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Abstract

Chromosomal aberrations, such as micronuclei (MN), have served as biomarkers of geno-

toxic exposure and cancer risk. Guidelines for the process of scoring MN have been pre-

sented by the HUman MicroNucleus (HUMN) project. However, these guidelines were

developed for assay performance but do not address how to statistically analyze the data

generated by the assay. This has led to the application of various statistical methods that

may render different interpretations and conclusions. By combining MN with data from other

high-throughput genomic technologies such as gene expression microarray data, we may

elucidate molecular features involved in micronucleation. Traditional methods that can

model discrete (synonymously, count) data, such as MN frequency, require that the number

of explanatory variables (P) is less than the number of samples (N). Due to this limitation,

penalized models have been developed to enable model fitting for such over-parameterized

datasets. Because penalized models in the discrete response setting are lacking, particu-

larly when the count outcome is over-dispersed, herein we present our penalized negative

binomial regression model that can be fit when P > N. Using simulation studies we demon-

strate the performance of our method in comparison to commonly used penalized Poisson

models when the outcome is over-dispersed and applied it to MN frequency and gene

expression data collected as part of the Norwegian Mother and Child Cohort Study. Our

countgmifs R package is available for download from the Comprehensive R Archive Net-

work and can be applied to datasets having a discrete outcome that is either Poisson or neg-

ative binomial distributed and a high-dimensional covariate space.

Introduction

More than 85% of all cancers are associated with acquired chromosomal or genetic alterations.

Various cytogenetic endpoints have been used for cancer risk assessment, including structural
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chromosomal aberrations, aneuploidy, while sister chromatid exchanges have been useful bio-

markers of exposure [1]. Micronuclei (MN) have also been used both for cancer risk assess-

ment and to assess exposure to genotoxic agents. Micronuclei (MN) are formed in dividing

cells from either whole chromosomes or chromosome fragments that lag behind [2], do not

attach to the mitotic spindle prior to cytokinesis, so that after cell division, they appear to be

small extranuclear bodies (Fig 1). The presence of MN, particularly at high frequencies, is

taken to reflect chromosomal abnormalities. Various investigators have reported higher MN

frequencies among people who were exposed to a toxic agent compared to controls not

exposed [3–6]. Also, previous research has shown that higher MN frequencies are associated

with a higher risk of cancer development [7, 8] and that MN frequencies are higher in subjects

with cancer compared to those without cancer [9–14]. As a specific example, MN formation

was increased due to genotoxic hepatocarcinogen exposure compared to non-genotoxic expo-

sure [15], indicating MN formation is due to chromosomal damage. Thus, MN serve as an

early marker for carcinogenesis. In fact, MN frequency has been used in biomonitoring [16,

17], occupational exposure [3, 4, 18–20], environmental exposure [5, 6, 21–24], and as previ-

ously mentioned, in cancer research studies [7, 9–14, 25–31]. MN frequency is also relevant in

other developmental, age-related, degenerative diseases (e. g. Alzheimer’s disease, Parkinson’s

disease) [6]. Therefore, because MN are objectively measured they are a useful biomarker for

assessing both genotoxic exposure and cancer risk and may serve as an indicator of a patho-

genic process.

The Cytokinesis block micronucleus assay (CBMN) assay is commonly used to score MN.

Briefly, the CBMN assay uses cytochalasin-B, which stops cells from performing cytokinesis

but does not stop nuclear division, giving rise to cells that are binucleated [2, 8]. Guidelines for

scoring MNs have been established by the HUman MicroNucleus (HUMN) project to mini-

mize inter-rater variation [6, 32]. MN frequency is generally reported as the number of binu-

cleated cells containing at least one MN. Therefore, MN frequency is a discrete or count

variable. Other unique nuclear anomalies detectable using the CBMN/cytome assay include

nucleoplasmic bridges and nuclear buds, which seem to be caused by different mechanisms in

comparison to MN [33]. In fact, buds, also called broken eggs, are considered to be a marker

of gene amplification, being conjectured to arise due to errors in replication during the S

phase of the cell cycle [32, 34]. Thus scoring each of these anomalies provides a comprehensive

assessment of genotoxic exposure and genetic damage [35, 36].

Although the HUMN project developed guidelines for assay performance, they have not

addressed how to statistically analyze data generated by the assay. Ceppi et al [37] reviewed 63

studies that analyzed MN frequency in buccal cells with respect to their study design and ana-

lytical methods applied. Most frequently the studies involved two-group comparisons so that

the t-test, the non-parametric Mann-Whitney U-test were most frequently applied (38.1%,

31.7% of studies, respectively). Although the non-parametric tests applied do not require an

underlying distributional assumption, they are unable to adjust for confounding factors and

often result in a loss of statistical power. While linear regression, ANOVA, and ANCOVA can

be used to adjust for confounding variables and effect modifiers, problematically MN fre-

quency rarely follows a Gaussian distribution (Fig 2). As mentioned, MN frequency is a dis-

crete count outcome. Discrete probability distributions differ from those for continuous

(takes on an infinite number of possible values), nominal (categorical variable), and ordinal

(� 3-level categorical variable where the categories have a natural ordering imposed, such as

small, medium, large) variables. When MN frequency is over-dispersed, that is, the distribu-

tion is not well-described by the mean and variance having the same parameter, the discrete

negative binomial (NB) distribution fits better than the Poisson distribution, while the

Penalized count response models
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Gaussian distribution poorly fits the MN data (Fig 2). Over-dispersion may be due to the data

including more zero count responses than expected, positive correlation between the count

responses, or due to correlation between an explanatory variable and the error term [38]. The

skewed distribution of MN frequency demonstrates excess zeros, and suggests that methods

Fig 1. CBMN/Cytome assay. A: Typical process of cell division. B: Application of cytochalasin-B prevents cytokinesis to

give rise to binucleated cells. C: Cell treated with cytochalasin-B that contains a whole chromosome lagging behind that

does not attach to the mitotic spindle. The small extranuclear body in the binucleated cell is a MN.

https://doi.org/10.1371/journal.pone.0209923.g001
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based on the Gaussian distribution may lead to inappropriate inferences. Unfortunately,

authors have not routinely reported whether basic assumptions of the inferential tests applied

were met [37].

Among the 63 studies reviewed [37], non-Gaussian multivariable models applied included

logistic (N = 1), log-linear (N = 1), Poisson (N = 1), and NB regression (N = 4). The logistic

and log-linear models only model categorical data (e.g., MN are present versus absent) whereas

Poisson and NB directly model count data. Because MN frequency is generally reported as the

number of binucleated cells containing at least one MN, accounting for the number of binucle-

ated cells scored is important. Therefore, advantages of the Poisson and NB models include

Fig 2. MN frequency distribution. Histogram of MN frequency from the cheek opposite an oral carcinoma with lines representing the Poisson

(solid), Negative Binomial (dashed), and Gaussian (dotted) distributions. Data from Ramirez & Saldanha [39].

https://doi.org/10.1371/journal.pone.0209923.g002
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that they: (1) are well-suited for modeling skewed count distributions; (2) can adjust for con-

founding variables such as age, gender, smoking status [37]; and (3) can account for the total

number of cells scored per patient, which may vary from sample to sample. For these reasons,

Ceppi et al [37] recommended using NB or Poisson regression models when analyzing MN

data.

In the last decade, high-throughput genomic platforms have been increasingly used to iden-

tify molecular features associated with disease status, exposure, or outcome. Recently, some

studies have collected both MN frequency and gene expression data to confirm the genotoxi-

city of the exposure studied and to assess the molecular impact of exposure, respectively.

Unfortunately, the association between gene expression and MN frequency was often not

explored [15, 40, 41]. We know that many disease-causing mutations do not have complete

penetrance, and penetrance is affected by environmental factors, age, epigenetics, and other

genetic modifiers. Moreover, conditions with a complex inheritance pattern, such as cancer,

are likely polygenic and have environmental contributions.

As previously mentioned, MN frequency is a discrete count outcome. Though Poisson

and negative binomial regression can model a discrete response, they traditionally require

that the number of covariates (P) is less than the number of samples (N) [38]. However, in

high-throughput genomic datasets, P> N, often by several orders of magnitude. While

methods such as principle components analysis have been used to reduce the total number

of variables in the dataset, thus permitting model fitting, the resulting features are compli-

cated linear combinations of genomic features, making downstream gene interpretations dif-

ficult. As an alternative, the least absolute shrinkage and selection operator (LASSO) [42,

43], also referred to as L1 penalized models, can be used to fit continuous [44, 45], binary

[46, 47], and survival [48–51] models when P> N. Downstream gene interpretations are

more straight-forward, because the original features are included in the model (though they

are often first centered and scaled) [42, 43]. There are various computational approaches for

estimating L1 penalized models including least angle regression (LARS) for the ordinary lin-

ear regression setting [52] and the predictor-corrector [53] and cyclical coordinate descent

[54] algorithms for generalized linear models. Also, Hastie et al (2007) demonstrated that the

solution path of the incremental forward stagewise (IFS) method is equivalent to the LASSO

when the LASSO path is monotone for each coefficient and Efron et al (2004) described nec-

essary and sufficient conditions for every coefficient path to be monotone. IFS was described

in detail for ordinary linear regression but also for general convex loss functions, with logis-

tic regression as a specific example [55]. For general convex loss functions, incremental

updates are made to the coefficient having the smallest negative gradient of the log-likeli-

hood at the current model estimates, hence the algorithm is called the generalized monotone

incremental forward stagewise method. While the incremental nature of the algorithm natu-

rally leads to longer computational time, the monotone paths are much smoother than those

produced by other L1 algorithms which sometimes yield widely fluctuating paths, particu-

larly when covariates are highly correlated. We have also recently extended the generalized

monotone incremental forward stagewise (GMIFS) method [55] to high-dimensional ordi-

nal response [56–61] and Poisson regression [62] settings. However, penalized methods have

not been fully extended to discrete response setting when over-dispersion is present. We pos-

tulate that it is of interest to identify molecular features associated with micronucleation, as

such features may elucidate important mechanisms in genotoxicity and carcinogenesis.

Herein we describe a multivariable discrete response modeling method that can be applied

to a high-dimensional covariate space when the count outcome is over-dispersed, such as the

case for MN data.

Penalized count response models
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Materials and methods

Poisson regression

When modeling the number of times an event occurs in either time or space, a generalized lin-

ear model (GLM) such as Poisson or negative binomial regression is commonly applied. Let

i = 1, . . ., N be the number of observations, yi represent a Poisson distributed random variable.

Let the expected value of yi be written as EðyiÞ ¼ mi. Then the conditional probability P(yi|μi)
for each observation i, subsequently the likelihood L(μ|y) are represented by

PðyijmiÞ ¼
e� mimyi

i

yi!
and LðmjyÞ ¼

YN

i¼1

e� mimyi
i

yi!
: ð1Þ

Mathematically it is easier to maximize the log-likelihood which is given by

‘ðmjyÞ ¼
XN

i¼1

ðyi logmi � mi � log ðyi!ÞÞ: ð2Þ

Thus, we are looking for the value of μ that maximizes the log-likelihood in Eq 2. When fitting

a GLM, a non-linear transformation, or link function, of the mean response is applied, which

is a linear function of the covariates [38]. The link function for a Poisson regression model is

log(μ), thus, mi ¼ exp ðg0 þ x>i βÞ where γ0 is the intercept and β is the vector of regression

coefficients. Further, MN frequency is scored from a large number of binucleated cells, c. If the

number of cells examined varies by subject, modeling MN frequency as a rate is more appro-

priate. We note that expressing a discrete response as a rate then transforming the rate to get it

to adhere to a Gaussian distribution so that traditional linear models can be fit, does not prop-

erly account for the variation observed in the numerator and denominator terms. Therefore,

Poisson and NB regression models that explicitly include the denominator term are more

appropriate. The Poisson regression model for the expected count per unit of ci, where ci is the

number of cells scored in our application, is Eðyi=ciÞ ¼ mi ¼ exp ðg0 þ x>i βÞ which is equiva-

lent to

mi ¼ exp ðg0 þ x>i βþ log ðciÞÞ ð3Þ

so that log(ci) is an offset term. Traditionally count models are estimated by maximum likeli-

hood or an iteratively re-weighted least squares algorithm [38]. For the rate-based model, the

log-likelihood expressed with covariates is

‘ðmjyÞ ¼
XN

i¼1

ðyiðg0 þ x>i βþ log ðciÞÞ � exp ðg0 þ x>i βþ log ðciÞÞ � log ðyi!ÞÞ: ð4Þ

Negative binomial regression

For the Poisson regression model, the distributional assumption is that the responses are from

a Poisson distribution, which is a member of the exponential family. Members of the exponen-

tial family have a common characteristic that the variance of the response can be expressed as

the product of a dispersion parameter, ϕ, and the variance function, Var(μi). In other words,

Var(Yi) = ϕVar(μi). For the Poisson distribution, the dispersion parameter is a fixed constant

(ϕ = 1) and does not require estimation; therefore, Var(μi) = μ.

Because the Poisson distribution has one parameter μ which represents both the mean

and variance of the count outcome, the Poisson model is equi-dispersed. As previously men-

tioned, over-dispersion is present when the variance exceeds the mean, which is a common

Penalized count response models
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occurrence in observed data. If not properly accounted for, over-dispersion results in incorrect

standard errors and thus potentially incorrect inferences. The Pearson dispersion can be exam-

ined as a means for checking for over-dispersion in a Poisson regression model. If the Pearson

dispersion exceeds 1.0, over-dispersion may be present. Alternative models such as the NB

model, zero-inflated models, truncated models, or quantile count models can be used, though

NB regression was found to best handle over-dispersed discrete response data [63]. Extensive

work has been done with the Poisson and negative binomial distributions in the traditional

statistical setting. However, there are limited methods for analyzing a count outcome with a

high-dimensional predictor space.

Penalized Poisson regression

Development of high-dimensional methods for count response data have largely been

restricted to the Poisson distribution [53, 54, 62, 64], especially for longitudinal settings [65–

67]. The glmpath [53], glmnet [54], and nnlasso [64]R packages each provide an L1

regularization path algorithm that seek either a LASSO solution, which minimizes

� ‘ðβ; yÞ þ l
PP

p¼1
jbpj, or an elastic net solution by estimating coefficients over a grid of λ val-

ues, where λ> 0 is the regularization parameter. Basically, glmpath starts with the smallest

value of the regularization parameter, λmax, at which only the intercept is non-zero. Thereafter,

a grid of λ values from λmax to 0 is identified which allows other covariates to enter the model.

The method uses the predictor-corrector algorithm to estimate the next value of λ that will

change the current set of non-zero parameter estimates in the model (the active set) and

then finds the solution to β at that value of λ. The glmnet algorithm also starts with the

smallest value of the regularization parameter, λmax, at which only the intercept is non-zero

but then uses a sequence of 100 λ values that are evenly spaced on the log-scale. It uses

cyclical coordinate descent to solve the elastic net penalized model, which minimizes

� ‘ðβ; y; aÞ þ l
PP

p¼1
ð1

2
ð1 � aÞb

2

p þ ajbpjÞ
� �

where α is a fixed proportion representing a com-

promise between the ridge and L1 penalties. While the nnlasso algorithm also starts with

the smallest value of the regularization parameter, λmax, at which only the intercept is non-

zero, it then uses a sequence of k λ values that are evenly spaced on a linear scale, and then uses

a multiplicative iterative-Armijo algorithm for estimating model parameters under a non-neg-

ative constraint at each value of λ. While various penalized Poisson models can be fit to high-

dimensional data, the focus of this paper is to extend the generalized monotone incremental

forward stagewise (GMIFS) method to the negative binomial regression setting and demon-

strate its effectiveness analyzing over-dispersed count outcome data.

Proposed NB GMIFS

The proven GMIFS technique from our previous studies [58, 60–62] will be extended to a new

setting, the NB model. The NB model is derived from a Poisson-gamma mixture distribution

[38], such that the variance is μ + μ2/ϕ. Unlike the Poisson model, ϕ must be estimated. Most

often the parameter ϕ is expressed as its inverse, α = 1/ϕ, such that α is the heterogeneity

parameter that directly models the amount of extra-dispersion in the data. Our proposed NB

GMIFS method includes approaches for initializing the intercept, coefficients for the unpena-

lized subset of predictors, and heterogeneity parameter α; methods for updating these esti-

mates after each iterative update of the penalized subset of predictor variables; derivatives for

identifying which covariate to update; and convergence criteria. The NB probability mass

Penalized count response models
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function is given by,

f ðy; m; aÞ ¼
Gðyi þ 1=aÞ

Gðyi þ 1ÞGð1=aÞ

1

1þ ami

� �1=a

1 �
1

1þ ami

� �yi
ð5Þ

so the likelihood is

Lðm; y; aÞ ¼
YN

i¼1

Gðyi þ 1=aÞ

Gðyi þ 1ÞGð1=aÞ

1

1þ ami

� �1=a

1 �
1

1þ ami

� �yi

ð6Þ

which can be re-arranged as

Lðm; y; aÞ ¼
YN

i¼1

exp ð logGðyi þ 1=aÞ � logGðyi þ 1Þ � logGð1=aÞþ

1=a log ð
1

1þ ami
Þ þ yi log ð1 �

1

1þ ami
Þ

�
ð7Þ

Similar to Poisson regression, the log link function is used and when the outcome is a rate with

the offset term ci such that Eðyi=ciÞ ¼ mi or EðyiÞ ¼ cimi. Therefore, the likelihood is

Lðm; y; aÞ ¼
YN

i¼1

exp ð logGðyi þ 1=aÞ � logGðyi þ 1Þ � logGð1=aÞþ

1=a log ð
1

1þ amici
Þ þ yi log ð1 �

1

1þ amici
Þ

�
ð8Þ

and the corresponding log-likelihood is

‘ðm; y; aÞ ¼
XN

i¼1

ð logGðyi þ 1=aÞ � logGðyi þ 1Þ � logGð1=aÞþ

1=a log ð
1

1þ amici
Þ þ yi log ð1 �

1

1þ amici
Þ

�
: ð9Þ

Given Eðyi=ciÞ ¼ mi ¼ exp ðg0 þ x>i βÞ such that

EðyiÞ ¼ ci exp ðg0 þ x>i βÞ ¼ exp ðg0 þ x>i βþ log ðciÞÞ, the log-likelihood with covariates

reflected is

‘ðβ; y; aÞ ¼
XN

i¼1

ð logGðyi þ 1=aÞ � logGðyi þ 1Þ � logGð1=aÞ

þ1=a log ð
1

1þ a exp ðg0 þ x>i βþ log ðciÞÞ
Þ

þyi log ð1 �
1

1þ a exp ðg0 þ x>i βþ log ðciÞÞ
Þ

�

ð10Þ

The heterogeneity parameter in the NB model that accounts for the extra-dispersion can be

selected a priori or estimated outside of the GLM framework then treated as a constant. Most

NB modeling software employs iteratively re-weighted least squares, where α is estimated and

its estimand is inserted into the equation as a constant and maximum likelihood estimation is

applied. We examined the performance of three different methods (maximum likelihood,

Penalized count response models
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equating the deviance to the residual degrees of freedom, and Hilbe’s method of moments),

for estimating the heterogeneity parameter using a small simulation study and found that

Hilbe’s method of moments estimator performed well. Therefore in our proposed GMIFS NB

model, we estimate α using Hilbe’s method of moments estimator prior to the iterative proce-

dure [38]. Similar to our GMIFS Poisson approach, we partition the design matrix, x, in Eq 10

into two parts, xj and xk, where j = 1, . . ., J is the set of unpenalized predictors, k = 1, . . ., K is

the set of penalized predictors and J + K = P. The unpenalized predictors are those that we

wish to force into the model, such as gender, age and smoking status which researchers con-

sider important predictors of MN frequency [37] and their values are in the xij design matrix

for subject i. The thousands of features from a high-throughput genomic experiment are the

penalized predictors for which we seek a parsimonious model and their values are in the xik

design matrix for subject i. The parameter vectors γ and β correspond to the unpenalized sub-

set and penalized subset of predictors, respectively.

The algorithm proceeds in an iterative fashion and updates one of the penalized covariates

by a small incremental amount at each step. To determine which penalized covariate is to be

updated at each step the gradient of the log-likelihood is used. Thus we need to calculate the

first derivative of the log-likelihood corresponding to each penalized predictor. The log-likeli-

hood written in terms of γ0, β and γ is

‘ðβ; y; aÞ ¼
XN

i¼1

ð logGðyi þ 1=aÞ � logGðyi þ 1Þ � logGð1=aÞ

þ1=a log ð
1

1þ a exp ðg0 þ x>ij γ þ x>ikβþ log ðciÞÞ
Þ

þyi log ð1 �
1

1þ a exp ðg0 þ x>ij γ þ x>ikβþ log ðciÞÞ
Þ

�

ð11Þ

and the first derivative with respect to β written in terms of γ0, β and γ in matrix notation is

@‘

@b
¼ x>pkðy � exp ðg0 þ log ðciÞ þ x>j γ þ x>k βÞÞ=ð1þ a exp ðg0 þ log ðciÞ þ x>j γ þ x>k βÞÞ: ð12Þ

Once we know which covariate to update, we need to determine the sign (+ or −) of the

update. Rather than calculating the second derivative, an expanded covariate space can be

used to get the direction of the update [55]. Using the previous notation for the unpenalized

(xj) and penalized (xk) variables, the expanded covariate space is ~x ¼ ½xj : xk : � xk� where

[xk: −xk] have been standardized. For the penalized predictors in the [xk: −xk] component, let

β1, . . ., βK be the positive coefficient estimates and βK+1, . . ., β2K be the coefficient estimates of

the negative version of xk. Our NB GMIFS algorithm using the expanded covariate set is

1. Initialize the components of β̂ðsÞ ¼ 0 at step s = 0 and initialize α using Hilbe’s method of

moments.

2. Estimate the intercept γ0 and the unpenalized coefficients γj where j = 1, . . ., J using a maxi-

mization algorithm of the log-likelihood.

3. Considering â, ĝ0 and γ̂ fixed, find the predictor xm where m ¼ argmin
2K

� @‘

@bk

� �
at the cur-

rent estimate β̂ ¼ β̂ðsÞ.
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4. Update the corresponding coefficient b̂ðsþ1Þ
m  b̂ðsÞm þ � to yield a new vector of parameter

estimates.

5. Update γ0 and the unpenalized coefficients, γj, by maximum likelihood considering the β̂sþ1

from step 4 as fixed.

6. Re-estimate α using Hilbe’s method of moments method.

7. Repeat steps 2-6 until the difference between successive log-likelihoods is less than a pre-

specified tolerance, τ.

8. The final coefficient estimates are obtained by subtracting the pairs, β1 − βK+1, . . ., βK − β2K,

to yield β̂.

Hastie et al (2007) [55] did not specify a stopping criteria but recommended to repeat the steps

many times. Our criteria was to stop the iterative process when the difference between two

successive log-likelihoods is smaller than a pre-specified tolerance τ or when the number of

non-zero coefficient estimates exceeds N − 1, and we set the defaults to � = 0.001 and τ =

0.00001. Further, recall that for the linear regression the intercept γ0 is commonly omitted

because the response is centered. However, for count models it is inappropriate to center the

outcome as that would result in negative counts. Therefore, the intercept must be included in

the model without penalization, in addition to any covariates in the unpenalized subset. Once

the iterative process has completed, the output includes a solution path for each coefficient. A

‘final’ model can then be selected from the resulting solution path based on predetermined

desired criteria, such as the model attaining the minimum AIC, minimum BIC, or minimum

cross-validated error.

Simulation studies

Simulation studies were performed to compare our negative binomial GMIFS model to exist-

ing penalized count response models including glmpath [68], glmnet [54], and nnlasso
[64]. First, we randomly generated P predictor variables for observations i = 1, . . ., N from a

standard normal distribution. Thereafter five of the P variables were selected to be associated

with the discrete response and their coefficients were set to β = ±log(δ). We also assigned an

intercept to take the value of γ0 = 0.5 and we assigned a heterogeneity parameter α. We then

calculated the mean response per observation as mi ¼ exp ðg0 þ
P5

k¼1
bkxikÞ. The discrete

response was then generated as Yi*Negative Binomial(μi, α). Once the discrete response was

generated, we fit the following models: our negative binomial GMIFS model, a glmpath
model with family = poisson, a glmnet model with family = “poisson”,

and a nnlasso model with family = “poisson”. These methods maximize the log-

likelihood with the additional penalty term λ placed on the regression coefficients,

‘ðβ; y; aÞ � l
PP

p¼1
jbpj. To ensure a fair comparison across the four modeling methods, we

extracted the GMIFS model that attained the minimum AIC and minimum BIC, summed the

absolute values of the estimated regression coefficients, then identified the step at which

glmpath, glmnet, and nnlasso first attained a sum of the absolute value of the regression

coefficients at the GMIFS level. This procedure was repeated r = 200 times. Simulations were

performed using N = 100, P = 500, α = 0.3 and 0.5, and δ = 1.5 and δ = 1.75. The four methods

were compared with respect to the number of true predictors that had a non-zero coefficient

estimate; the number of false predictors that had a non-zero coefficient estimate; and predic-

tion error.

Penalized count response models

PLOS ONE | https://doi.org/10.1371/journal.pone.0209923 January 8, 2019 10 / 21

https://doi.org/10.1371/journal.pone.0209923


A larger simulation study consisting of (P = 5, 000) correlated rather than independent fea-

tures and N = 50 observations was also performed to mimic the structure of our application

dataset. In the MoBa dataset, heterogeneity parameter estimate for the BIC-selected model was

âBIC ¼ 0:337 and the six parameter estimates from the unpenalized model ranged from

[-0.988, 1.122]. Therefore we set α = 0.35, the intercept to γ0 = 0.5, and conservatively set the

parameter values of the true covariates to β = ±0.693, which corresponds to β = ±log(2). We

also estimated the correlations between genes included in the final model and all remaining

genes in the dataset. This distribution is approximately normally distributed with a mean of

0.005 and a standard deviation of 0.28. Therefore, we developed a block diagonal correlation

matrix with 40 features in each block and 125 blocks in total, to yield a 5000 × 5000 correlation

matrix. First, the lower triangle of each 40 × 40 block of the correlation matrix was filled by

generating random variates from a N(0,0.28) distribution. Second, the upper triangle was com-

pleted by enforcing the matrix to be symmetric. Third, the diagonal elements were taken to be

1. Thereafter, one feature from five different blocks was selected to represent the true covari-

ates. The mean response per observation was taken to be mi ¼ exp ðg0 þ
P5

k¼1
bkxikÞ and the

discrete response was then generated as Yi*Negative Binomial(μi, α). Once the discrete

response was generated, we fit our negative binomial GMIFS model and the glmnet model

with family = “poisson”. This procedure was repeated r = 100 times. Similar to [54],

we omitted comparison to the glmpath algorithm because the algorithm does not scale well

to the large size of this simulated dataset. Also, we omitted the comparison to nnlasso
because, as demonstrated in the small simulation study, its non-negative constraint on the

parameters results in poor performance when parameters can take both positive and negative

values. The two methods were compared with respect to the number of true predictors that

had a non-zero coefficient estimate; the number of false predictors that had a non-zero coeffi-

cient estimate; and prediction error. All simulations were performed on the Ohio Supercom-

puter Center cluster owens [69].

Norwegian Mother and Child Cohort Study

In the 1990s the Norwegian Mother and Child Cohort Study (MoBa) was designed collabora-

tively by researchers at the Medical Birth Registry of Norway (MBRN) and by researchers at

the National Institute of Public Health [70]. Pregnant women who attended routine ultra-

sounds in Norway were recruited from 1999 to 2005 from 52 hospitals and maternity units.

There was no exclusion criteria, and women who were pregnant more than once in the time

period could participate multiple times. The pregnancy was defined as the unit of observation

of the study. For 200 neonates, umbilical cord blood samples were collected immediately after

birth. After quality control and other exclusions, 111 samples were hybridized to Agilent

4x44k human oligonucleotide microarrays to measure gene expression. Sample processing,

image analysis, normalization, background correction, and filtering for the gene expression

data are described in [71]. For an even smaller subset (N = 29), MN data were collected and

scored using the procedure previously described [72]. Data were downloaded from Gene

Expression Omnibus (GSE31836).

Results

Simulation studies

From the simulation studies we observed that the nnlasso method had poor performance,

with the maximum number of false predictors included in the BIC-selected models extending

to 292, 296, 298, and 291 when α = 0.3 and β = ±log(1.5) or ±log(1.75) and for α = 0.5 and
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β = ±log(1.5) or ±log(1.75), respectively, which may be due to its non-negativity constraint on

the parameter estimates. Therefore the nnlasso results were omitted from the boxplots

because their inclusion obfuscated the results for the other methods. When examining the box-

plots of the simulation results, we observed that our NB GMIFS method performed well with

respect to identifying true predictors (Fig 3) while minimizing the number of false predictors

included in the model (Fig 4), particularly as α and β increased. We also observed that

glmnet performed comparable to our method, though our NB GMIFS method performed

better than glmnet when identifying true predictors for AIC selected models when α = 0.3

and β = ±log(1.5) and for BIC selected models when α = 0.5 and β = ±log(1.75) (Fig 3).

Additionally, our NB GMIFS method identified fewer false predictors, especially for the two

β = ±log(1.75) scenarios (Fig 4). While glmpath performed well at selecting the true predic-

tors, it over-selected false predictors (Fig 4). Because our negative binomial GMIFS model had

good performance with respect to prediction error (Fig 5) and minimized the number of false

predictors included while doing well at selecting the true predictors, it is preferred for model-

ing an outcome that is over-dispersed.

When examining the results from the larger simulation that consisted of P = 5, 000 corre-

lated covariates for N = 50 subjects, we observed similar performance between our NB GMIFS

method and glmnet with respect to identifying true predictors (Fig 6). However, our NB

Fig 3. For each modeling method, number of true predictors that had a non-zero coefficient estimate (Oracle = 5). A:

α = 0.3; β = ±log(1.5). B: α = 0.3; β = ±log(1.75). C: α = 0.5; β = ±log(1.5). D: α = 0.5; β = ±log(1.75).

https://doi.org/10.1371/journal.pone.0209923.g003

Penalized count response models

PLOS ONE | https://doi.org/10.1371/journal.pone.0209923 January 8, 2019 12 / 21

https://doi.org/10.1371/journal.pone.0209923.g003
https://doi.org/10.1371/journal.pone.0209923


GMIFS method included fewer false predictors than glmnet (Wilcoxon signed rank test

P< 0.0001 and P< 0.0001 for the AIC- and BIC-selected models, respectively) (Fig 6).

Norwegian Mother and Child Cohort Study

Before statistical analysis, a Boundary Likelihood Ratio test was performed to determine

whether a Poisson or negative binomial model would be more appropriate given the MoBa

data [38]. The alternative hypothesis of α 6¼ 0 was tested against a null hypothesis of α = 0. The

chi-square test yielded w2
1
¼ 59:8 which corresponds to a p-value of< 0.0001. Therefore, we

rejected the null hypothesis that α = 0 and concluded a negative binomial model is more

appropriate given the data. When applying the score test to test the null hypothesis of no over-

dispersion against the alternative hypothesis that over-dispersion is present, P = 0.011. When

testing for over-dispersion using the Lagrange multiplier test, P< 0.0001; therefore, all tests

indicated over-dispersion is present such that the NB model is preferred to the Poisson.

Because the feature set is high-dimensional gene expression data, we used our GMIFS NB

model to fit a multivariable model to predict MN frequency. We further filtered the gene

expression dataset to include genes that had no missing values, leaving 8,497 genes for statisti-

cal modeling. Because the performance of glmnet and glmpath was somewhat comparable

to our GMIFS method in the simulation studies, with nnlasso demonstrating poor

Fig 4. For each modeling method, number of false predictors that had a non-zero coefficient estimate (Oracle = 495). A:

α = 0.3; β = ±log(1.5). B: α = 0.3; β = ±log(1.75). C: α = 0.5; β = ±log(1.5). D: α = 0.5; β = ±log(1.75).

https://doi.org/10.1371/journal.pone.0209923.g004
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performance likely owing to its non-negativity constraint, we applied glmnet and glmpath
to the MoBa data as comparative methods.

Though maternal age, gestational age, and maternal smoking status would ordinarily be of

interest to include a unpenalized predictors, those data were not available so the only unpena-

lized predictor included in our model was neonate gender. The gene expression data were

included in the model as penalized predictors. There were 13 genes with non-zero coefficient

estimates in the AIC selected NB GMIFS model and six in the BIC selected NB GMIFS model

(Table 1). The BIC attained a minimum at step 580 while the AIC attained its minimum at

step 1102. The AIC selected glmpath Poisson model included 23 genes while the BIC

selected glmpath Poisson model included 17 genes, so similar to our simulation studies,

glmpath seems to overfit. Nine of the genes from the AIC selected NB GMIFS and

glmpath Poisson models overlapped. Again, because glmnet does not include functions or

relevant output for estimating AIC and BIC, we extracted the GMIFS models that attained the

minimum AIC and minimum BIC, summed the absolute values of the estimated regression

coefficients, then identified the step at which glmnet first attained a sum of the absolute

value of the regression coefficients at the GMIFS level. The AIC-like glmnet Poisson model

included nine genes while the BIC selected glmnet Poisson model included five genes; seven

Fig 5. Prediction error for each modeling method and selection criteria. A: α = 0.3; β = ±log(1.5). B: α = 0.3; β = ±log

(1.75). C: α = 0.5; β = ±log(1.5). D: α = 0.5; β = ±log(1.75).

https://doi.org/10.1371/journal.pone.0209923.g005

Penalized count response models

PLOS ONE | https://doi.org/10.1371/journal.pone.0209923 January 8, 2019 14 / 21

https://doi.org/10.1371/journal.pone.0209923.g005
https://doi.org/10.1371/journal.pone.0209923


of the genes from the AIC selected NB GMIFS and glmnet Poisson models overlapped. As

suspected, the monotone solution paths for NB GMIFS are much smoother than those pro-

duced by glmnet, likely due to the correlated nature of the covariates (Fig 7). While the

mean prediction error for the AIC- and BIC-selected models from our NB GMIFS algorithm

were 2.21 and 3.23, respectively, the mean prediction errors were 3.86 and 3.30 for glmnet.

As expected, the generalization error was larger as the N-fold cross-validation estimates of

mean prediction error were 5.40 and 5.18 for the AIC- and BIC-selected NB GMIFS models,

respectively, and 5.42 and 4.99 for the AIC and BIC glmnet models, respectively.

Interestingly, genes included in all models predicting MN frequency have been previously

linked to relevant disease processes and cancer. For example, USP10 has been previously

found to be involved in autophagy [73] and DNA damage response of cells [74]. CBX7 has

been associated with thyroid [75] and endometrial cancer [76]. WHSC1, which is a synonym

for NSD2, is involved in morphogenesis of anatomic structure [77] and associated with hema-

tologic malignancies [77–79] and hepatocellular carcinoma [80]. KIAA0258 is a synonym

RGP1. A mutation in RGP1 has been associated with adenocarcinoma of the large intestine

[81]. C21ORF57 is a synonym for YBEY which according to COSM1031614, mutations in this

gene in two TCGA samples have been associated with endometrioid carcinoma.

Fig 6. Results from large simulation study of P = 5, 000 correlated predictors and N = 50 observations. A: Number

of true predictors that had a non-zero coefficient estimate (Oracle = 5). B: Number of false predictors that had a non-

zero coefficient estimate (Oracle = 4,995). C: Prediction error for each modeling method and selection criteria.

https://doi.org/10.1371/journal.pone.0209923.g006
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Discussion

The simulation studies established that when the underlying data follow a negative binomial

distribution (that is, the outcome is over-dispersed) the negative binomial GMIFS model out-

performs penalized Poisson models with respect to including fewer false predictors. It also

includes a substantial number of true predictors, particularly when the strength of association

between the outcome and the predictor variable increases. Often it is of interest to account for

the denominator, e.g., the number of binucleated cells scored, in the model, particularly if it

varies by subject. This is usually accommodated by generalized linear modeling software by

specifying the denominator to be an offset. While glmpath and glmnet include a parameter

to the function call that allows for inclusion on an offset, both suffered from convergence

issues when including an offset term. Also, the current implementation of nnlasso does not

permit inclusion of an offset, which we consider to be a limitation of that package. Inclusion of

Table 1. Genes associated with MN frequency in the AIC and BIC selected NB GMIFS models.

Accession ID Gene Symbol Gene name NB GMIFS

AIC

NB GMIFS

BIC

glmpath

AIC

glmpath

BIC

glmnet

AIC

glmnet

BIC

A_23_P100196 USP10 ubiquitin specific peptidase 10 X X X X X X

A_23_P103824 THC2249577 X

A_23_P133424 SKP1 X

A_23_P138967 SDHD succinate dehydrogenase complex X X

A_23_P209394 CFLAR CASP8 and FADD-like apoptosis regulator X X

A_23_P42331 HMGA1 high mobility group AT-hook 1 X X

A_23_P79911 PSMF1 proteasome (prosome, macropain) inhibitor

subunit 1 (PI31)

X

A_24_P19410 CBX7 chromobox homolog 7 X X X X X

A_24_P214858 TREML2 triggering receptor expressed on myeloid cells-

like 2

X X

A_24_P2463 WHSC1 NSD2, Wolf-Hirschhorn syndrome candidate 1 X X X X X X

A_24_P333019 RNF24 ring finger protein 24 X

A_24_P397584 TBCC tubulin folding cofactor C X X

A_24_P398064 KIAA0258 RGP1 homolog, RAB6A GEF complex partner 1 X X X X X X

A_32_P156549 C1ORF144 X X X X

A_32_P18547 C21ORF57 chromosome 21 open reading frame 57 X X X X X X

https://doi.org/10.1371/journal.pone.0209923.t001

Fig 7. Coefficient paths for each modeling method for the MoBa dataset. A: Coefficient path from NB GMIFS. B: Coefficient path from glmnet
where the x-axis indicates the sequence number of λ. C: Coefficient path from glmpath.

https://doi.org/10.1371/journal.pone.0209923.g007
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an offset is not problematic for our GMIFS procedure given its incremental nature. Therefore

our negative binomial GMIFS model offers several advantages.

Using various goodness-of-fit tests, it was determined that the micronuclei frequencies

observed in the MoBa study more closely followed a negative binomial rather than a Poisson

distribution. That finding is consistent with what has previously been reported [37]. When our

NB GMIFS model was applied to the MoBa dataset, interesting genes that have previously

been associated with cancer or relevant processes were identified, though genes that are truly

associated with MN frequency in the MoBa study are unknown. One limitation is that when

estimating Pearson’s correlation, r̂, between all remaining genes and the 13 genes included in

the AIC-selected model, 316 were significantly correlated at an FDR< 0.05. Although the dis-

tribution of the correlation estimates appeared Gaussian and centered near zero (�r ¼ 0:005

and ŝr ¼ 0:28), among the 316 significant genes, the absolute value of the estimated correla-

tions ranged from 0.718 to 0.889. Therefore, it may be of scientific interest to explore the bio-

logical functions of these 316 genes because penalized methods tend to omit variables from the

model if good proxies are already included.

Conclusion

Though the proposed NB GMIFS method was conceived of by considering high-throughput

genomic applications, it is broadly applicable to a variety of health, social, and behavioral

research fields, which commonly collect responses on an discrete scale. For example, our

method is broadly applicable for modeling other discrete responses in high-dimensions, using

the large number of predictors from an Electronic Medical Record system, for outcomes

including but not limited to: length of hospital stay, number of drinks per day, and number of

positive lymph nodes. An essential aspect for the dissemination of statistical methods is the

development of software for the scientific user community. Therefore, our countgmifs
package for the widely used R programming environment is available for download from the

Comprehensive R Archive Network for others to model a discrete response, using either our

Poisson of NB GMIFS method, when the covariate space is high-dimensional.
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