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Abstract: Collecting duct carcinoma (CDC) is a rare renal cell carcinoma subtype with a very poor
prognosis. There have been only a few studies on gene expression analysis in CDCs. We compared
the gene expression profiles of two CDC cases with those of eight normal tissues of renal cell
carcinoma patients. At a threshold of |log2fold-change| ≥1, 3349 genes were upregulated and 1947
genes were downregulated in CDCs compared to the normal samples. Pathway analysis of the
deregulated genes revealed that cancer pathways and cell cycle pathways were most prominent in
CDCs. The most upregulated gene was keratin 17, and the most downregulated gene was cubilin.
Among the most downregulated genes were four solute carrier genes (SLC3A1, SLC9A3, SLC26A7, and
SLC47A1). The strongest negative correlations between miRNAs and mRNAs were found between
the downregulated miR-374b-5p and its upregulated target genes HIST1H3B, HK2, and SLC7A11 and
between upregulated miR-26b-5p and its downregulated target genes PPARGC1A, ALDH6A1, and
MARC2. An upregulation of HK2 and a downregulation of PPARGC1A, ALDH6A1, and MARC2
were observed at the protein level. Survival analysis of the cancer genome atlas (TCGA) dataset
showed for the first time that low gene expression of MARC2, cubilin, and SLC47A1 and high gene
expression of KRT17 are associated with poor overall survival in clear cell renal cell carcinoma patients.
Altogether, we identified dysregulated protein-coding genes, potential miRNA-target interactions,
and prognostic markers that could be associated with CDC.
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1. Introduction

Collecting duct renal cell carcinoma (CDC; also known as Bellini duct carcinoma, collecting
duct carcinoma of the kidney) is a very rare (approximately 1–2%) but also very aggressive renal cell
carcinoma with a median survival time of 11 months [1–3]. Tumors concerning the collecting duct
were first described independently by Mancilla-Jimenez et al. and by Cromie et al. [4,5]. The putative
cell of origin is in the distal convoluted tubules, a segment between the proximal tubules and the
distal part of the nephron [6]. There are several cytogenetic abnormalities known, i.e., mostly loss of
11, 6p, 8p, 9p, and 21q and the Y chromosome as reviewed in [3]). However, there have been only a
few reports about chromosomal aberrations, mutations in CDCs, and RNA expression changes [6–8].
Pal et al. identified clinically relevant genomic alterations mostly in genes NF2, SETD2, SMARCH1,
and CDKN2A (29% to 12%) but also in 6% of genes PIK3CA, PIK3R2, FBXW7, BAP1, DNMT3A, VHL,
and HRAS [7]. Furthermore, amplifications of ERBB2 and genomic alterations of SMARCB1 have been
described [7]. Malouf et al. performed the first transcriptomic analysis of CDC and compared it with
upper tract urothelial carcinomas (UTUCs) [6]. In addition to the finding that the CDC transcriptome
is unique and clustered with that of clear cell renal cell carcinoma (ccRCC) patients rather than UTUC
patients, the authors compared CDCs with UTUCs and identified CDH6 and POU3F3 as the top
upregulated genes and GATA3, TP63, KRT17, KRT7, KRT20, UPK2, UPK1A, and UPK3A as the top
downregulated genes in CDCs [6]. Based on the transcriptomic signature, they concluded that CDC is a
disease characterized by metabolic and immunogenic aberrations. Wang et al. reported in a combined
whole-exome sequencing and transcriptome sequencing study of CDC that many single nucleotide
variations in cancer census genes, but also deletions of CDKN2A. In addition, RNA expression changes
in members of the solute carrier (SLC) family, such as overexpression of SLC7A11 (cystine transporter,
xCT), have been reported [8].

Promising treatment schemes for metastasized renal cell carcinoma have been reported [9,10], but
they mostly concern ccRCC, and there is still no specific therapy for CDC. However, there are treatment
suggestions for metastatic CDC, i.e., first-line therapy with a combination of chemotherapy (gemcitabine)
plus cisplatin/carboplatin, and second-line therapy as a targeted therapy [2,3]. Suggestions to treat
CDC patients with drugs that target solute carriers, such as SLC7A11 or SLC6A7, have been made
previously [11]. However, further molecular characterization of CDC is needed to better understand
its tumor biology and to identify potential therapeutic targets.

In our study, we performed RNA transcriptome sequencing of two CDC cases and eight normal
tissues in an effort to better characterize this rare tumor entity. We investigated differences in gene
expression and sought to describe single nucleotide variation patterns and utilized pre-miRNA
expression data in an effort to identify potentially regulated target proteins. Based on the finding
of a predominance of gene expression changes in solute carriers in CDC, and our previous results
concerning miRNAs and their target gene expression as biomarkers in urologic cancers, we focused
our analysis on these two research fields. We found that several solute carrier genes are significantly
dysregulated in CDC. In addition, we showed that the low expression of SLC47A1 leads to poor
survival of clear cell renal cell carcinoma patients, suggesting it as a prognostic marker for CDC.

2. Results

2.1. RNA Sequencing Revealed Up- and Downregulated Genes

RNA transcriptome sequencing was performed for two CDC cases and eight histologically
normal tissue samples (Figure 1). Upon analyzing the read counts, a total of 7093 coding genes were
detected as being significantly deregulated between the CDC and normal tissue samples (p < 0.05).
After hierarchical clustering, it became evident that the two CDC samples formed a cluster that was
very distinct from the normal tissue samples (Figure 2). Interestingly, the normal tissue samples, which
were also derived from tumor-bearing kidneys of different entities, did not show any tendency to
cluster according to their corresponding tumor entity, which strongly suggests the absence of any field
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effect. For filtering purposes, the differential expression measure was log2 transformed. Application
of a |log2fold change| ≥1 cutoff revealed that 1,947 genes were downregulated and 3,349 genes were
upregulated in CDCs vs. normal samples (Table S1). The clustering results were comparable to the
result without filtering.

Figure 1. Overview of RNA sequencing data. The circus plot shows statistics of the genes (n = 16,672)
that were selected for differential gene expression analysis. The plot contains four circles: Layer 1 is
log2fold-change of the genes; Layer 2 is read counts of the genes that were transformed to z-score;
Layer 3 is adjusted p-value of the genes that were transformed by–log10; and Layer 4 is the base mean
of the genes that were transformed by log2.

After applying a |log2fold change|≥3 cutoff, only 316 genes were detected as downregulated and
599 genes as upregulated in the CDC compared to the normal tissue samples (Table S1). The clustering
analysis still demonstrated a clear distinction between the two CDC samples on one side and the
normal samples on the other side. Among the 915 significantly deregulated genes with a |log2fold
change| ≥3 were 15 downregulated and 11 upregulated SLC genes, which comprised 2.8% of all genes.
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Figure 2. Hierarchical clustering of samples using differentially expressed protein-coding genes. We
used different-fold changes as a threshold to filter significantly differentially expressed protein-coding
genes (adjusted p-value ≤ 0.05). Read counts of the genes were used to cluster normal and tumor
samples based on their Euclidian distance. In addition, we annotated the selected genes with their
log2fold-change, adjusted p-value and base mean of their read counts. The thresholds used were (A)
|log2fold-change| ≥0, (B) |log2fold-change| ≥1, (C) |log2fold-change| ≥3, and (D) |log2fold change| ≥6.

With even more strict filtering criteria for differential expression, |log2fold change| ≥6 (which
corresponds to a 64-fold difference), we could still identify 57 deregulated genes, of which 22 genes
were downregulated and 37 genes were upregulated in CDC compared to normal samples (Table S1).
Again, the CDC samples formed a cluster distinct from the normal tissue samples, but subtle differences
in their gene expression patterns were more obvious. Again, the normal tissue clustered closer
together. Of note, among the upregulated genes were five histone 1 genes (HIST1H2BO, HIST1H3I,
HIST1H3F, HIST1H1B, and HIST1H2AI) and three collagen genes (COL1A1, COL11A1, and COL17A1).
Remarkably, among the |log2fold change| ≥6 deregulated genes, four solute carrier genes were found
to be downregulated (SLC3A1, SLC9A3, SLC26A7, and SLC47A1), and one solute carrier gene was
found to be upregulated (SLC7A11). The fact that a total of 8.8% of the genes with a |log2fold change|

≥6 belong either to histone 1 genes or to SLC genes is very remarkable. We will return to SLC7A11 and
SLC47A1 later in our study.
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On a global scale, the top downregulated gene in the CDC samples compared to the normal
tissue samples was cubilin (CUBN) (Table S1), which is highly expressed in normal renal proximal
tubules [12]. The top upregulated gene in the CDC samples was keratin 17 (KRT17; Table S1). KRT17
is an intermediate filament protein rapidly induced in wounded stratified epithelia. It regulates cell
growth and stimulates the Akt/mTOR pathway and glucose uptake [13–15].

2.2. Pathway Analyses

To gain a more comprehensive insight into the signaling pathways that are potentially affected
in CDC, we first applied a |log2fold change| ≥1 cutoff and then performed a gene set enrichment
analysis with pathways derived from three independent databases, KEGG, WikiPathway, and Reactome
(Table S2). After mapping against the KEGG database, the terms “pathways in cancer”, “cell cycle”,
and “small cell lung cancer” were found among the top 10 affected pathways. When mapping
against the WikiPathway database, the terms “retinoblastoma in cancer”, “integrated pancreatic
cancer pathway”, and “cell cycle” were found among the top 20 enriched pathways. Finally, the
Reactome database revealed that “collagen” and “mitotic cell cycle” were among the top 10 enriched
pathways. In summary, using different pathway databases, we were able to demonstrate that the genes
deregulated in CDC are enriched in distinct cancer-related signaling pathways and pathways affecting
cell cycle regulation.

2.3. Investigation of SNPs and Mutations

In an effort to identify a possible association between single nucleotide variants and the occurrence
of CDC, we screened the RNA transcriptome sequencing data for single nucleotide variations between
the CDC and the normal samples (Table S3). The identified variations were first mapped against the
NCBI SNP database to identify known variants with accession numbers. To define the potential clinical
relevance, every identified variant was queried against the NCBI ClinVar database to check whether
the variations were pathogenic, likely pathogenic, or confer sensitivity or drug response [16]. However,
none of the identified variations were indicated to have these features.

2.4. Correlations of miRNAs and Target mRNA Expression

Correlations between miRNAs and their corresponding target genes can reveal regulatory
mechanisms in tumor biology. From the RNA transcriptome sequencing data, we were able to extract
information about the expression of pre-miRNAs. Correlations between the mature miRNAs that could
be processed from the assessed pre-miRNAs and target mRNAs are shown in Table 1 and Table S4.
The strongest correlations between miRNAs and mRNA expression levels were found for miR-374b-5p
and miR-26b-5p and their respective target genes (Table 1 and Table S4). Whereas miR-374b-5p was
downregulated (1.65-fold; adjusted p-value = 0.155) in CDC samples, miR-26b-5p (1.55-fold; adjusted
p-value = 0.021) was upregulated in CDC samples compared to normal samples. Accordingly, the target
genes of miR-374b-5p were upregulated, and those of miR-26b-5p were downregulated in CDC samples.
The associations derived from transcriptome sequencing data were further validated in the original
RNA preparations by qRT-PCR. We could verify the upregulation of the target genes of miR-374b-5p,
i.e., HK2 and, in one CDC sample, SLC7A11, but not HIST1H3B (Figure 3A–C). Furthermore, the
downregulation of the target genes of miR-26b-5p, i.e., PPARGC1A, ALDH6A1, and MARC2, could
be validated (Figure 3D–F). Interestingly, SLC7A11 is a predicted target of both miRNAs, raising the
possibility of competitive binding of both miRNAs to their respective binding sites in the 3’UTR of
the SLC7A11 gene. There are four potential binding sites for miR-26b-5p and four potential binding
sites for miR-374b-5p in the 3’UTR of the SLC7A11 gene. However, the closest distance between any
binding sites of these two miRNAs is 55 nt (Table S5), which argues against a competition between
these two miRNAs for binding sites in the 3’UTR of the SLC7A11 gene.
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Table 1. Computational correlation analysis of miRNAs and their target genes.

miRNA Target Gene Correlation
Coefficient p-Value log2fold Change

of Target Genes
qRT-PCR

of Target Genes

miR-374b-5p SLC7A11 −0.67 0.034 6.41 up
miR-374b-5p HIST1H3B −0.71 0.021 5.87 up
miR-374b-5p HK2 −0.74 0.013 5.72 up
miR-26b-5p PPARGC1A −0.70 0.020 −4.87 down
miR-26b-5p ALDH6A1 −0.66 0.039 −4.71 down
miR-26b-5p MARC2 −0.68 0.030 −4.08 down
miR-26b-5p SLC7A11 +0.82 0.004 6.41 up

Figure 3. Quantitative RT-PCR for deregulated genes in collecting duct renal cell carcinoma (CDC). Gene
expression of (A) HK2, (B) SLC7A11, (C) HIST1H3B, (D) PPARGC1A, (E) MARC2, and (F) ALDH6A1 in
the samples that were used for RNA sequencing.

2.5. Protein Expression of miRNA Target Genes

To further validate the expression of the potential miRNA target genes, we also assessed the
protein expression of the target genes by western blotting (Figure 4 and Figure S2). HK2 protein
expression was increased in at least one CDC sample compared to the normal samples. HIST1H3B was
not detectable in our samples and, unexpectedly, SLC7A11 protein expression was decreased in the
CDC samples compared to the normal samples. As expected, PPARGC1A, ALDH6A1, and MARC2
protein expression was downregulated in the CDC samples compared to most of the normal samples.
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Figure 4. Protein expression of selected genes with deregulated expression in CDCs. (A) Western
blot for HK2, PPARGC1A, ALDH6A1, MARC2, and HIST1H3B with GAPDH as the reference protein
and (B) for SLC7A11 with GAPDH as the reference protein. Tu-tumor tissue sample; No-normal
tissue sample.

2.6. Solute Carrier Genes

As previously described, many SLC genes in CDC are dysregulated in comparison to normal
tissue samples [8,11]. Therefore, we decided to investigate the expression of SLC genes in more detail.
After applying a |log2fold change| ≥3 cutoff, a total of 15 SLC genes (SLC3A1, SLC4A4, SLC6A12,
SLC9A3, SLC14A1, SLC22A13, SLC23A1, SLC23A3, SLC25A27, SLC26A1, SLC26A7, SLC27A2, SLC38A11,
SLC47A1, and SLCO4C1) were found to be significantly downregulated, and 11 SLC genes (SLC1A4,
SLC1A5, SLC2A1, SLC2A14, SLC5A6, SLC6A9, SLC7A5, SLC7A11, SLC11A1, SLC16A3, and SLC38A5)
were significantly upregulated in CDC samples compared to normal samples (Figure 5). With even
more stringent criteria of a |log2fold change| ≥6, four SLC genes (SLC3A1, SLC9A3, SLC26A7, and
SLC47A1) were still significantly downregulated.
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Figure 5. Deregulated solute carrier genes at |log2fold change| ≥3 in CDC samples compared to
normal tissues.

2.7. Survival Analysis of Deregulated Genes

As we have described several distinct differences between CDC and normal tissue samples both
in gene expression and in miRNA target gene expression, we sought to investigate whether these
markers might provide any prognostic information. We used the TCGA dataset of renal cell carcinoma
patients [17] and generated Kaplan-Meier analyses for the two most deregulated transcripts (CUBN
and KRT17) as well as for the identified miRNA target genes. As the TCGA cohort did not contain
any specified CDC patients, we performed this analysis independently for the two main histological
subtypes of clear cell renal cell carcinoma patients (ccRCC; KIRC dataset) and for papillary renal cell
carcinoma patients (pRCC; KIRP dataset) (Figure 6). The gene expression values, if available in the
TCGA dataset, were separated at the median to generate a low-expression and a high-expression
subgroup, which were analyzed for differences in patient survival.
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Figure 6. Cont.
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Figure 6. Kaplan-Meier analyses. Association of deregulated gene expression in CDCs with overall
survival in clear cell renal cell carcinoma (ccRCC patients; KIRC dataset) and in papillary renal cell
carcinoma (pRCC patients; KIRP dataset). Expression of none of the genes was significantly associated
with overall survival in pRCC patients. However, the expression of all genes but HK2 was significantly
associated with overall survival, as shown for HK2 (nonsignificant), MARC2 (p = 0.001), CUBN (p ≤
0.0001), KRT17 (p = 0.0032), and SLC47A1 (p ≤ 0.0001).

Several of the genes identified by our approach were confirmed to be of prognostic relevance in
the ccRCC patient cohort (KIRC). Low MARC2 gene expression was significantly associated with poor
overall survival (p = 0.001). Moreover, low expression of CUBN (p < 0.0001) and SLC47A1 (p < 0.0001)
and high expression of the gene KRT17 (p = 0.0032) were significantly associated with poor overall
survival (Figure 6). However, none of the genes analyzed were associated with overall survival in the
pRCC (KIRP) patient cohort.

Survival analysis data of genes PPARGC1A, ALDH6A1, and SLC7A11 in the same TCGA KIRC
dataset have already been published by other authors and are therefore not repeated by us. Significant
associations of low PPARGC1A, low ALDH6A1, and high SLC7A11 gene expression with poor outcomes
in ccRCC patients have been reported [8,16,17].
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3. Discussion

CDC is a rare and highly aggressive variant of renal cell carcinoma, and is associated with a mean
survival of approximately 11 months. The molecular pathways responsible for the tumor biology of
CDCs are still mainly unresolved. As expected, after RNA transcriptome sequencing, we observed
several cancer pathways and cell cycle regulation pathways that might predominantly be affected in
CDCs compared to normal samples. Altogether, more genes were upregulated than downregulated in
CDCs, which is in line with previous findings [6,8].

In our study, the most pronounced downregulated gene in CDC was CUBN. This gene is normally
highly expressed in renal proximal tubules [12]. CUBN has not been previously described as deregulated
in CDCs. However, we found a significant association of low CUBN gene expression with poor overall
survival of ccRCC patients in the TCGA ccRCC dataset. In addition, this gene has already been
identified as an independent prognostic marker for renal cell carcinoma at the protein level [18].
Interestingly, CUBN has been suggested as a predictive marker for the treatment of renal cancer patients
with sunitinib and sorafenib [19]. So far, there are only case reports for CDCs treated with sunitinib or
sorafenib, but there have been some promising results concerning partial responses [3].

In our study, the most pronounced upregulated gene in CDC was KRT17. KRT17 is normally
expressed in the basal cells of complex epithelia, but not in stratified or simple epithelia. Furthermore,
it is an intermediate filament protein that is rapidly induced in wounded stratified epithelia and
regulates cell growth by binding to the adaptor protein 14-3-3-sigma [13]. This finding is relevant to
the consideration that “tumors are wounds that do not heal” [20]. KRT17 expression is known to be
associated with disease severity in oral submucosa fibrosis [14]. In line with this finding, keratin 17 is
induced in oral cancer and facilitates tumor growth [15]. Remarkably, Malouf and colleagues found in
their functional enrichment analysis of CDC that response to wounding was the predominant pathway;
however, when comparing CDCs with UTUCs, KRT17 was among the top downregulated genes in
CDC [6]. In our study, we observed a significant association between high KRT17 gene expression and
shorter overall survival in ccRCC patients in the KIRC dataset.

Solute carriers (SLCs) have been described as biomarkers for RCC patients [21,22]. Strikingly, SLC
gene expression is changed in CDCs [8]. Wang and colleagues found several members of the SLC family
among the top deregulated genes, either upregulated, i.e., SLC6A11, SLC6A15, SLC7A3, SLCO1B1,
and SLCO1B3 or downregulated, i.e., SLC5A12, SLC12A1, SLC22A12, SLC47A2, and SLC22A6 [8].
In our study, four SLC transporter genes were strongly (|log2fold change| ≥6) downregulated (SLC3A1,
SLC9A3, SLC26A7, and SLC47A1). SLC7A11 was detected to be among the most upregulated at the RNA
level in the study by Wang and colleagues [8]. We confirmed this gene as upregulated in one of two
CDC samples. However, at the protein level, SLC7A11 was detected as downregulated in both CDCs
compared to the normal samples. The observed discrepancy between the RNA and protein levels could
be explained by post-transcriptional regulation of SLC7A11, since alternative 3’UTRs for SLC7A11
have been described, but this has not been further studied [23]. In contrast to our findings, Wang et al.
detected a protein upregulation of SLC7A11 in 12 out of 15 CDC cases, and they stated that SLC7A11
upregulation at the RNA level was associated with poor survival in ccRCC [8]. Their suggestion
to target SLC7A11 as a therapy option has to be, in our opinion, based on testing SLC7A11 protein
expression on a case-by-case basis and needs further investigation. Wang et al. reported that two SLC
members, SLC47A2 and SLC47A1, were downregulated (|log2fold change| >6 and >5, respectively) in
CDCs [8]. In line with this observation, we found that SLC47A1 was also strongly downregulated at
the RNA level (|log2fold change| ≥6). SLC47A1 and SLC47A2 are transporters that excrete endogenous
and exogenous toxic electrolytes through urine and bile [24]. In addition, the SLC47A gene may
affect renal excretion of substrate drugs, such as metformin [25]. It is tempting to speculate that
treatment of tumors with a downregulated SLC47A gene, e.g., CDCs, with metformin could have toxic
effects; however, polymorphisms in the SLC47A gene may affect renal excretion of substrate drugs
such as metformin, resulting in inadequate pharmacotherapy or toxic effects [25]. Therefore, before
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considering the application of metformin in tumor patients, these somatic polymorphisms should be
tested. Notably, our two CDC patients did not possess single nucleotide variants in the SLC47A gene.

We utilized RNA sequencing information about pre-miRNAs or miRNA host genes as an
alternative approach to identify target genes or proteins deregulated in CDC. In this way, we identified
strong correlations between downregulated miR-374b-5p and its upregulated target genes HIST1H3B,
HK2, and SLC7A11, and also between upregulated miR-26b-5p and its downregulated target genes
PPARGC1A, ALDH6A1, and MARC2. Among the upregulated target genes, HIST1H3B has not yet been
described to play any role in renal cell carcinomas. HK2 is well known as an enzyme in glycolysis that
catalyzes the phosphorylation of glucose into glucose-6-phosphate [26]. HK2 has been described as a
target of the HIF1a protein in several cancers, including RCC [27,28]. Recently, Nam et al. showed that
HK2 plays a pivotal role in renal tumor progression to metastasis [29]. SLC7A11 (xCT) is an anionic
amino acid transporter that is highly specific for the amino acids cysteine and glutamate [30]. Increased
expression of SLC7A11 at the RNA and protein levels in CDCs has been shown previously [8,11].

In our set of downregulated genes, PPARGC1A (PGC-1α) is a central regulator of mitochondrial
energy metabolism and functions in renoprotection against ischemia [31]. LaGory and coworkers
found that ccRCC cells expressing PGC-1α showed impaired tumor growth and enhanced sensitivity to
cytotoxic therapies [32]. In line with this, RCC patients with low levels of PGC-1α expression displayed
a poor outcome in the TCGA ccRCC dataset [32]. ALDH6A1 catalyzes the oxidative decarboxylation
of malonate and methylmalonate semialdehydes to acetyl- and propionyl-CoA in the valine and
pyrimidine catabolic pathways [33]. Recently, Zhang et al. identified six genes, including ALDH6A1, as
biomarkers for ccRCC, and demonstrated that downregulation of the ALDH6A1 gene was associated
with shorter overall survival of ccRCC patients in the TCGA dataset [34]. MARC2 (MOSC2) has
been suggested to play a role in the mitochondrial nitric oxidase pathway and in the detoxification
of xenobiotics [35]. MARC2 associates with MARC1 in the mitochondrial amidoxime-reducing
component (mARC), i.e., mammalian molybdenum-containing enzymes [35]. Rixen and coworkers
recently showed that MARC2 KO mice had decreased levels of total cholesterol and increased glucose
levels, suggesting that MARC2 affects energy pathways [36]. However, Li et al. showed that reduced
MARC2 expression was associated with an increased sensitivity to paclitaxel-based neoadjuvant
therapy in human EGFR-2-negative breast cancer patients [37] but, to the best of our knowledge, there
have been no previous reports on a role of MARC2 in RCC.

In our survival analysis, we showed for the first time that low gene expression for MARC2,
CUBN, and SLC47A1 and high gene expression of KRT17 were associated with poor overall survival
of ccRCC patients. The limitations of our study were the small number of CDCs studied and the
lack of an available validation set. The strength of our study is that we considered miRNA-mRNA
correlations and could further confirm the role of SLC in CDCs. Based on the finding that among the
deregulated genes in CDCs were genes that regulate (i) the transport of amino acids or electrolytes
(SLC7A11, SLC47A1), (ii) mitochondrial pathways (MARC2, PPARGC1A), and (iii) catabolic pathways
(HK2, ALDH6A1), we can support the statement that CDC is a metabolic disease [6].

4. Material and Methods

4.1. Patients and Tumor Material

The snap-frozen tissue samples were obtained from the Comprehensive Cancer Center tissue
biobank of the University Hospital Erlangen. The tumor histology was reviewed by experienced
uropathologists (AH and FH). All procedures were performed in accordance with the ethical standards
established in the 1964 Declaration of Helsinki and its later amendments. All patients gave informed
consent. The study was based on the approval of the Ethics Commissions of the University Hospital
Erlangen (No. 4607). The CDC case Tu1 (pT3a, pN2, G3–G4) and CDC case Tu2 (pT3a, cN2, cM1, G3)
presented with liver metastases at diagnosis and had a survival time of 2 months. The normal tissue
samples originated in one case (No2) from CDC Tu2 adjacent tissue, in five cases from tumor-adjacent



Cancers 2020, 12, 64 13 of 17

tissues from ccRCC patients (No3, No4, No7, No8, No9), in one case from tumor adjacent tissue from a
chromophobe renal cell carcinoma patient (No5), and in one case from tumor adjacent tissue from an
oncocytoma patient (No6) (Table S1).

4.2. RNA and Protein Isolation

Total RNA and protein were isolated using TRIzol (Invitrogen, Darmstadt, Germany) according
to the manufacturer’s instructions. Tissue samples were mechanically disrupted in TRIzol reagent
prior to RNA and protein isolation. RNA preparations were treated with recombinant DNase I (Sigma
Aldrich, Taufkirchen, Germany) before use. The RNA yield and purity were determined using a
microliter spectrophotometer (NanoDrop 1000, Thermo Fisher Scientific, Wilmington, DE, USA).

4.3. Quantitative Real-Time PCR

The mRNA transcripts were detected using TaqMan gene expression assays (Thermo Fisher
Scientific) according to the manufacturer’s protocol. Briefly, 1 µg of RNA was reverse transcribed
using the Maxima cDNA synthesis kit (Thermo Fisher Scientific). The reactions were carried out using
the StepOne Plus Real-Time PCR System (Thermo Fisher Scientific) in triplicate in a final volume
of 10 µL with cDNA equivalent to 25 ng RNA, using TaqMan gene expression assays (SLC7A11,
Hs00921938_m1; HIST1H3B, Hs00605810_s1; HK2, Hs00606086_m1; PPARGC1A, Hs00173304_m1;
ALDH6A1, Hs00194421_m1; MARC2, Hs01550747_m1; SLC47A1, Hs00217320_m1) and PCR reagents
according to the manufacturer’s instructions. No template controls were included in the reaction plates.
Thermal cycling conditions were 95 ◦C for 20 s, followed by 40 cycles of 95 ◦C for 1 s and 60 ◦C for 20 s.
GAPDH (Hs99999905_m1, Thermo Fisher Scientific) served as the endogenous reference. Relative
mRNA expression levels were calculated according to the ∆∆Ct method [38].

4.4. Western Blotting

Twenty-five µg of protein extract was separated by SDS-PAGE (8% gels) and transferred to
nitrocellulose membranes (GE Healthcare, Freiburg, Germany) by semidry electroblotting. The primary
antibodies used were against SLC7A11 (rabbit mAb, clone D2M7A, 1:1000, Cell Signaling, Frankfurt,
Germany), HIST1H3B (rabbit pAb, PA5-111876, 1:1000, Thermo Fisher Scientific), HK2 (rabbit mAb,
clone C64G5, 1:1000, Cell Signaling), PPARGC1A (mouse mAb, clone 1C1B2, 1:3000, Proteintech,
Manchester, UK), ALDH6A1 (rabbit pAb, 20452-1-AP, 1:6000, Proteintech), MARC2 (rabbit pAb,
24782-1-AP, 1:1000, Proteintech), SLC47A1 (rabbit mAb, clone D4C62, 1:500, Cell Signaling), and GAPDH
(rabbit mAb, clone 14C10, 1:10,000, Cell Signaling). Secondary horseradish peroxidase-conjugated
antibodies against rabbit or mouse were purchased from Jackson ImmunoResearch (Suffolk, UK) and
used at a concentration of 1:5000. Protein bands were detected by enhanced chemiluminescence in an
LAS-4000 chemiluminescence detection system (GE Healthcare, Munich, Germany).

4.5. RNA Sequencing Data Processing

Total RNA sequencing library preparation and sequencing was performed at Core Facility Genomik
(University of Münster, Münster, Germany). After rRNA depletion (NEBNext; New England Biolabs,
Ipswich, MA, USA), library preparation was performed according to the manufacturer’s protocols
(NEBNext Ultra II, New England Biolabs). RNA sequencing was performed using the Illumina NextSeq
500 platform. Processing of 75 bp single-end reads of mRNA sequence data was quality checked using
FastQC (v 0.11.8) [39]. Low-quality read ends and remaining sequencing adapters were clipped off

using Cutadapt (v1.14) (https://cutadapt.readthedocs.io/en/stable/). Trimmed reads were aligned to the
human genome (UCSC GRCh38) using HiSat2 (v2.1.0) (https://ccb.jhu.edu/software/hisat2/index.shtml).
Annotation and counting of the processed reads was performed using featureCounts (v 1.5.3) (http:
//subread.sourceforge.net/) and Ensembl annotations (90, GRCh38.p10). Mapping results can be
assessed in Table S6. Read counts of all genes can be found in Table S7.

https://cutadapt.readthedocs.io/en/stable/
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4.6. Differential Gene Expression Analysis

Differential gene expression analysis was performed in R using DESeq2 v1.16.1 [40]. We first
filtered genes by keeping those with at least five read counts in at least three normal tissues, and at least
five read counts in both tumor samples. As a result, 16,672 out of 58,395 genes were used for follow-up
analysis (Figure S1). Finally, we used an algorithm to estimate variance-mean dependence in read
counts and test for differential expression based on a model using a negative binomial distribution.
The Benjamini-Hochberg correction was used to correct for multiple comparisons. Genes with
an adjusted p-value ≤ 0.05 were regarded as significantly differentially expressed. Statistics of the
differential gene expression results including base mean, fold-change, and adjusted p-values of genes
were visualized in a circos plot using OmicCircos. Hierarchical clustering of samples was performed
and visualized using ComplexHeatmap [41].

4.7. Gene Enrichment Analyses

Significantly differentially expressed protein-coding genes with at least a 2-fold increase or
a half-fold change were used to perform gene enrichment analysis using Enrichr [42]. This tool
applies Fisher’s exact test to determine whether a given set of genes is significantly associated with
curated biological pathways from databases such as KEGG [43], WikiPathways [44], or Reactome [45].
The Benjamini-Hochberg correction was used to correct for multiple comparisons. The pathways with
adjusted p-values ≤ 0.05 were regarded as significant. The results can be found in Table S2.

4.8. Survival Analysis

We extracted RNA sequencing data from 522 clear cell renal cell carcinoma (KIRC) patients and
284 papillary cell renal cell carcinoma (KIPR) patients from the TCGA database [17]. Patients were
divided into two groups (high or low) based on their expression levels of the genes of interest (i.e., HK2,
MARC2, CUBN, KRT17, SLC47A1). Patients at the top 50% expression level of a gene were assigned to
the high group, and the other patients were assigned to the low group. Patient survival times were
calculated as the number of days from initial pathological diagnosis to death, or the number of days
from initial pathological diagnosis to the last time the patient was known to be alive. These times were
used to generate the Kaplan-Meier survival plots using RTCGA (https://rtcga.github.io/RTCGA).

4.9. miRNA Target Genes

To derive miRNA-gene interactions, we combined results from three databases. We first obtained
predictive miRNA-gene interactions from TargetScan v7.2 [46]. The data were further annotated with
StarBase v2.0 [47] and miRTarbase 2018 [48], which provide experimental evidence for the putative
miRNA-gene interactions. As a result, we obtained a list of miRNA-gene interactions that not only
contained putative miRNA binding sites in 3’ UTR of target genes, but also experimental evidence
validating such interactions. The list can be found in Table S4.

5. Conclusions

The RNA sequencing analysis of CDCs in comparison to normal tissues revealed a large number
of dysregulated protein-coding genes with a predominance of solute carrier transporters, potential
miRNA-target interactions and prognostic markers that could be associated with CDC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/1/64/s1,
Figure S1: Analysis of the expression of the selected 16,672 genes, Figure S2: Western blots and densitometry,
Table S1: Results of differential gene expression analysis. The table contains four sub-tables that are statistics of all
selected genes (n = 16,672), significantly (adjusted p-value ≤ 0.05) differentially expressed protein-coding genes
with |log2fold-change ≥1|, |log2fold-change ≥3| and |log2fold-change ≥6|, Table S2: Results of gene set enrichment
analysis, Table S3: RNA transcriptome sequencing data for single nucleotide variations, Table S4: miRNA-gene
interactions and correlation analysis, Table S5: Putative miRNA binding sites on 3’ UTR of SLC7A11, Table S6:
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Statistics of the read counts that were mapped and identified in the RNA sequencing data, Table S7: Read counts
of all identified genes (n = 58,396).
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