feature importance scores and P values). 

l_t.proj.prob has the highest negative coefficient, whereas t_l.proj.prob has the second 

highest positive coefficient other than age (Fig. 4B). These 2 TIL-related TME features 

are more prognostically significant and have a stronger predictive value than the estrogen 

receptor status by IHC, progesterone receptor status by IHC, and human epidermal growth 

factor receptor 2 by IHC. The l_t.proj.prob (P < .05) feature represents the degree to which 

tumor tissue has been invaded by sTILs. A high l_t.proj.prob indicates that large numbers 

of tumors in tissue regions have been invaded by sTILs and are strongly interacting with the 

lymphocytes. This is consistent with the prognostic model that an increase in l_t.proj.prob 
will likely reduce the hazard ratio and lead to better survival outcomes. In contrast, the 

t_l.proj.prob (P < .01) feature represents the degree to which sTILs are surrounded by 

tumor cells. A high t_l.proj.prob indicates that lymphocytes have been overwhelmed by 

surrounding tumor nuclei and thus cannot effectively inhibit tumor tissue growth. This is 

consistent with the prognostic model that an increase in t_l.proj.prob will likely increase the 

hazard ratio and lead to worse survival outcomes.
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Discussion

In this paper, we proposed HD-Yolo, a system for fast, accurate nucleus segmentation and 

rich TME feature extraction. Our comparison studies show that the HD-Yolo algorithm 

outperformed existing algorithms (Mask R-CNN, HoVer-Net, etc.) in nucleus detection 

and segmentation accuracy. HD-Yolo also provided high-quality masks without sacrificing 

efficiency in contrast to advanced object detection algorithms. With its fast nucleus detection 

algorithm, HD-Yolo significantly accelerated WSI analysis while using less computational 

resources. In addition, the TME features summarized by HD-Yolo’s nucleus density-based 

method are highly correlated with breast cancer patient prognosis (prognosis was not 

assessed for lung or liver) and provide meaningful explanations regarding tumor progression 

and survival. The efficient and accurate HD-Yolo pipeline can be useful for a variety of tasks 

in pathology imaging analysis. In summary, we expect HD-Yolo to be a powerful tool that 

will facilitate the analysis of digital pathology and provide meaningful biological insights.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HD-Yolo system workflow. (A) Nucleus detection and segmentation model in the HD-Yolo 

system. The model is constructed from 3 components: a Bi-FPN backbone, a YoloX 

detection head, and an ROIAlign + FCN mask head. The light blue boxes with purple 

borders are deep learning modules. The white boxes with green borders are intermediate 

outputs of the model. The solid blue lines are computational graphs used in both training 

and inference. The orange dotted lines are only processed in training, whereas the green 

dotted lines are for inference only. (B) TME feature extraction pipeline based on the nucleus 

density maps built from the nucleus detection results. The pipeline directly extracts whole-

slide-level TME features (distributions, projections, similarity, and divergence) from the 

spatial densities of different types of nuclei. The pipeline also summarizes ROI-level TME 

features by automatically selecting ROIs from the above analysis. FCN, fully convolutional 

network; FPN, feature pyramid network; HD-Yolo, Histology-based Detection using Yolo; 

ROI, region of interest; TME, tumor microenvironment.
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Figure 2. 
Nucleus segmentation results for different models on a testing lung cancer image patch. 

HD-Yolo and HD-Staining generated round and smooth nuclei-shaped masks. HoVer-Net 

failed to segment occluded objects and a very large tumor nucleus (bottom left rectangle) 

and tended to split large nuclei into smaller pieces (examples are annotated with dashed 

bounding boxes). Yolov5 segmentation used prototype approach for masking. The algorithm 

generated rectangle boundaries for occluded nuclei. HD-Yolo, Histology-based Detection 

using Yolo.
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Figure 3. 
Liver HD-Yolo nucleus segmentation model transferred from the lung cancer model. (A) 

Two examples in the testing data set. (B) Raw and normalized confusion matrix of the 

testing data set. HD-Yolo, Histology-based Detection using Yolo.
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Figure 4. 
CoxPH survival analysis for breast cancer subtypes. The study evaluates independent breast 

cancer survival models that incorporate clinical features and TME features for both IDC-

only and IDC + ILC patients. (A) The top panel reports the cross-validation C index, testing 

C index (mean ± SE), and testing area under the curve (mean ± SE) under different data 

sets and feature sets. Clinical features include age at diagnosis, AJCC pathologic tumor 

stage, ER status by IHC, PR status by IHC, and HER2 status by IHC. Clinical + Delaunay 

TME uses clinical features with Delaunay graph-based features. Clinical + density TME 

includes clinical features with nucleus density-based features. ElasticNet Selected takes 

clinical features plus all image features with ElasticNet permutation importance > 0 and P 
< .05. (B) The bottom panel plots the coefficients of the selected features from ElasticNet. 

AJCC, American Joint Committee on Cancer; CoxPH, Cox proportional hazard; ER status 

by IHC, estrogen receptor status by immunohistochemistry; HER2 status by IHC, human 

epidermal growth factor receptor 2 by immunohistochemistry; IDC, Infiltrating ductal 

carcinoma; ILC, infiltrating lobular carcinoma; PR status by IHC, progesterone receptor 

status by immunohistochemistry; TME, tumor microenvironment.
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