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Abstract: Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery
since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole
as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified
as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the
starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving
drugs and clinical candidates against a number of diseases, including infections (bacterial, viral,
parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the
nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used
to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record
of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive
review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized
nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and
leads published from 1950 to 2021. The present review also presents the miscellaneous examples in
each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives
is also discussed.

Keywords: nitroimidazole; synthesis; antibiotic; clinical use

1. Introduction

During the past decade, the attrition rate of drug development candidates reach-
ing the market has been decreased and has become one of the significant challenges in
pharmaceutical research and drug development (R&D). Several issues have arisen to ex-
plain the decrease in pharmaceutical industry productivity, including the non-optimal
physicochemical properties of hits, leads and clinical candidates, affecting their absorption,
distribution, metabolism, elimination, and toxicity (ADMET) profiles, and consequently,
their drug-like properties [1,2]. Several strategies have been developed to solve these issues,
such as (1) target-based approaches (e.g., fragment-based approach, drug-design approach)
and (2) phenotypic screening approach, as well as the scaffold hopping approach and
functionalization of the known scaffold [3]. In this direction, the nitroimidazole scaffold
was discovered in the early 1950s and was reported for anti-bacterial potential, which was
highly exploited regarding its chemistry and pharmacological space, and thereafter, several
drugs and clinical candidates have been generated. Figure 1 below shows the timeline
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and selected related chemical structures of the nitroimidazole series and their therapeutic
applications, clearly showing the interest of drug development of this scaffold [1].
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Figure 1. Timeline and selected related chemical structures of nitroimidazole series. 

The journey of nitroimidazole in drug discovery started with a discovery made by 
Maeda et al. in 1953 with the isolation of a compound from the culture of bacteria Nacar-
dia mesenterica [4]. In 1955, Nakamura established its structure as 2-nitroimidazole [5]. 
Later, 2-nitroimidazole was also isolated from other bacterial strains such as Streptomyces, 
Trichomonas, etc. Azomycin 1 has shown potent activity against trichomoniasis [1], a 
sexually transmitted parasitic disease caused by Trichomonas vaginalis, which inspired the 
researchers of Rho ̂ne-Poulenc for its derivatization, but all attempts toward its synthesis 
were unsuccessful. Rho ̂ne-Poulenc researchers shifted their attention to the synthesis of 
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The journey of nitroimidazole in drug discovery started with a discovery made by
Maeda et al. in 1953 with the isolation of a compound from the culture of bacteria Nac-
ardia mesenterica [4]. In 1955, Nakamura established its structure as 2-nitroimidazole [5].
Later, 2-nitroimidazole was also isolated from other bacterial strains such as Streptomyces,
Trichomonas, etc. Azomycin 1 has shown potent activity against trichomoniasis [1], a sex-
ually transmitted parasitic disease caused by Trichomonas vaginalis, which inspired the
researchers of RhÔne-Poulenc for its derivatization, but all attempts toward its synthesis
were unsuccessful. RhÔne-Poulenc researchers shifted their attention to the synthesis of
5-nitroimidazole regio-isomers, which fortuitously led to the identification of Metronida-
zole 7 and other related drugs, discussed in depth in upcoming sections (Figure 2).
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Figure 2. Chemical structure of 2-nitroimidazole and 5-nitroimidazole.

The 5-nitroimidazole scaffold [6] was the starting point to the synthesis of numerous
analogs, and one among such is Metronidazole 7 ((Flagyl®, Rhône-Poulenc, France), which
has shown potent anti-protozoal activity and lesser toxicity than Azomycin 1 (Figure 3) [7].
Metronidazole 7 was the first systemically active medicine against Trichomonas vaginalis
and Trichomonas foetus. Currently, Metronidazole 7 is used to treat bacterial vaginosis,
trichomonas, amebiasis, and non-sporing anaerobic bacterial infections caused by Bacteroids
fragilis [8]. The 5-nitroimidazole moiety is well known for its broad spectrum of anti-
infectious activity [9]. A specific review on the anti-infectious activity of 5-nitroimidazole
has been emphasized by Crozet et al [6]. For instance, Metronidazole 7 (Flagyl®, developed
by Rhône-Poulenc, France), Tinidazole 8 (Fasigyne®, developed by Pfizer, Brooklyn, NY,
USA), Ornidazole 9 (Tiberal®, developed by Hoffmann-La Roche, Basel, Switzerland),
Satranidazole 10, Nimorazole 11 (Nitrimidazine, Naxogin®, developed by Carlo Erba,
Cornaredo, Italy), Secnidazole 12 (Secnol®, developed by Symbiomix, Newark, NJ, USA),
and Dimetridazole 13 (Emtryl®, developed by Rhône-Poulenc, France) are other members
of this class of drugs commonly used in medicine. Apart from these, Fexinidazole 14
(Sanofi, France & DNDi) represents another 5-nitroimidazole-based drug [10], which has
replaced the old and highly problematic treatment techniques and is an oral, safe and
effective short-course treatment for human African trypanosomiases. Fexinidazole 14 is
free of genetic toxicity in mammalian cells [1]. Other 5-nitroimidazole-based candidates
are Megazol 15 (discovered by American Cyanamid Company, Bridgewater Township, NJ,
USA), used against protozoan infections and Carnidazole 16 (Spartrix, Pantrix, Gambamix®,
developed by Janssen, Pharmaceutica NV, Beerse, Belgium) used in the veterinary field.
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based drug candidates.

Apart from 5-nitroimidazole, 2-nitroimidazole analogs have also utilised in many
drugs, and representative examples as drugs are Benznidazole 2 (Rochagan, developed
by Laboratório Farmacêutico do Estado de Pernambuco, Recife, Brazil) [11], Misonidazole
3 (designed by Roche, Branchburg, NJ, USA), Pimonidazole 4 (Hypoxyprobe, Roche, NJ,
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USA) [12] and Evofosfamide 5 (TH-302, Threshold Pharmaceuticals Inc., San Francisco, CA,
USA) [13]. This reliable tumor candidate underwhelms in phase III studies.

In the last decade, nitroimidazole derivates belonging to bicyclic-fused nitroimidazole
has also shown great potential in TB drug discovery [14,15]. The first fused nitroimidazole
reported was CGI-17341 17 (Hindustan Giba-Geigy, Figure 1), which displayed in vitro and
in vivo antitubercular activities [16]. CGI-17341 17 was found to be active against multidrug-
resistant strains. Unfortunately, the development of this compound was discontinued due
to its mutagenic side effects [17,18]. Almost 10 years after, two new bicyclic nitroimidazoles
were developed, OPC-67683 18 (Delamanid, by Otsuka Pharmaceuticals, Tokyo, Japan) [1]
and PA-824 19 (Pretonamid, by PathoGenesis, USA and TB Alliance, New York, NY,
USA) [1] without any mutagenic effects (Figure 1). Delamanid was approved for the
pulmonary multidrug-resistant TB by the European Medicines Agency (EMA) in 2014 in
adult patients [19]. In contrast, Pretomanid 19 was approved in 2019 for the treatment of
TB. Recently, the Global Alliance for TB drug development and the University of Auckland
advanced in Phase I of TBA-6354 21 but showed neurotoxicity in healthy volunteers [20].
This class of nitroimidazole derivatives has also shown promising potential in leishmanasis
drug discovery, which needs an effective oral treatment option [21]. This good profile has
also attracted significant interest. Another structure in this class, VL-2098 20, Ref. [17] has
also been reported.

Nitroimidazole represents a unique scaffold in drug discovery and development,
has given many successful drugs and clinical candidates, and is still being pursued for
medicinal chemistry exploitation. Considering its wide and interesting biological activities,
several reviews and books were published. However, most of them were focused on
their pharmacological profiles [1,6,18,22–25]. There are few reviews that cover the partial
synthetic aspects of this scaffold [26–28], and considering its wide application and the
presence of diverse space around this scaffold, there should be a consolidated review
covering chemistry, pharmacological and recent development. These wonderful chemical
series have given numerous analogs and regio-isomers as potential drug candidates for
several therapeutic conditions such as anti-bacterial, anti-cancer, anti-HIV, anti-parasitic,
anti-tuberculosis, anti-leishmaniasis agents, etc., as well as imaging agents in medicine.
Figure 3 summarizes the transition from simple nitroimidazole to functionalized and
optimized nitroimidazole-based drug and candidates.

Mechanism of Action of Nitroimidazole Derivatives at a Glance

These chemotherapeutic agents are known to have diverse pharmacological activ-
ities such as anti-bacterial, anti-parasitic, anti-cancer, anti-HIV, anti-tuberculosis, anti-
leishmaniasis agents, etc., and imaging agents in medicine. Obviously, these molecules
interact with several bio-chemical pathways of hosts and parasites. The exact mechanism
of either of these drugs is not known. However, several studies assumed that the reductive
bioactivation and generation of reactive intermediates are responsible for the overall effect.
In general, nitroimidazole-based drugs and leads are well defined as pro-drug, and the
nitro functionality is responsible for the activity. The nitro group converts into nitric oxide
(NO) or a related reactive nitrogen species (RNS) by the process of reductive bioactivation,
the details being recently compiled and published [29,30]. The activation and interaction
of each class depend upon the conditions and diseases on focus. Each class has shown
different reduction potential, and their activation depends upon the environment. Here,
we briefly summarize the trends in each class (Figure 4).
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Among the classes, 2-imidazole-based drugs and leads are being used as potential
anti-protozoals as well as radio-sensitizers and diagnostic markers for several cancers.
These activities exploit the nitro functionality of the candidate, which undergoes reduction
under hypoxia and irradiation and generates the reactive intermediates that ultimately
interact with important cellular components such as DNA, RNA and proteins, thus inhibit-
ing growth. 2-Nitroimidazole-based drugs such as Benznidazole 2 show anti-protozoal
activity because of the formation of free radicals and electrophilic metabolites, when its
nitro group is reduced by the action of nitroreductases. The metabolites covalently bind
to macromolecules of the parasite and are responsible for the trypanocidal effect and
anti-protozoal effect [31]. There is one drug belonging to nitroimidazole class named as
Azathiopurine 6, which is known for its immunosuppression property. Glutathione and
similar compounds of the intestinal wall, liver and red blood cells mediate the reductive
cleavage of the thioether (-S-) due to which Azathioprine 6 converts to 6-mercaptopurine
(6-MP) [32–34]. Azathioprine 6 interferes with purine synthesis and disrupts DNA and
RNA synthesis, thus causing immunosuppression [35].

Conversely, 5-ntroimdazole-based drugs also exploit the nitro functionalities and,
under reduction by several anaerobic bacteria and parasites, generate the reactive radical-
based intermediates that ultimately interact with cellular components of bacteria and para-
sites, stopping their growth and providing therapeutic effects. The fused nitroimidazole-
based drugs such as delamanid and pretomanid are known for potential anti-tubercular
activity. Their anti-tubercular activity is known to be controlled by their dual mechanism
of action (interference with mycolic acid synthesis and respiratory poisoning) [36]. Re-
garding the mechanistic study, it is assumed that both pretomanid and delamanid have
similar mechanisms of action, and most of the research to understand the mechanism has
been performed with Pretomanid 19. The nitroreductase enzymes (deazaflavin-dependent
nitroreductase (Ddn)) of Mycobacterium tuberculosis selectively bio-activate the fused ni-
troimidazoles via the denitrification process (releasing nitric oxide) and generate reactive
intermediates; however, the bio-activation of both compounds is favored by redox cycling
of deazaflavin cofactor 420, or F420. The mechanistic study revealed that the inhibition
of mycolic acids is responsible for the killing of Mycobacterium tuberculosis under aerobic
conditions; however, the interaction of released nitric oxide with cytochrome oxidases in the
mycobacterial electron transport chain results in disruption of ATP synthesis. The overall
effects are responsible for the potential activity of fused nitroimidazole-based drugs and
leads. Nitro functionality of the imidazole-based drugs and candidates is also responsible
for mutagenic liabilities [37], however, some existing nitroimidazole-based drugs and leads
are devoid of this liability [38]. This property depends on the unique balance of electronic
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and steric factors, which qualifies this scaffold for providing drug candidates. The overall
trend of mutagenicity among the class is also discussed in the latter part of this review.

This review surveys and analyzes the synthetic routes to prepare functionalized ni-
troimidazole scaffolds. This review has been divided based on the different nitroimidazole
scaffold types: 2-nitroimidazole, 4-nitroimidazole, 5-nitroimidazole, and fused nitroim-
idazoles. Importantly, the toxicity of nitroimidazoles based on chemical scaffold types,
medicinal chemistry of recently developed candidates, and preclinical and clinical profile of
recently developed candidates is also highlighted and analyzed. Finally, a conclusion and
perspectives are presented to produce readers our future vision of nitroimidazole scaffold
modifications as future new drugs.

2. Activity Profile and Synthetic Pathways Developed to Construct Functionalized
Nitroimidazole Derivatives
2.1. Functionalized 2-Nitroimidazole Scaffold
2.1.1. Azomycin 1

Azomycin 1 represents the first nitroimidazole-based compound for therapeutic appli-
cation and was first isolated from the bacteria’s culture, followed by attempts toward its
synthesis (Scheme 1, routes A–G). In the initial days, the challenges posed for its synthesis
led to the discovery of other regio-isomers (5-nitroimidazole and 4-nitroimidazole deriva-
tives). As shown in Scheme 1, in 1965, Beaman et al. made a first successful attempt to
synthesize 2-nitroimidazole from 2-aminoimidazole via two-step reactions (i) diazotization
followed by (ii) nitration (route A) [39]. In 1982, Cohen et al. developed another synthetic
route starting from imidazole, where imidazole was first converted to N-trityl imidazole.
The N-trityl imidazole was then treated with n-butyl lithium to obtain 2-lithio intermedi-
ate, which upon treatment with n-propyl nitrate followed by acid hydrolysis, furnished
2-nitroimidazole 1 (route B) [26].
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HNO3, CuSO4, ~31%; (B) (i) Ph3CCl, Et3N, (ii) n-BuLi, THF, (iii) n-PrONO2; (C) (i) Ethyl bromide
(ii) β-aminoacetaldehyde dimethyl acetal (iii) Conc. HCl, 65 ◦C; (iv) NaNO2, HCl, 36% (overall yield);
(D) NaNO2, potters clay, MW, 100 ◦C, 82%; (E) (i) Conc. H2SO4, 50 ◦C; (ii) 2 h, 100 ◦C; (iii) H2SO4,
NaNO2, CuSO4, NH3 Gaseous, 68%; (F) NaNO2, HBF4 followed by addition of copper powder and
sodium nitrite ~49%; (G) Oxone, water, 40 ◦C; 83%.
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The promising profile of Azomycin 1 has continuously built interest among researchers,
and therefore, several new routes were explored later. In 2001, Qing et al. constructed the
2-nitroimidazole ring using β-aminoacetaldehyde di-methyl acetal as the starting material.
The β-aminoacetaldehyde di-methyl acetal was treated with S-ethylisothiourea to obtain
N-(2,2-dimethoxyethyl)guanidine sulfate, which on treatment with conc. HCl, produced
2-aminoimidazole. The aminoimidazole underwent diazotization followed by nitration to
produce Azomycin 1 (route C) [40]. In 2011, Phukan et al. also developed a solvent-free
process for its synthesis from 2-nitroimidazole 1, where potter’s clay and sodium nitrite
under microwave conditions were used (route D) [41]. Wilde et al., in 2014, also developed
a method where the 2-aminoimidazole ring was first constructed using amino acetaldehyde
dimethyl acetal and O-methylisourea sulfate as starting materials, which then underwent
diazotization, nitration, and finally furnished Azomycin 1 (route E) [42].

In 2014, Hui et al. also described the synthesis of Azomycin 1 from 2-aminoimidazole
hydrochloride via diazotization (using 40% fluoroboric acid and sodium nitrite) followed
by nitration (sodium nitrite and copper powder) (route F) [43]. In 2014, Zhao et al. de-
veloped a green and facile approach for the synthesis of 2-nitroimidazole 1 by treating
2-aminoimidazole with oxone as an oxidant in the presence of water (route G) [44].

2.1.2. Benznidazole 2 and Its Derivatives

Benznidazole 2, belongs to the 2-nitroimidazole-based drug used in the treatment of
Chagas disease, a disease caused by the protozoan parasite, Trypanosoma cruzi (Figure 5).
Benznidazole 2 was developed and commercialized by Roche and was first launched in
Brazil (in 1970) [45]. Recently, in 2017, the FDA has also given an accelerated approval for
pediatric use [46]. Benznidazole 2 has shown good in vitro results against several strains of
Trypanosoma such as Trypanosoma cruzi Arequipa, Trypanosoma cruzi SN3, Trypanosoma cruzi
Tulahuen in all the three different stages, i.e., extracellular epimastigote (Emast.), intracellular
amastigote (Amast.) and trypomastigote (Trypom.). Moreover, Benznidazole 2 has shown
good in vivo activity against both acute and chronic mice models of infection [47,48]. The
pharmacokinetic parameters studied by Perin et al. suggest that Benznidazole 2 has rapid
and low absorption after oral administration (100 mg/kg, in mice). In clinical studies, it
has been observed that benznidazole 2 has a better parasitological cure rate in patients
with acute infection. Benznidazole 2 is an orally administered drug (with a human dose of
5–10 mg/kg/day for 30–60 days) and has been in use for the past ~50 years [49].
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As shown in Scheme 2 (routes A–D), the effort toward the synthesis of Benznida-
zole 2 has been made by many researchers. However, its first synthesis was performed
by Gamaliel et al. from Hoffmann-La Roche AG in 1969, wherein 2-nitroimidazole was
condensed with methyl chloroacetate in the presence of a base to obtain methyl-2-nitro-
1-imidazolylacetate, which on subsequent treatment with benzylamine, produced Ben-
znidazole 2 (Scheme 2, route A) [50]. In 2015, Handal et al. from Ministerio de Educacion
developed another eco-friendly, economical method for the synthesis of Benznidazole
2 (Scheme 2, route B), where N-benzyl-2-hydroxyacetamide was treated with 2-nitro-
1H-imidazole under microwave conditions [51]. In 2016, Donadio et al. from Consejo
Nacional de Investigaciones patented a three-step route for the synthesis of Benznidazole 2.
The synthesis involved (i) diazotization of 4-chloroaniline and coupling with imidazole;
(ii) 2-(4-chlorophenyl)azoimidazole underwent N-alkylation with N-benzy-2-chlorolacetam-
ide and iii) hydrogenation of the synthesized intermediate produced Benznidazole 2
(Scheme 2, route C) [52]. In 2017, Lynsey et al. developed a one-pot method where
2-nitroimidazole was first treated with haloacetate ester, and then the addition of benzy-
lamine produced Benznidazole 2 (Scheme 2, route D) [53].
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Scheme 2. Approaches toward the synthesis of Benznidazole 2. Reagents and conditions:
(A) (i) methyl chloroacetate, sodium methoxide, DMF, 150 ◦C; (ii) benzylamine, 100 ◦C; (B) N-
benzyl-2-hydroxyacetamide, MW; (C) (i) NaNO2, HCl, <5 ◦C followed by addition of imidazole,
(ii) N-benzyl-2-chloroacetamide, disodium carbonate, H2O, rt, >−5 ◦C, (iii) NaH, DMF, 60 min,
0–25 ◦C; (D) ethylbromoacetate, K2CO3, EtOH, 70 ◦C, 110 min followed by addition of benzylamine
at 50 ◦C for 16 h, 86%.

Winum et al. synthesized sulfonamides and sulfamides containing Benznidazole
derivatives (22 and 23) and evaluated them as radio/chemosensitizing agents that target
the tumor-associated carbonic anhydrase (CA) isoforms I, II, IX and XII. Most of the
compounds have shown nanomolar activity against CA IX and XII (Scheme 3) [54].
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carbonic anhydrase IX inhibitors. Reagents and conditions: (a) tert-butyl bromoacetate, potassium
carbonate, ACN, rt, overnight, 71%; (b) TFA:Water:Thioanisole (95:2.5:2.5), rt, overnight, 100%;
(c) Amines, DMAP, EDC, DMA, rt, 2 days, 68–89%; (d) potassium carbonate, tert-butyl-2-bromoethyl
carbamate, 40%; (e) TFA-DCM (8:2), rt, 2 h; (f) triethylamine, chlorosulfonylisocyante, tert-butanol,
DCM, rt, overnight, 70%; (g) methane sulfonyl chloride, triethylamine, DCM, 45%.

2.1.3. Misonidazole 3 and Its Derivatives

Misonidazole (MISO, 3) is another 2-nitroimidazole derivative discovered as a ra-
diosensitizer to sensitize resistant hypoxic tumor cells toward treatment [55]. Misonidazole
3 has shown good in vitro, in vivo radio-sensitizers properties and pharmacokinetics prop-
erties (Figure 6) [55]. In the clinical study, none of the clinical trials demonstrated significant
results, except for one where the small degree of radiosensitization was observed at a dose
lower than the clinically recommended dose [56].

Nitroimidazoles have been known to undergo reduction to the RNO2 radical under
hypoxia conditions and to bind to tissue macromolecules and exerts their effects. Consid-
ering this property, F-18 fluoromisonidazole (FMISO) was also developed as a diagnostic
marker for hypoxia detection in cancer cells. It is extensively studied for in vivo imaging
because of its high tissue penetration properties. F-18 FMISO has been evaluated in clinical
trials (NCT00038038) against several tumors, including head and neck cancer.

The first synthesis of Misonidazole 3 was developed by Yang et al. in 1989, start-
ing from 2-aminoimidazole, which on reaction with sodium nitrite and sulfuric acid,
produced 2-nitroimidazole. The 2-nitroimidazole upon further reaction with 1,2-epoxy-
3-methoxypropane produced [18O]-Misonidazole 3 (Scheme 4, route A) [60]. Jin et al.
in 2004 synthesized both (R)- and (S)-Misonidazole 3 by treating 2-nitroimidazole with
(R)- and (S)-epichlorohydrins, respectively (Scheme 4, route B) [61]. In 2014, Wilde et al.
synthesized optically pure Misonidazole 3, wherein the reaction of 2-aminoacetaldehyde
dimethylacetal with O-methylisourea sulfate led to the formation of the 2-aminoimidazole
hemisulfate, which on cyclization and diazotization followed by nitration, produced 2-
nitroimidazole [42]. Then, 2-nitroimidazole further underwent a nucleophilic opening
reaction with R and S-2-(methoxy methyl)oxirane and finally led to the optically pure
Misonidazole 3 (Scheme 4, route C). In 2016, Donadio et al. from Consejo Nacional de
Investigaciones developed the new patented route where imidazole was first treated with p-
bromobenzenediazonium chloride and generated an azo compound, which upon reduction
followed by nitration, produced 2- nitroimidazole. The 2-nitroimidazole on condensation
with 1,2 epoxy, 3-methoxy propane produced Misonidazole 3 (Scheme 4, route D) [52].
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Jin et al. in 2004 designed the Misonidazole-based derivatives (TX) as dual function
anti-angiogenic and hypoxia cell radio-sensitizers, wherein 2-nitroimidazole moiety is for
hypoxic cell radiosensitization, and the second part contains a haloacetyl carbamoyl group
as an anti-angiogenesis pharmacophore [61]. Twelve compounds were synthesized using
epichlorohydrin as a chiral starting material wherein the single stereocenter connects a
haloacetylcarbamoyl, 2-nitroimidazolyl, and diverse alkyl or aryl groups of varying steric
dimensions (Scheme 5 and Table 1). Then, the synthesized compounds were tested for
protease inhibition, in vitro anti-angiogenic activity using RLE cell proliferation assay and
a chick embryo CAM assay, as well as for hypoxic cell radiosensitizers. The evaluation in
the latter assay revealed that R-enantiomer having the bulky 4-tert-butylphenyl group dis-
played higher anti-angiogenic activity, while the enantiomers bearing the less bulky methyl
and tert-butyl groups did not show any differences in activity. Among all, compound 27f
(TX-1898) has been identified as a potent anti-angiogenic hypoxic cell radiosensitizer that
can be explored for further development.
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Table 1. Inhibition data of dual-function Misonidazole derivatives.

Anti-Angiogenesis Activity Radiosensitizing Activity

Protease Inhibitory
Activity

RLE Cell Proliferation
Activity

Anti-Angiogenic
Activity

Radiosensitizing Effect
(10 µM)

Compound ID KI (µM) IC50 (µM) % Inhibition ER

27a (TX-1863) a 1180 325 80
27b (TX-1866) a 66 20 100
27c (TX-1880) a 260 71 55 1.76
27d (TX-1882) a 42 6.3 61 1.82
27e (TX-1897) a 30 7.5 64 1.73
27f (TX-1898) a 9 1.4 93 1.80
25a (TX-1878) b 1750 275 83
25b (TX-1879) b 220 17 100
25c (TX-1881) b 557 80 53 1.75
25d (TX-1883) b 55 6.9 77 1.83
25e (TX-1899) b 56 6.5 58 1.90/1.75 c (1 µM)
25f (TX-1900) b 14 0.9 82 1.74

a R-isomer; b S- isomer; c Measured at 1 µM because of cytotoxicity at 10 µM without irradiation; ER, radiosensi-
tizing enhancement ratio; KI, inhibition constant.Pharmaceuticals 2022, 15, x FOR PEER REVIEW 11 of 97 

 

 
Scheme 4. Approaches toward the synthesis of Misonidazole 3. Reagents and conditions: (A) (i) 
NaN18O2, H2SO4, CuSO4, (ii) K2CO3, 1-2-epoxy-3-methoxypropane, 62%; (B) R/S-alkyl glycidyl 
ether, sodium carbonate, EtOH, reflux, 81/82%; (C) (i) 2-aminoacetaldehyde dimethyl acetal, 50 °C 
followed by addition of conc. H2SO4, (ii) 2 h, 100 °C, (iii) H2SO4, NaNO2, CuSO4, NH3 Gaseous, (iv) 
R/S-2-(methoxy methyl) oxirane, Na2CO3, EtOH, 5 h, 60 °C, 28/43%; (D) (i) 4-bromo aniline, NaNO2, 
HCl, <5 °C, (ii) H2, Raney nickel, (iii) H2SO4, NaNO2, CuSO4, NH3 gaseous, (iv) 
1,2-epoxy-3-methoxypropane, K2CO3, EtOH, reflux, 5 h, 60 °C. 

Jin et al. in 2004 designed the Misonidazole-based derivatives (TX) as dual function 
anti-angiogenic and hypoxia cell radio-sensitizers, wherein 2-nitroimidazole moiety is for 
hypoxic cell radiosensitization, and the second part contains a haloacetyl carbamoyl 
group as an anti-angiogenesis pharmacophore [61]. Twelve compounds were synthe-
sized using epichlorohydrin as a chiral starting material wherein the single stereocenter 
connects a haloacetylcarbamoyl, 2-nitroimidazolyl, and diverse alkyl or aryl groups of 
varying steric dimensions (Scheme 5 and Table 1). Then, the synthesized compounds 
were tested for protease inhibition, in vitro anti-angiogenic activity using RLE cell pro-
liferation assay and a chick embryo CAM assay, as well as for hypoxic cell radiosensi-
tizers. The evaluation in the latter assay revealed that R-enantiomer having the bulky 
4-tert-butylphenyl group displayed higher anti-angiogenic activity, while the enantio-
mers bearing the less bulky methyl and tert-butyl groups did not show any differences in 
activity. Among all, compound 27f (TX-1898) has been identified as a potent an-
ti-angiogenic hypoxic cell radiosensitizer that can be explored for further development. 

Scheme 4. Approaches toward the synthesis of Misonidazole 3. Reagents and conditions:
(A) (i) NaN18O2, H2SO4, CuSO4, (ii) K2CO3, 1-2-epoxy-3-methoxypropane, 62%; (B) R/S-alkyl
glycidyl ether, sodium carbonate, EtOH, reflux, 81/82%; (C) (i) 2-aminoacetaldehyde dimethyl acetal,
50 ◦C followed by addition of conc. H2SO4, (ii) 2 h, 100 ◦C, (iii) H2SO4, NaNO2, CuSO4, NH3

Gaseous, (iv) R/S-2-(methoxy methyl) oxirane, Na2CO3, EtOH, 5 h, 60 ◦C, 28/43%; (D) (i) 4-bromo
aniline, NaNO2, HCl, <5 ◦C, (ii) H2, Raney nickel, (iii) H2SO4, NaNO2, CuSO4, NH3 gaseous,
(iv) 1,2-epoxy-3-methoxypropane, K2CO3, EtOH, reflux, 5 h, 60 ◦C.
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Scheme 5. Synthesis of Misonidazole derivatives. Reagents and conditions: (i) (S)-alkyl glycidyl
ether/anhydrous EtOH, Na2CO3, reflux; (ii) haloacetylisocyanate/anhydrous CH2Cl2, rt, 72–98%;
(iii) (R)-alkyl glycidyl ether/anhydrous EtOH, Na2CO3, reflux; (iv) haloacetylisocyanate/ anhydrous
CH2Cl2, rt, 72–98%.

2.1.4. Pimonidazole 4 and Its Derivatives

Pimonidazole 4 was developed as a diagnostic marker for the identification of tumor
hypoxia condition. It becomes covalently attached to thiol-containing proteins in hypoxic
cells after reductive activation in an oxygen-dependent manner, and the adduct formed can
be detected using immunohistochemistry, ELISA, and flow cytometry [46]. Pimonidazole 4
has shown robust and effective diagnostic hypoxia markers and is currently under investi-
gation to diagnose cancers such as prostate cancer and head and neck cancer. Pimonidazole
4 has also shown better oral bioavailability than other hypoxia markers (Figure 7) [34,62]. It
has also been reported that Pimonidazole 4 sensitizes the tumor cells toward radiation. The
radiosensitizing property is because of the accumulation of resulting complexes in hypoxic
tumors, thereby depleting radio-protective thiol compounds [63].
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The synthesis of Pimonidazole 4 has been reported by three routes (Scheme 6, route A–
C). In the first route, Pimonidazole 4 was synthesized by condensation of 2-nitroimidazole
with 3-(1-piperidino)propylene oxide in refluxing ethanol. In route B, nitroimidazole
reacted with epichlorohydrin followed by condensation with piperidine in refluxing ethanol.
In route C, Pimonidazole 4 was synthesized by reacting 1,3-dichloropropane-2-ol with
2-nitroimidazole followed by condensation of a generated intermediate (1-(3-chloro 2
hydroxypropyl)-2-nitroimidazole) with piperidine in ethanol [64].
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Scheme 6. Synthesis of Pimonidazole 4. Reagent and conditions: (A) 3-(1-piperidino) propylene
oxide, ethanol, reflux (yield not reported); (B) (i) 1,3-dichloroprpan-2-ol, potassium carbonate, DMF,
(ii) piperidine, EtOH, reflux (yield not reported); (C) (i) epichlorohydrin, K2CO3, 60 ◦C, (ii) piperidine,
EtOH, reflux (yield not reported).

Threadgill et al. (1990) synthesized labeled analogs of Pimonidazole 4 and its other
related analogs RSU 1069 (having azridine instead of piperdine) to unravel its pharmacolog-
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ical profile (Scheme 7). In this paper, the authors have synthesized 2H and 3H isotopomers
of RSU 1069 28 and Ro 03-8799 29 (Pimonidazole). The compounds were synthesized by
reduction of l-(3-chloro-2-oxopropyl)-2-nitroimidazole with labeled sodium borohydride,
followed by ring closure of the chlorohydrins and treatment of the resulting epoxides with
aziridine or piperidine. Both compounds have shown the specific activities of 200 mCi
mmol−1 and radiochemical yields of 86%. Both aziridinyl- and piperidinyl-containing
compounds represent the second generation radiosensitized and have better activity and
safety than Misonidazole. The aziridine-containing compounds have even shown better
selective toxicity toward the hypoxic cells due to their bifunctional electrophilic behavior
under hypoxia conditions versus the standard compound Misonidazole [65].
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acidic acetone, 46%; (ii) labelled NaBH4, 76% (X-2H) and 95% (X-3H); (iii) aq. base-EtOH, followed
by aziridine/piperidine, 94% (28, aziridine, X-2H), 99% (29, piperidine, X-2H).

2.1.5. Evofosfamide 5

Evofosfamide 5 (formerly known as TH-302) is an investigational hypoxia-activated
drug developed by Threshold Pharmaceuticals in 2012 and is in clinical development for
cancer treatment (Figure 8) [66–70]. Evofosfamide was designed by coupling 2-nitroimidaz-
ole and brominated derivative of isophosphoramide mustard. The prodrug is activated un-
der hypoxic conditions typical of solid tumor cancer cells [70]. Evofosfamide 5 undergoes a
one-electron reduction by ubiquitous cellular reductases, which under low oxygen condi-
tions, releases a DNA-crosslinking anti-cancer agent, phosphoramidate. Evofosfamide 5
was selectively potent under hypoxia conditions and stable toward the hepatocytes. In an
in vivo efficacy study, evofosfamide was found to be active in a pancreatic (MIA PaCa-2)
cancer orthotopic xenograft model as a monotherapy. Moreover, its combination with
gemcitabine also showed dramatic efficacy [14]. It is being studied in clinical trials as a
therapeutic agent [66].

Duan et al. in 2008 developed a method for the synthesis of Evofosfamide 5
(Scheme 8) [13]. In this method, synthesis of Evofosfamide 5 was carried out by hy-
drolysis of ethyl-1-methyl-2-nitroimidazole-5-carboxylate followed by a reaction with
isobutylchlorocarbonate, resulting in the formation of anhydride (Scheme 8). The reduc-
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tion of anhydride intermediate produced 1-methyl-2-nitroimidazole-5-yl methanol, which
underwent Mitsunobu reaction to produce the desired product.
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Connor et al. (2015) developed another route for the synthesis of Evofosfamide 5
(Scheme 9). This method involves the use of sarcosine ethyl ester hydrochloride as a start-
ing material, which was converted into N-formylated enolate followed by deformylation,
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treatment with cyanamide, diazotization, and a reduction produced the main intermediate,
2-nitroimidazole alcohol. The bromoisophosphoramide mustard intermediate was synthe-
sized from the corresponding 2-bromoethylamine hydrobromide salt, which on subsequent
treatment with the 2-nitroimidazole alcohol under Mitsunobu conditions, produced Evo-
fosfamide 5 (TH-302) [71].
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Scheme 9. Connor et al. synthesis of Evofosfamide 5. Reagents and conditions: (i) EtOCHO, THF,
NaH, 3 h, (ii) EtOH, conc. HCl, 90 ◦C, 2 h, (iii) EtOH, H2O, NH2CN, pH 3, 100 ◦C, 1.5 h, 48–54%
(over three steps), (iv) AcOH, NaNO2 (aq), rt, 4 h, 72%, (v) NaBH4, THF, MeOH, 0 ◦C→ rt, 2 h, 66%,
(vi) POCl3, Et3N, CH2Cl2, −10 ◦C (yield not reported), (vii) PPh3, DIAD, THF, 0 ◦C→ rt, 3 h, 62%.

2.1.6. Miscellaneous 2-Nitroimidazole Derivatives

Cavalleri et al. performed the modification of 2-nitromimdazole and evaluated them as
antitrichomonas agents. In this study, the authors synthesized several analogs (30–36), and
among them, one molecule 30 has shown better potency and lesser toxicity as compared to
the standard molecule (Scheme 10 and Table 2) [72].

Cole et al. (2003) developed the 2-nitroimidazolylmethyluracils 37a–c and 2-aminoimi-
dazolylmethyluracils (Scheme 11) as inhibitors of thymidine phosphorylase (TP). In this
study, the authors identified 2-aminoimidazolylmethyluracils as potent TP inhibitors with
IC50 values of ~20 nM as compared with 2-nitroimidazolylmethyluracil (as bio-reductively
activated) prodrugs (37b/37c), which were 1000-fold less active with IC50 values ranging
from 22–24 µM [73].

Papadopoulou et al. in 2004 synthesized nitroimidazole-spermidine derivatives as
a cancer-targeted hypoxia-selective cytotoxin. In this, (R,S)-N4-[3-(2-nitro-1-imidazolyl)-
2-hydroxypropyl]-spermidine trihydrochloride 38 was synthesized and evaluated as a
hypoxia-selective cytotoxin and radiosensitizer in V79 cells (Scheme 12) [74].
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Table 2. In vitro and in vivo antibacterial activities.

In-Vitro Activity against Selected Organism MIC (µM)

Compound S. aureus S. pyrogens C.
perfringens

M. gallisep-
ticum

T. vagi-
nalis

In Vivo Activity
against T.
vaginalis

Rel. ED50
mg/kg

LD50
mg/kg

30 25 200 0.8 50 25 >10 0.7

31 100 100 >3.1 100 2 1.65 0.28 1969

32 >100 100 10 25 100 4.67 0.33 141

33 >100 >100 3.1 100 10 5.74 0.40 156

34 >100 100 3.1 25 100 28.83 2.88

35 100 >100 >100 50 100 16.2 1.62

36 >100 >100 5 100 100 >40 99

Metronidazole 7 >300 >300 0.6 >300 5 5.77 1 658

Tinidazole 8 >300 >300 0.3 >300 3.1 2.5 0.43 1280

Nimorazole 11 >300 >300 0.0 >300 12.5 37.9 4.66 40
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Scheme 12. Synthesis of nitroimidazole-spermidine derivatives. Reagents and conditions:
(i) (t-Boc)2O, Et3N, THF, rt, 85%; (ii) Pt/C, H2, MeOH, 98%; (iii) 1-(oxiranylmethyl)-2-nitroimidazole,
EtOH, reflux, 65%; (iv) HCl gas in dioxane, THF 97%.

Papadopoulou in 2004 also synthesized novel nitroimidazole-based bioreductive com-
pounds, 10-[3-(2-nitroimidazolyl)-propylamino]-3,4-dihydro-1H-thiopyrano [4,3-b]quinoline
hydrochloride (39a) and 10-[3-(2-nitroimidazolyl)propylamino]-2-methyl-1,2,3,4-tetrahydro-
benzo[b]-1,6-naphthyridine hydrochloride (39b) and evaluated in V79 cells hypoxia-selective
cytotoxins and radiosensitizers that target DNA through weak intercalation. Both com-
pounds were relatively good radiosensitizers (C1.6 values of 40.0 ± 0.8 and 59.0 ± 0.4 µM
for 39a and 39b, respectively) but less potent cytotoxins (Scheme 13) [75].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 19 of 97 
 

Scheme 11. Synthesis of nitro and aminoimidazolyluracil conjugates. Reagents and conditions: (i) 
NCS or NBS, AcOH, 60 °C, 37a (67%), 37b (77%); (ii) 1-potassio-2-nitroimidazole, DMF, rt, N2, 24 h; 
37a (61%), 37b (75%), 37c (35%). 

Papadopoulou et al. in 2004 synthesized nitroimidazole-spermidine derivatives as a 
cancer-targeted hypoxia-selective cytotoxin. In this, 
(R,S)-N4-[3-(2-nitro-1-imidazolyl)-2-hydroxypropyl]-spermidine trihydrochloride 38 was 
synthesized and evaluated as a hypoxia-selective cytotoxin and radiosensitizer in V79 
cells (Scheme 12) [74]. 

 
Scheme 12. Synthesis of nitroimidazole-spermidine derivatives. Reagents and conditions: (i) 
(t-Boc)2O, Et3N, THF, rt, 85%; (ii) Pt/C, H2, MeOH, 98%; (iii) 1-(oxiranylmethyl)-2-nitroimidazole, 
EtOH, reflux, 65%; (iv) HCl gas in dioxane, THF 97%. 

Papadopoulou in 2004 also synthesized novel nitroimidazole-based bioreductive 
compounds, 10-[3-(2-nitroimidazolyl)-propylamino]-3,4-dihydro-1H-thiopyrano 
[4,3-b]quinoline hydrochloride (39a) and 
10-[3-(2-nitroimidazolyl)propylamino]-2-methyl-1,2,3,4-tetrahydro-benzo[b]-1,6-naphthy
ridine hydrochloride (39b) and evaluated in V79 cells hypoxia-selective cytotoxins and 
radiosensitizers that target DNA through weak intercalation. Both compounds were rel-
atively good radiosensitizers (C1.6 values of 40.0 ± 0.8 and 59.0 ± 0.4 μM for 39a and 39b, 
respectively) but less potent cytotoxins (Scheme 13) [75]. 

 
Scheme 13. Synthesis of 2-nitroimidazole-tethered tricyclic quinolones. Reagents and conditions: 
(i) POCl3, reflux, 40a (55%), 45b (47%); (ii) phenol, NaI, 3-(2-nitro-1-imidazolyl)propylamine, 130 
°C, 15 min, followed by addition of HCl gas in dioxane, 40a (16–27%), 40b (7–22%). 

Scheme 13. Synthesis of 2-nitroimidazole-tethered tricyclic quinolones. Reagents and conditions:
(i) POCl3, reflux, 40a (55%), 45b (47%); (ii) phenol, NaI, 3-(2-nitro-1-imidazolyl)propylamine, 130 ◦C,
15 min, followed by addition of HCl gas in dioxane, 40a (16–27%), 40b (7–22%).

Papadopoulou (2009) synthesized nitroimidazole-based bio-reductive compounds
having a quinazoline (41, NLQZ-1) or a naphthyridine moiety (42, NLPP-1, (Scheme 14).
The synthesized compounds were evaluated against V79 and A549 cells for their cyto-
toxicity, radiosensitization and interaction with chemotherapeutic agents by using the
clonogenic assay, and the results revealed that the hypoxic selectivity was slightly increased
as in the case of 42 (NLPP-1), where it ranged from 12–19 in V79 and 15–26 in A549 cells.
Both compounds have shown better radiosensitizer against hypoxic V79 cells at nontoxic
concentrations, as shown in Table 3. Both compounds have shown a synergistic effect with
cisplatin or melphalan in V79 cells under hypoxic pre-exposure conditions [76].
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Table 3. Various parameters of the hypoxia-selective cytotoxins 41 (NLQZ-1) and 42 (NLPP-1) and
comparison with NLCQ-1 in V79 cells.

Comp. IC50(A)
a

(µmol/L h)
IC50(H)

a

(µmol/L h) HS b C1.6
c

(µmol/L)
Ci1.6

d

(µmol/L)
ThI e

41 (NLQZ-1) 998.6–1486.7 73.6–108.4 14 61.4 347.9 ± 6.0 16–24

42 (NLPP-1)
(V79) 1000–962.2 86.1–51.9 12–19 75.0 271.9 ± 3.5 13

42 NLPP-1
(A549)

1668.8–
1311.6 97.6–59.7 17–22 44.1 ND 30–38

NLCQ-1 414.2–958.9 f 86–14.7 f 5–65 f 7.2 62.5 ± 1.5 57–133 f

a The product of a compound’s concentration and the time necessary for 50% reduction in clonogenicity under
aerobic (A) or hypoxic (H) conditions. Since cytotoxicity was exposure time dependent, range of values for
1–3 h exposure to each compound is shown. b Hypoxic selectivity: IC50(A)/IC50(H). c Concentration for an SER
of 1.6. SER, sensitization enhancement ratio. d Intracellular concentration at C1.6, determined as described in
Materials and Methods. e In vitro therapeutic index: IC50(A)/C1.6. f Range of values for 1–4 h exposure is shown
for NLCQ-1.
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Schweifer et al. (2011) designed the nucleosides derived from 2-nitroimidazole and
D-arabinose, D-ribose, and D-galactose and evaluated their potential as tracers to image
hypoxia. 2-Nitroimidazole was first silylated with hexaethyldisilazane and then coupled
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with 1-O-acetyl derivatives of D-arabinose, D-ribose, and D-galactose under Vorbruggen
conditions. When the C-5 hydroxyl group of D-arabinose and D-ribose were silylated with
tert-butyldiphenylsilyl chloride followed by acetylated in a one-pot reaction, mixtures of
anomeric 1-O-acetyl derivatives were obtained. These were then coupled by using the
Vorbruggen method followed by cascades to furnish the precursors for tracers to image
hypoxia. [77] The representative example of nitroimidazole-ribose-based conjugate and
arabinose-based hypoxia images is shown in Scheme 15.
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Scheme 15. Synthesis of 2-nitroimidazole-based nucleosides. Reagents and conditions: (i) TBDP-
SCl/Pyridine, −20 ◦C-rt, Ac2O, 50 ◦C, 28% and 33%; (ii) NI-TS/TfOTES, 60%; (iii) NI-TS/TfOTES,
31% and 42%; (iv) KF/PhCOOH, ACN, reflux; (v) TsCl/Pyridine, 94%; (vi) K18/Kryptofix, DMSO,
heat, NaOH (yield not reported).

Mazuryk et al. (2017) designed the nitroimidazole-based derivatives of polypyridyl
ruthenium complexes 47 as anticancer agents (Scheme 16). The detailed biological in-
vestigation was performed for the ruthenium polypyridyl complexes comprising two
4,7-diphenyl -1,10-phenanthroline ligands; one unmodified 2,2′-bipyridyl or modified with
2-nitroimidazole moiety attached by shorter or longer linkers induced cell death. They
evaluated the cytotoxicity and proliferation assays of Ru polypyridyl complexes 47 that
reveal toxic potential of these compounds against human pancreas carcinoma PANC-1
cell line versus normal human keratinocytes HaCaT with IC50 values of 3-5µM. Then, the
authors revealed the mechanism of Ru complexes toward their anti-cancer potential. The
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Ru complexes accumulate in the mitochondria and inhibit DNA synthesis, arresting the
cell cycle in S-phase [78].
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Pd(PPh3), DME, 120 ◦C, 2.5 h, 63%; (ii) H2, Pd/C, EtOH, rt, 4 days, 77%; (iii) CBr4, PPh3, DCM, rt,
overnight, 60%; (iv) 2-nitroimidazole, K2CO3, DMF, 110 ◦C, overnight, 79%.

2.2. Functionalized 4-Nitroimidazole Scaffold
2.2.1. Azathioprine 6 and Its Derivatives

Azathioprine 6 (AZA, Figure 9) is a prodrug of 6-mercaptopurine (named BW 57-322),
first synthesized in 1956 to produce a derivative of 6-mercaptopurine in a metabolically
active but masked form with a better therapeutic index [79]. It is used in rheumatoid arthri-
tis, granulomatosis with polyangiitis, Crohn’s disease, ulcerative colitis, and in kidney
transplants to prevent rejection. It is taken either by mouth or intravenously with good oral
bioavailability. It is approved by the USFDA for use in kidney transplantation and rheuma-
toid arthritis and is on the WHO’s list of essential medicines [80–84]. Azathioprine 6 is sold
under the brand name Imuran. Glutathione and similar compounds of the intestinal wall,
liver and red blood cells mediate the reductive cleavage of the thioether (-S-) due to which
Azathioprine 6 converts to 6-mercaptopurine (6-MP) [32–34]. Azathioprine 6 interferes with
purine synthesis and disrupts the DNA and RNA, thus causing immunosuppression [35].

Elion et al. (1965) developed a new patented route for synthesizing Azathioprine 6
(Scheme 17). In this, N,N-dimethyloxamide reacted with phosphorus pentachloride to
produce 5-chloro-1-methylimidazole [86]. Then, 1-methylimidazole on treatment with
potassium nitrate and concentrated sulfuric acid furnished 4-chloro-1-methyl-5-nitro-1H-
imidazole. Then, the final step involves the condensation of 4-chloro-1-methyl-5-nitro-1H-
imidazole with 6-mercaptopurine using dimethyl sulfoxide as solvent and sodium acetate
as base.
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Scheme 17. Synthesis of Azathioprine 6. Reagents and conditions: (i) PCl5, (ii) KNO3, H2SO4,
(iii) 6-mercaptopurine, DMSO, NaOAc (yields not reported).

Krenitsky et al. (1989) synthesized nucleosides of Azathioprine 6 and Thiamiprine (48a–f)
as antiarthritics agents. The reaction was catalyzed by purine nucleoside phosphorylase
(EC 2.4.2.1). In this study, ribosides, deoxyribosides and arabinosides of azathiopurine
and its 2-amino congener thiamiprine were synthesized, and their in vitro evaluation and
cytotoxicity studies were also performed (Scheme 18) [87]. It was found that none of the
congeners studied were superior to Azathioprine 6 itself.

Crawford et al. (1996) designed the novel analogs of Azathioprine (49–72) lacking the 6-
mercaptopurine substituent and evaluated their potential for retaining or having enhanced
immunosuppressive effects (Scheme 19) [88]. Here, 24 analogs of Azathioprine 6 lacking a
6-mercaptopurine substituent were synthesized, and it was found that immunosuppressive
effects are retained or even enhanced in these molecules. In this study, ten compounds
have shown more potent activity than Azathioprine 6 in in vitro assays, and two analogs
(69 and 70) have shown better potency in an in vivo assay (Figure 10) [88].
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2.2.2. Miscellaneous 4-Nitroimidazole Derivatives

Donskaya et al. (2002) developed a new method for the C-amination of 1-methyl-4-
nitroimidazole. 1-Methyl-4-nitroimidazole was treated with (1-methylhydrazin-1-ium-1-
ylidene)iodate in the presence of dry sodium methylate or potassium tert-butylate in DMSO
to produce 5-amino-1-methyl- 4-nitroimidazole 73 in 56% yield (Scheme 20) [89].
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Scheme 20. New method for the C-amination of 1-methyl-4-nitroimidazole. Reagents and conditions:
t-BuOK(MeONa), DMSO, rt, 22 h, 56%.

Al-Masoudi et al. developed new-generation 5-substituted piperazinyl-4- nitroimida-
zole derivatives (74–76) as anti-HIV agents (Scheme 21). [90] The analog 76c was found to
selectively inhibit HIV-1 replication.
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Scheme 21. Synthetic pathway of [(4-nitro-1H-imidazol-5-yl)piperzin-1-yl)2-oxoethyl]aryl/alkyl-
sulphonamide and benzamide derivatives as anti-HIV agents. Reagents and conditions: (i) 2-
chloroacetyl chloride, Et3N, CH2Cl2, 23 ◦C, 3 h (yield not reported); (ii) potassium phthalimide, DMF,
120–130 ◦C, 24 h (yield not reported); (iii) NH2NH2.H2O, reflux, 4 h, 78%; (iv) Et3N, CH2Cl2, 23 ◦C,
16 h, 43%; (v) ArCOCl, Et3N, CH2Cl2, 23 ◦C, 16 h, 54% and 47%; (vi) RSO2Cl, Et3N, CH2Cl2, 23 ◦C,
16 h, 39–47%.

Al-Soud et al. (2007) designed and synthesized the new 5-alkylsulfanyl and 5-(4-
arylsulfonyl)piperazinyl-4-nitroimidazole-based derivatives 77 and 78, respectively, as
anti-HIV agents (Scheme 22). In this, the authors synthesized 15 new derivatives evaluated
against HIV-1, and among them, two molecules 77e and 77g showed better EC50 inhibitions
and a better safety index [91].

Lee et al. (2011) designed and synthesized econazole-based nitroimidazoles analogs
(79–82) and evaluated them for antitubercular activity. The introduction of a nitro group at
the 4-position of the imidazole of econazole abolished the anti-tubercular (Scheme 23) [92].
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However, the introduction of an oxygen atom at the 2-position of nitroimidazoles helps to
increase antitubercular activity.
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Scheme 22. Synthesis of 5-alkylsulfanyl and 5-(4-arylsulfonyl)piperazinyl-4- nitroimidazoles as
anti-HIV agents. Reagents and conditions: (A) (i) R(CH2)nSH, K2CO3, i-PrOH, 60–70 ◦C; 4 h, 60–83%;
(ii) NH3/MeOH, 23 ◦C, 10 h, 90%; (iii) SOCl2, CHCl3, 23 ◦C, 18 h, 30%; (B) (i) piperazine, DMF,
70–80 ◦C, 6 h, 72%; (ii) ArSO2Cl, Et3N, CH2Cl2, 23 ◦C, 4 h, 43–53%.
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Scheme 23. Synthesis of 4-nitroimidazole derivatives with antitubercular activity. Reagents and
conditions: (i) 4-nitroimidazoles, TBAI, K2CO3, MeOH or EtOH, reflux, 12 h, 38–50%; (ii) benzyl
bromides, NaH, TBAI, DMF, −78 ◦C to rt, 2.5 h, 90–94%; (iii) NaOMe or NaSMe, MeOH, rt, 12 h,
60–93%.
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Trunz et al. developed novel arylated analogs of 4-nitroimidazoles 83 and evalu-
ated them for treating human African trypanosomiasis (Scheme 24) [93]. This series of
forty-nine 1-aryl-4-nitro-1H-imidazoles was prepared, and extensive SAR was also stud-
ied, while two compounds, namely 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-imidazole
and 1-(3,4-dichlorophenyl)-4-nitro-1H-imidazole, were effective in mouse models of both
acute African trypanosomiasis (oral dose of 25–50 mg/kg for 4 days) and chronic African
trypanosomiasis (oral dose of 50–100 mg/kg for 5 days). Both compounds demonstrated
potent and selective anti-trypanosomal activity, including the stringent model of second-
stage human African trypanosomiasis, the chronic CNS model. The compound with OCF3
substituent at the fourth position of the aryl group is considered as a promising lead for
further development.
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Reagents and conditions: (i) HNO3, Ac2O/AcOH; (ii) anilines, CH3OH-H2O, 40–90%.

Li et al. designed and synthesized 4-nitroimidazole derivatives containing 1,3,4-oxadiazole
(84a–i) and (85a–i) as FabH inhibitor-based anti-microbial activities (Scheme 25) [94]. Among
all the synthesized compounds, 84h and 85i were proven to be the most potent inhibitors
of FabH (IC50 of 5.3 and 4.1 µM) along with MIC of 1.56–3.13 µg/mL and 1.56–6.25 lg/mL,
respectively, against the tested bacterial strains such as E. coli, P. aeruginosa, B. subtilis and
S. aureus.

Based on the same strategy, Makawana et al. developed Schiff’s base derivatives
bearing nitroimidazole moiety (86a–h) (Scheme 26) [95] and screened against anti-bacterial
as well as EGFR inhibitory activity with the goal to develop a more effective target molecule.
Among these, compounds 86d, 86f and 86g were found to be most effective for antiprolif-
eration and inhibition of EGFR. Conversely, the compounds 86b, 86c, 86e and 86h were
found effective as antibacterial activity. Compound 86f has shown effective inhibition with
an IC50 of 0.21 ± 0.02 µM by binding to the active pocket of EGFR receptor with minimum
binding energy (∆Gb = −49.4869 kcal/mol).
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Hou et al. (2013) synthesized 2-azido-4-nitroimidazole and its derivatives (87a-b) for
“high-energy materials” (Scheme 27) [96].

Abuteen et al. developed 4-nitroimidazole bearing dye-conjugate (88a-b) for the
imaging of tumor hypoxia (Scheme 28) [97]. The design is based on the nitroimidazoles
property as molecular probes because they diffuse freely in the body and are irreversibly
trapped by covalent binding to proteins in low oxygen environments. In the present study,
it has been found that the cells treated with 88b under hypoxic conditions showed a higher
fluorescence yield when compared to the cells kept under normoxic conditions.

Woo et al. (2016) developed a new strategy for C–H arylation of 4-nitroimidazoles by
using the hybrid Cu2O/Pd–Fe3O4 nanocatalyst system (Scheme 29) [98].
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Reagents and conditions: (i) 2-bromo-1-(4-bromophenyl)ethan-1-one, K2CO3, TBAB, MeCN (yield
not reported); (ii) Ni(NO3)2, ethanol, rt, 54–88%.
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Scheme 28. Synthesis of 4-nitromidazole as dye conjugates. Reagents and conditions: (i) tert-butyl-4-
(2-bromoacetyl) piperazine-1-carboxylate, NaH, DMF, 0 ◦C-rt, 12 h, 67% and 76%; (ii) CF3COOH,
CHCl3, 0 ◦C-rt, 61% and 74%; (iii) DMF, 0 ◦C, pyBop, HOBt, rt, 12 h, 15% and 21%.
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Scheme 29. New method for the C–H arylation of 4-nitroimidazoles. Reagents and conditions:
(i) Cu2O/Pd-Fe3O4 catalyst, 1-butyl-4-nitro-1H-imidazole, iodobenzene, sodium acetate, DMSO, 85%.

2.3. Functionalized 5-Nitroimidazole Scaffold
2.3.1. Metronidazole 7

Metronidazole 7 is generally used as an antibiotic. Its original indication was for the
treating infections of trichomoniasis, which is caused by a parasite, namely Trichomonas
vaginalis. Still, over the years, it has been discovered to be useful in treating a variety
of infections caused by various organisms (Figure 11) [2,8,24,99]. Currently, it is fre-
quently used to treat other parasitic infections such as gastrointestinal infections, giardiasis
(G. duodenalis), and amoebiasis (caused by E. histolytica) [100,101]. It has potent activity
against a number of Gram-positive and Gram-negative bacterial strains. It has excellent
oral absorption with bioavailability often reported as <90% [8,102]. The antibacterial action
of Metronidazole 7 depends on reduction of its nitro group to form active intermediates.
This reduction product then reacts with DNA, disrupting transcription and replication.
Metronidazole 7 also reacts with other target sites such as RNA and cellular proteins [103].
Only anaerobic bacteria are capable of performing this reduction, probably through a
ferrodoxin system, which could be the reason for the activity of Metronidazole 7 against
anaerobes [104]. It is generally available in the form of a capsule, tablet, topical form,
and suppository preparations for the management of various infections. Metronidazole
7 was initially developed by Rhône-Poulenc and has been in use since 1960 in France.
Metronidazole 7 was approved by the US-FDA in 1963. It is relatively inexpensive and
is the safest and most effective medicine needed in a health system with availability in
most countries.

As shown in Scheme 30, several approaches are described to prepare Metronidazole 7.
Fajdiga et al. (1970) developed a method using bromoethyl imidazole as a starting material.
In this case, bromoethyl imidazole was hydrolyzed using formic acid in aqueous formamide
(route A) [105]. Kraft et al. (1989) performed the synthesis of metronidazole via formation of
2-methylimidazole, which was in turn prepared using the Debus–Radziszewski approach
(route B). In this, ethylenediamine reacted with acetic acid, which led to the formation
of diacetic acid salt of ethylenediamine. N,N’-diacetylethylenediamine, upon treatment
with lime, produced 2-methylimidazoline, which was further treated with Raney nickel to
produce 2-methylimidaole. 2-Methylimidazole was then nitrated to synthesize 2-methyl-
4(5)-nitroimidazole, followed by alkylation, which provided Metronidazole 7 [106]. Buforn
et al. (1989) from Rhone Poulenc (route C) synthesized the title compound by alkylation of
1-(acetoxymethyl)-2-methyl-4-nitroimidazole with either ethylene sulfate or by reaction of
bis-(2-acetoxyethyl) sulfate (generated from ethylene glycol diacetate) and either dimethyl
sulfate or H2SO4 followed by hydrolysis or alcoholysis treatment [107]. In another attempt,
Lavigne et al. (1991) from Rhone Poulenc (route D) synthesized metronidazole by reacting
1-(acetoxy methyl)-2-methyl-4-nitroimidazole with ethylene oxide in the presence of sulfur
trioxide followed by hydrolysis in aqueous sulfuric acid [108].
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used for treating trichomoniasis and later on was also recognized for its broad an-
ti-protozoal and anti-anaerobic-bacterial capacities in the micromolar range [50]. Orni-
dazole 8 has shown pronounced potency against E. histolytica, T. Vaginalis and T. foetus 
infection models as well as a decent PK profile in comparison to metronidazole. Orni-
dazole 8 is a 5-nitroimidazole derivative known to have a similar mechanism of action to 
nitroreduction via bacterial nitroreductases followed by DNA/RNA/protein damage. 
[111] It is also used in Crohn’s disease after bowel resection [101]. Ornidazole 8 was ap-

Scheme 30. Approaches to prepare Metronidazole 7. Reagents and conditions: (A) formic
acid, aqueous formamide, 115 ◦C, 69%; (B) (i) 220–250 ◦C, CaO, 88–95%; (ii) Raneynickel, 90%;
(iii) HNO3/H2SO4, Na2SO4/NaHSO4, 63–66%; (iv) H3PO4/Ac2O, 64%; (C) bis-(2-acetoxyethyl)
sulfate/dimethyl sulfate, sulfuric acid, EtOH, reflux (yield not reported); (D) ethylene oxide, sulfur
trioxide followed by aqueous sulfuric acid, 85 ◦C (yield not reported).

2.3.2. Ornidazole 8

Ornidazole 8 (Tiberal®) is an antibiotic used to treat protozoan infections
(Figure 12) [101,109–111]. It has been shown to produce successful cures in 87% of cases. It
was discovered by Tiberal and Hoffmann in the year 1974 and is marketed by Roche. It was
first used for treating trichomoniasis and later on was also recognized for its broad anti-
protozoal and anti-anaerobic-bacterial capacities in the micromolar range [50]. Ornidazole
8 has shown pronounced potency against E. histolytica, T. Vaginalis and T. foetus infection
models as well as a decent PK profile in comparison to metronidazole. Ornidazole 8 is a
5-nitroimidazole derivative known to have a similar mechanism of action to nitroreduction
via bacterial nitroreductases followed by DNA/RNA/protein damage [111]. It is also used
in Crohn’s disease after bowel resection [101]. Ornidazole 8 was approved for marketing
as a new antimicrobial agent in China in 2009. The Ornidazole 8 used in the clinical setting
is mostly racemic, and the number of side effects was observed. Some reports suggested
that dextrornidazole is the major component of Ornidazole 8 contributing to the toxicity of
the central nervous system. However, Levornidazole is similar to or slightly better than
racemic ornidazole in terms of activities and pharmacokinetic properties [112].

Skupin et al. (1997) developed an enzymatic method to synthesize optically pure enan-
tiomers of Ornidazole 8 (Scheme 31, route A). In this method, 2-methyl-4-nitroimidazole on
reaction with epichlorohydrin provided halohydrins (ornidazole 8), which then underwent
subsequent esterification with lipase and furnished optical pure isomers of Ornidazole
8 [114]. Mandalapu et al. (2016) synthesized the racemic form of Ornidazole 8 by reacting
2-methyl-(5)-nitroimidazole with epichlorohydrin in basic conditions (route B) [115].
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2.3.3. Tinidazole 9

Tinidazole 9 is a 5-nitroimidazole-based drug effective against trichomoniasis, gi-
ardiasis, intestinal amebiasis and amoebic liver abscess infections (Figure 13) [101,116].
Tinidazole 9 is also a prodrug; the nitro group of tinidazole converts into free nitro radi-
cal through reduction by a ferredoxin-mediated electron transport system. It also shows



Pharmaceuticals 2022, 15, 561 34 of 94

antiprotozoal activity. Tinidazole 9 was developed in 1969 and has been widely used in
Europe and developing countries for more than two decades with established efficacy and
acceptable tolerability [99]. Tinidazole 9 has shown efficacy against protozoal infections
(such as trichomonal vaginitis, amoebiasis, and giardiasis) and anaerobic infections (respi-
ratory tract infections, intra-abdominal sepsis, and obstetrical, and gynecological infections.
In addition, Tinidazole 9 has also been used as a prophylaxis agent for the treatment of
elective colonic and abdominal surgeries, emergency appendectomy, and gynecological
surgery, either alone or in combination with other antimicrobial agents [117,118]. It is
marketed under the brand names Tindamax and Fasigyn.
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Chandorkar et al. (2007) developed a benign method for the synthesis of Tinidazole 9
(Scheme 32). In this method, 2-methyl-5-nitroimidazole underwent condensation with 2-
ethyl-thio-ethanol by using MoO3/SiO2 as a catalyst and produced 1-(2-ethyl-thio-ethanol)-
2-methyl-5-nitroimidazole, which further underwent oxidation in the presence of hydrogen
peroxide and MoO3/SiO2 and produced Tinidazole 9. The catalyst used in this reaction
can be recycled five times without any loss in selectivity [120].
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2.3.4. Satranidazole 10

Satranidazole 10 (trade name Satromax) is a potential antibacterial and antiproto-
zoal drug of the 5-nitroimidazole class used to manage amoebiasis. Satranidazole, also
known as an anti-diarrheal agent, inhibits histamine’s action on proteins, thus avoid-
ing the complications of infections such as hepatic amoebiasis. The potent activity of
Satranidazole 10 in animal models of anaerobic infection, its long half-life, and a good
tolerability observed in volunteers and patients with protozoal infections hold out for a
great potential for Satranidazole 10 in the treatment and prophylaxis of anaerobic infections
(Figure 14) [22,101].
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Nagarajan et al. (1982) was the first to synthesize Satranidazole 10 as shown in
Scheme 33 (Route A). In route A, 1-methyl-2-(methylsulfonyl)-5-nitroimidazole was con-
densed with the sodium salt of the monosubstituted 2-imidazolidinone in DMF to furnish
Satranidazole 10 in 80% yield [121]. Rao (2003) has patented another route for the synthesis
of Satranidazole (route B). Here, the authors synthesized 1-methyl-2-(methylsulfonyl)-5-
nitroimidazole starting from N-methylamino acetaldehyde dimethylacetal. N-methylamino
acetaldehyde dimethylacetal was treated with salt of thiocyanic acid followed by in situ
alkylation using ethyl bromide to furnish 1-methyl-2-(ethylmercapto)–imidazole. The
1-methyl-2-(ethylmercapto)–imidazole was then treated with nitric acid (70%) to pro-
vide 1-methyl-2-(ethylmercapto)–5-nitroimidazole, which was further oxidized by slow
addition of 30% hydrogen peroxide. Finally, the condensation of 1-methylsulphonyl-2-
imidazolidinone with 1-methyl-2-(ethylsulphonyl)-5-nitroimidazole furnished Satranida-
zole 10 [122].
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Scheme 33. Synthesis of Satranidazole 10. Reagents and conditions: (A) (i) dry DMF, NaH, 80%;
(B) (i) KCNS, HCl, (ii) C2H5Br, NaOH, (iii) HNO3, (iv) H2O2, HCOOH, (v) CH3SO2Cl, (vi) NaOH,
DMF (yields not reported).

2.3.5. Nimorazole 11

Nimorazole 11, previously known as nitrimidazine, was the second nitroimidazole
introduced as a radiosensitizer and is known as an anti-infective and anti-protozoal (against
trichomoniasis) agent (Figure 15). Nimorazole 11 has been used in trials for the treatment
of hypoxia, radiotherapy, hypoxic modification, gene profile, gene signature, head and
neck squamous cell carcinoma, etc. It was discovered by the research workers of Carlo Erba
in Italy in the year 1969. It was introduced in Britain in 1970 [14].

Nicola and Vittorio (1968) from Carlo Erba developed a route for the synthesis of
Nimorazole 11 (Scheme 34) by coupling sodium salt of nitroimidazole with β-chloroethyl
morpholine [123]. Naik in 2012 developed another modified route for the synthesis of
Nimorazole 11 [124].
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2.3.6. Secnidazole 12

Secnidazole 12 is a second-generation antimicrobial and is structurally related to
Metronidazole 7 and Tinidazole 9. Secnidazole displayed improved oral absorption and
a longer terminal elimination half-life than antimicrobial agents in this class (Figure 16).
Secnidazole 12 is safe and well tolerated, and it is widely used for amoebiasis, giardiasis,
trichomoniasis, and genitourinary infections [97]. The antiprotozoal and anti-amoebic
activities of Secnidazole 12 are due to the reduction of the nitro group of nitroimidazole
by ferredoxin [127]. Secnidazole 12 is completely absorbed after oral administration.
Secnidazole has been available in many other countries for decades and was recently
approved in the United States (2017) for bacterial vaginosis therapy.

Three routes are available for the synthesis of Secnidazole 12 (Scheme 35). In route
A, Jeanmart et al. from Rhone Poulenc patented a route for the synthesis of Secnidazole
by reacting 2-methyl imidazole with chloroacetyl chloride to obtain (2-methylimidazol-
1-yl)acetone, which upon reaction with HNO3 and P2O5, produced the corresponding
nitro compound. Finally, this product upon reduction with NaBH4 produced Secnida-
zole 12 [130]. Hillier et al. (1979) from Rhone Poulenc patented another route (route B),
which involved the nitration of 2-methyl imidazole with HNO3 and H2SO4 followed by
condensation with 1-chloro-isopropanol or with propylene oxide to produce Secnidazole
12 [131]. Kuang et al. (2020) from Faming Zhuanli Shenqing developed another route (route
C) for the synthesis of Secnidazole 12. Here, 2-methyl-5-nitroimidazole was reacted with
epichlorohydrin to obtain the required product 12 [132].
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Figure 16. Activity profile of Secnidazole 12 [127–129].
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Scheme 35. Synthesis of Secindazole 12. Reagents and conditions: (A) (i) Chloroacetyl chloride,
Potassium carbonate, acetone, reflux (ii) Nitric acid, P2O5, (iii) sodium borohydride, MeOH, rt
(yields not reported); (B) (i) H2SO4, HNO3, (ii) epoxypropane, ethanol, 20 ◦C/chloroacetyl chloride,
potassium carbonate, acetone, reflux (yield not reported); (C) epichlorohydrin, AlCl3, EtOAc, 1.5 h,
45 ◦C, 75–80%.
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2.3.7. Dimetridazole 13

Dimetridazole 13, another 5-nitroimidazole, has been developed and used since the
1960s to treat and prevent histomoniasis (a disease caused by protozoan flagellate His-
tomonas meleagridis) and coccidiosis (parasitic disease of animal caused by coccidian proto-
zoa) in poultry and game birds (Figure 17). It has also been used for the treatment of genital
trichomoniasis in cattle and hemorrhagic enteritis in pigs. Dimetridazole 13 on testing
has shown good in vitro minimum lethal concentrations (MLC), which is used to deter-
mine drug efficacy and parasite viability after removal of residual drugs, and the data are
presented in Figure 18. Dimetridazole 13 has shown oral PK exposure and efficacy in T. galli-
nae-infected pigeon models [133]. However, Dimetridazole 13 was banned in the European
Council and the US in 1995 and 1997, respectively, because of its carcinogenic nature.

As shown in Scheme 36, in 2013, the first attempt to synthesize dimetridazole 13 was
performed by refluxing 2-methyl-4-nitroimidazole with dimethyl sulfate (route A) [135].
In 2017, Estrada et al. from Denali Therapeutics INC (US) synthesized Dimetridazole 13
by treating 2-methyl-4-nitroimidazole with methyl iodide (route B) [136]. Later, in 2018,
Yao, F. et al. developed a new method to synthesize Dimetridazole 13 (route C) by reacting
2-methyl-4-nitroimidazole with dimethyl sulfate at a better yield (87%) [137].
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2.3.8. Fexinidazole 14

Fexinidazole 14, is used for the treatment of African human trypanosomiasis (HAT),
commonly known as sleeping sickness and Chagas disease. Fexinidazole 14 shows excel-
lent in vitro activity against Tb. rhodesiense and Tb. gambiense, having IC50 value ranges
from 0.48–0.85 µM and 0.16–0.36 µM, respectively (Figure 18) [10]. Fexinidazole 14 be-
comes metabolized into fexinidazole sulfoxide (M1) and fexinidazole sulfone metabolite
(M2), and these metabolites have in vitro activity with IC50 values within the µM range.



Pharmaceuticals 2022, 15, 561 41 of 94

The pharmacokinetic study of Fexinidazole 14 and their metabolites M1 and M2 showed
good plasma exposure and in vivo activity. Fexinidazole 14 was first identified in 1978
and developed by DNDi (Drugs for Neglected Diseases Initiative) in collaboration with
Sanofi for sleeping sickness and was recommended by the European Medicines Agency in
2018 [138,139]. In 2019, Fexinidazole 14 was added to the WHO’s list of essential medicines
due to its efficacy and safety profile [73,84].

As shown in Scheme 37, the first attempt to synthesize Fexinidazole 14 was made
by Samant et al. in 2011 (route A). In this pathway, 2-(chloromethyl)-1-methyl-5-nitro-
1H-imidazole was treated with 4-methyl mercaptophenol in acetonitrile under argon
atmosphere to furnish Fexinidazole 14 in 60% yield [140]. In 2011, Fexinidazole 14 was syn-
thesized by Fontana et al. (route B), wherein 4-methyl mercaptophenol was first treated with
methyl iodide in the presence of trimethylamine in dry THF to obtain 4-(methylthio)phenol,
which upon further treatment with 2-(chloromethyl)-1-methyl-5-nitro-1H-imidazole in
dimethyl formamide, produced deuterium-labeled Fexinidazole 14 [141]. In 2014, Zsolt et al.
from Drugs for Neglected Diseases Initiative (DNDI) (CH) patented another route (route C)
for the synthesis of Fexinidazole 14. Here, 1-methyl-2-hydroxymethyl-5-nitroimidazole was
reacted with sulfonyl chloride in the presence of potassium carbonate to obtain 1-methyl-
2-((4-(methylthio)phenoxy)methyl)-5-nitro-1H-imidazole, which upon further treatment
with 4-methyl meracptophenol, furnished Fexinidazole 14 [142].
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2.3.9. Megazol 15

Megazol 15 was developed as an anti-microbial agent and was first synthesized by
Berkelhammer and Asato from the American Cyanamid Company in 1968. Megazol 15
was tested against a wide variety of Gram-negative and Gram-positive bacteria in chicks
and mice as well as against a number of parasitic infections in rodents and was found as
effective as furazolidone. The effective oral dose is between 1 and 90 mg/kg, depending
upon the microbe [143]. Megazol 15 has also shown activity against Human African
trypanosomiasis (HAT) or sleeping sickness with in vitro activity against T. b. brucei with
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an EC50 of 0.01 µg/mL and was found to be effective in curing the acute disease condition
(Figure 19) [144]. Megazol 15 has good oral exposure with the highest AUC and Cmax
values when compared to the intraperitoneal route [145].
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As shown in Scheme 38, the first attempt to synthesize Megazol 15 was performed
by Berkelhammer et al. in 1968 (route A) [143]. In this route, Megazol 15 was synthesized
by ferric ammonium sulfate catalyzed oxidative cyclization of 1-methyl-5-nitroimidazole-
2-carboxaldehyde thiosemicarbazone in hot water. In 2003, Chauviere et al. proposed a
new synthetic route for the synthesis of Megazol 15 (route B) [146]. Here, the carbanion at
position 2 of 1-methylimidazole was quantitatively thiomethylated with dimethyl disulfide
followed by nitration to furnish the corresponding 5-nitroimidazole. Then, oxidation by
hydrogen peroxide led to the sulfone where a nucleophilic substitution by cyanide anion
produced the corresponding carbonitrile. Finally, a condensation with thiosemicarbazide
in trifluoroacetic acid followed by cyclization and isomerization produced Megazol 15.
In 2008, Foroumadi et al. synthesized Megazol 15 from 1-methyl-5-nitro-1H-imidazole-2-
carbaldehyde (route C) [147], wherein 1-methyl-5-nitro-1H-imidazole-2-carbaldehyde was
refluxed with thiosemicarbazide in ethanol, producing 2-((1-methyl-5-nitro-1H-imidazol-2-
yl)methylene)hydrazine-1-carbothioamide, which upon further reaction with ferric ammo-
nium sulfate, furnished Megazol 15.
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Scheme 38. Synthesis of Megazol 15. Reagents and conditions: (A) NH4Fe(SO4)2, hot water, 81%;
(B) (i) BuLi, −30 ◦C, (CH3S)2, 100%; (ii) HNO3, 70 ◦C, 45%, (iii) H2O2, CF3COOH, 90%; (iv) KCN,
DMSO, 80%; (v) H2NNHCSNH2, 50%; (C) (i) thiosemicarbazide, ethanol, reflux; (ii) ammonium
ferric sulfate, H2O, reflux (yields not reported).

2.3.10. Carnidazole 16

Carnidazole 16 (trade name Spartrix) is an antiprotozoal drug of the nitroimidazole
class. It is found to be highly effective against trichomoniasis (Figure 20). Carnidazole
has been used in Belgium since December 1974 as veterinary medicine, mainly in pigeons.
Carnidazole 16 was also tried in human trichomoniasis due to its good efficacy proven in
animals. The first clinical trials of Carnidazole 16 (given orally) in Brazil (Nogueira, 1975)
showed a high percentage of gastrointestinal side effects [148].
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Janseen Pharmaceutica in 1977 patented a route for the synthesis of Carnidazole 16
from 1,2-dimethyl-5-nitroimidazole (Scheme 39). The reaction of 1,2-dimethyl-5-nitroimida-
zole with 1-benzoylaziridine produced a benzoylated intermediate, which upon refluxing
with hydorbromic solution, produced 2-(2-methyl-5-nitroimidazol-1-yl)ethan-1-amine,
which upon further reaction with O-methylcarbonochloridothioate, produced the final
product 16 [150].
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Scheme 39. Synthesis of Carnidazole 16. Reagents and conditions: (i) BF3.Et2O, HOAc, CHCl3,
−10 to 10 ◦C; (ii) 48% HBr solution, reflux; (iii) O-methylcarbonochloridothioate, NaHCO3, toluene
(yields not reported).

2.3.11. Miscellaneous 5-Nitroimidazole Derivatives

Benakli et al., in the year 2002, developed the synthesis of 5-nitroimidazole-based
sulfones (90), having activity against metronidazole-susceptible and -resistant Giarda, Tri-
chomonas, and Entamoeba spp. (Scheme 40) [151].
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Scheme 40. Synthesis of 5-nitroimidazole-based sulfones as antibacterial agents. Reagents and
conditions: (i) sodium p-toluenesulfinate, DMSO, rt, E/Z-70%; (ii) TBHP, Me-C6H5, H2O, hv, E-40%,
Z-20%.

Benkli et al. (2003) obtained some new nitroimidazole derivatives from 2-(2-methyl-5-
nitro-lHimidazol-l-yl)ethylamine dihydrochloride and 1-(2-bromoethyl)-2-methyl-5-nitroi-
midazole, prepared using metronidazole. 2-(2-Methyl-5-nitro-lHimidazol-l-yl)ethylamine
dihydrochloride underwent reaction with arylisothiocyanates to produce 1-[2-(2-methyl-
5-nitroimidazol-l-yl)ethyl]-3-arylthioureas, and the intermediate was then reacted with
bromoacetophenones to furnish 3-[2-(2-methyl-5-nitroimidazol-l-yl)ethyl]-2-arylimino-4-
aryl-4-thiazolines as the final product (91a–h) (Scheme 41). In addition, 1-[2-(2-methyl-5-
nitroimidazol-l-yl)ethyl]-2-phenyl-4-arylideneimidazolin-5-ones were prepared (92a–f) by
reacting 2-(2-methyl-5-nitro-lH-imidazol-l-yl)ethylamine dihydrochloride with 2-phenyl-4-
arylidene-5-oxazolones. The reaction of 1-(2-bromoethyl)-2-methyl-5-nitroimidazole with
5-arylidenethiazolidin-2,4-dione produced 3- [2-(2-methyl-5-nitroimidazol-l-yl)ethyl]-5-
arylidenethiazolidin-2,4-dione derivatives (93a–e). The synthesized derivatives showed
moderate activity [152].

Upcroft et al. in 2006 performed a study that provided the motive for the continued
design of 5-nitroimidazole drugs (94a–d, 95a–e, 96a–g), to neglect the cross-resistance
among established 5-nitromidazole anti-parasitic drugs (Scheme 42). One of the newly
synthesized compounds showed activity against metronidazole (Mz)-resistant Giardia and
Trichomonas strains. In addition to this, five other compounds were also found effective
against some of the Mz-resistant parasites [153].



Pharmaceuticals 2022, 15, 561 45 of 94

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 45 of 97 
 

 
Scheme 40. Synthesis of 5-nitroimidazole-based sulfones as antibacterial agents. Reagents and 
conditions: (i) sodium p-toluenesulfinate, DMSO, rt, E/Z-70%; (ii) TBHP, Me-C6H5, H2O, hv, E-40%, 
Z-20%. 

Benkli et al. (2003) obtained some new nitroimidazole derivatives from 
2-(2-methyl-5-nitro-lHimidazol-l-yl)ethylamine dihydrochloride and 
1-(2-bromoethyl)-2-methyl-5-nitroimidazole, prepared using metronidazole. 
2-(2-Methyl-5-nitro-lHimidazol-l-yl)ethylamine dihydrochloride underwent reaction 
with arylisothiocyanates to produce 
1-[2-(2-methyl-5-nitroimidazol-l-yl)ethyl]-3-arylthioureas, and the intermediate was then 
reacted with bromoacetophenones to furnish 
3-[2-(2-methyl-5-nitroimidazol-l-yl)ethyl]-2-arylimino-4- aryl-4-thiazolines as the final 
product (91a–h) (Scheme 41). In addition, 
1-[2-(2-methyl-5-nitroimidazol-l-yl)ethyl]-2-phenyl-4-arylideneimidazolin-5-ones were 
prepared (92a–f) by reacting 2-(2-methyl-5-nitro-lH-imidazol-l-yl)ethylamine dihydro-
chloride with 2-phenyl-4-arylidene-5-oxazolones. The reaction of 
1-(2-bromoethyl)-2-methyl-5-nitroimidazole with 5-arylidenethiazolidin-2,4-dione pro-
duced 3- [2-(2-methyl-5-nitroimidazol-l-yl)ethyl]-5-arylidenethiazolidin-2,4-dione deriv-
atives (93a–e). The synthesized derivatives showed moderate activity [152]. 

 
Scheme 41. Synthesis of 5-nitroimidazole derivatives as antimicrobial agents. Reagents and condi-
tions: (i) MeSO2Cl, pyridine then NaN3, DMF, and then PPh3, THF, and then HCl, H2O (yield not 
reported); (ii) MeCOONa, EtOH, reflux, 69–73%; (iii) NaHCO3, EtOH, reflux, 69–82%; (iv) 
MeCOONa, MeCO2H, reflux, 45–50%; (v) MeSO2Cl, Pyridine then KBr, DMF (yield not reported); 
(vi) K2CO3, MeCOMe, reflux, 62–83%. 

Scheme 41. Synthesis of 5-nitroimidazole derivatives as antimicrobial agents. Reagents and
conditions: (i) MeSO2Cl, pyridine then NaN3, DMF, and then PPh3, THF, and then HCl, H2O
(yield not reported); (ii) MeCOONa, EtOH, reflux, 69–73%; (iii) NaHCO3, EtOH, reflux, 69–82%;
(iv) MeCOONa, MeCO2H, reflux, 45–50%; (v) MeSO2Cl, Pyridine then KBr, DMF (yield not reported);
(vi) K2CO3, MeCOMe, reflux, 62–83%.
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Scheme 42. Synthesis of 5-nitroimidazoles as anti-parasitic drugs. Valdez et al. (2009) synthesized
the 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole (97a–z’) as antimicrobial agents against
Giardia lamblia (Scheme 43) [154].
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Crozet et al., in 2009, to improve the anti-parasitic pharmacophore, prepared twenty
5-nitroimidazoles (98a–e) bearing an arylsulfonylmethyl group from commercial imida-
zoles (Scheme 44) [155]. These molecules were tested for antiparasitic activity against
Trichomonas vaginalis. The in vitro cytotoxicity and the mutagenicity of these compounds
were also evaluated. All the compounds showed lower IC50 values against T. vaginalis than
metronidazole. Moreover, 11 derivatives had a better safety index (SI) than metronidazole.
The results also revealed that those molecules with an additional methyl group on the
2-position were less mutagenic than metronidazole. The present study provided three
derivatives with low mutagenicity and efficient anti-trichomonas activity.
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Scheme 44. Synthesis of (arylsulfonylmethy)-5-nitroimidazoles as antiparasitic agents. Reagents and
conditions: (i) KOH/DMSO, 17–54%.

Crozet et al. (2009) developed the novel various aryl, heteroaryl- and styryl-based
5-nitroimidazole derivatives (99a–m) via microwave-assisted palladium-catalyzed Suzuki–
Miyaura cross-coupling reaction (Scheme 45) [156].
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(ii) DMS, DMF, 100 ◦C, 2.5 h, 23% and 24% (iii) RB(OH)2, Pd(PPh3)4, Na2CO3, MW 150W, DME-EtOH,
68–98%.

Moshafi et al. in 2011 prepared a series of 5-nitroimidazole-based 1,3,4-thiadiazoles
(100a–h and 101), and the antibacterial activity of these molecules was assessed against
Helicobacter pylori (Scheme 46) [157] and compared with antimicrobial metronidazole. The
activity results of the synthesized compounds against 20 clinical isolates revealed that
five derivatives having piperazinyl, 4-methylpiperazinyl, 3-methylpiperazinyl, and 3,5-
dimethylpiperazinyl analogs (100a, 100b, 100e, and 100f, respectively) and pyrrolidine
derivative 101 have shown strong activity at 0.5 mg/disc (average of inhibition zone
>20 mm), while metronidazole had no activity at this dose. Compound 100f having the 3,5-
dimethylpiperazinyl moiety was the most potent compound tested at low concentrations
and produced a new promising lead for developing an effective anti-Helicobacter agent.
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H2O, reflux then NaNO2, HCl, Cu, 0 ◦C; (iv) NaNO2, HCl, Cu, 0 ◦C→ rt., 3 h; (v) Piperazine deriva-
tives, NaHCO3, EtOH, reflux, 25–89%; (vi) N-Ethyl diisopropylamine, acetyl chloride, THF, reflux;
(vii) PhCOCl, pyridine in dry benzene, 0 ◦C→ rt; (viii) Pyrrolidine, NaHCO3, EtOH, reflux, 53%.

Miyamoto et al. (2013) developed the next-generation 5-nitroimidazole-based analogs
102 as antimicrobial agents with broad structural diversity (Scheme 47). In this, the authors
had synthesized more than 650 compounds with structural diversity in various functional
groups and found compounds with improved activity against various microbes, includ-
ing the pathogenic protozoa Giardia lamblia and Trichomonas vaginalis, and the bacterial
pathogens Helicobacter pylori, Clostridium difficile, and Bacteroides fragilis [158].
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Scheme 47. Synthesis of 5-nitroimidazoles as antimicrobial agents. Reagents and conditions:
(i) CuSO4/NaAsc, t-BuOH:H2O (yield not reported).

Makawana et al. (2014) synthesized new Schiff’s base derivatives (103a–j) by reac-
tion between 2-phenoxyquinoline-3-carbaldehydes and 2-(2-methyl-5-nitro-1H-imidazol-
1-yl)acetohydrazide (Scheme 48). All compounds were evaluated for anticancer activity
and EGFR inhibition, and the results revealed that the majority of the compounds showed
effective anti-proliferation and inhibition of EGFR and HER-2 activities [159]. In this study,
compound 103d showed the most effective inhibition with an IC50 of 0.37 ± 0.04 µM.
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(i) ClCH2CO2Et, K2CO3, MeCOMe (yield not reported); (ii) NH2-NH2.H2O, MeOH; (iii) EtOH,
reflux, 78-92%; (iv) DMF, K2CO3 (yield not reported).

Duan et al. (2014) designed and synthesized series of 18 novel 1-indolyl acetate-5-
nitroimidazole derivatives (104a–r) and assessed their activity for potential tubulin poly-
merization inhibitors (Scheme 49) [160]. (Z)-2-(2-(2,4-dichlorostyryl)-5-nitro-1H-imidazol-1-
yl)ethyl 1H-indole-3-carboxylate (104o) has shown strong antitumor activity against A549,
Hela and U251 with an IC50 of 2.00, 1.05, 0.87 µM, respectively. The compound 104o was
found to inhibit PLK1 activity with an IC50 of 2.4 µM.

Duana et al. (2014) synthesized series of 2-styryl-5-nitroimidazole derivatives (105a–r)
containing 1,4-benzodioxane moiety and them evaluated for biological activities as anti-
proliferation and focal adhesion kinase (FAK) inhibitors (Scheme 50) [161]. Among them
all, compounds 96p and 96q displayed the most potent anticancer activities (IC50 = 3.11,
2.54 and 5.01, 4.95 µM against A549 and Hela, respectively) as compared to positive control
staurosporine with an IC50 of 3.05, 2.72 µM against A549 and Hela.

Duan et al. (2014) designed and synthesized series of novel twenty one 1-(2-hydroxypr-
opyl)-2-styryl-5-nitroimidazole derivatives (106a–w) and evaluated them as potentiators of
antibacterial agents (Scheme 51) [162]. Their biological activities were evaluated against
two Gram-negative bacterial strains: Escherichia coli and Pseudomonas aeruginosa and two
Gram-positive bacterial strains: Bacillus thuringiensis and Bacillus subtilis by MTT method
as potential FabH inhibitor. Among the synthesized analogs, 1-(2-hydroxypropyl)-2-p-
nitrostyryl-5-nitroimidazole derivative has shown potent activity against E. coli FabH.

Adamovich et al., in the year 2014, performed the reaction of 1-(2-hydroxyethyl)-2-
methyl-5-nitroimidazole (metronidazole) with salts of arylchalcogenylacetic acids, produc-
ing novel and physiologically active metal complexes (107a–h) (Scheme 52) [163].
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conditions: (i) Sodium methoxide, different aldehydes, DMSO, methanol, room temperature,
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(iii) Indole-3-carboxylic acid, DMF, K2CO3, reflux, overnight, 62–68%.
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Scheme 50. Synthesis of 2-styryl-5-nitroimidazole derivatives. Reagents and conditions: (i) NaOMe,
aldehydes, DMSO, MeOH, rt (yield not reported); (ii) 4-toluene sulfonyl chloride, DCM, TEA, rt (yield
not reported); (iii) 2,3-dihydro-1,4-benzodioxine-5-carboxylic acid, DMF, K2CO3, reflux, 61–68%;
(iv) MeOH, H2SO4, 90 ◦C, DCM, K2CO3, MeCOMe, 70 ◦C then NaOH (aq), MeOH, THF, 85–95%;
(v) SOCl2, DMF, reflux then DCM, TEA; (vi) NaOH, different aldehydes, DMSO, MeOH, rt, 61–68%.
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Saadeh et al. (2015) synthesized series of new amidrazones (109a–b) as shown in
Scheme 53. These amidrazones were then evaluated for antitumor, antibacterial, and
antiparasitic activities [164]. Compounds 108c and 109c displayed strong anticancer activ-
ity against all tested cancer cell lines. In addition, compounds 108a and 109a displayed
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stronger antimicrobial potency against microaerophilic bacteria than metronidazole. The
compounds 109a, 110c, and 109c exhibited good antigiardial activity better than metron-
idazole. Compounds 109a, 109b, and 109c also exhibited antigiardial activity as well as
antitrichomonal activity.
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Dingsdag et al. in the year 2015 effectively synthesized the “Trojan horse” ester and
amide-linked deuterporphyrin-nitroimidazole (DPIX-Nim) adducts to inhibit P. gingivalis
(periodontal pathogen) growth. L-amino acids were then incorporated into adducts as
linkers to improve uptake (Scheme 54). Ten 13- and 17-propionic amide regio-isomers of
L-amino acid-linked deuterporphyrin-nitroimidazole adducts were synthesized using a
peptide-coupling approach [165].

Zhang et al. (2015) designed, synthesized, and evaluated new Schiff’s base derivatives
(112a–j) by reaction between 5-aryloxypyrazole-4-carbaldehydes and 2-(2-methyl-5-nitro-
1H-imidazol-1-yl)acetohydrazide (Scheme 55). All the synthesized compounds were tested
for antibacterial properties and E. coli FabH inhibitors. The results revealed that most
of the compounds have shown effective antibacterial properties and inhibition of E. coli
FabH [166].

Jarrad et al. in 2016 re-examined “old” nitroimidazoles and developed new-generation
derivatives (113a–k), (114a–o) (Scheme 56) [167]. Thirty-three novel nitroimidazole carbox-
amides were synthesized and evaluated for activity against G. lamblia and E. histolytica.
Most of the new compounds displayed potent activity against G. lamblia strains, includ-
ing metronidazole-resistant strains of G. lamblia (EC50 = 0.1–2.5 µM cf. Metronidazole
EC50 = 6.1–18 µM). The other compounds have shown improved activity against E. his-
tolytica (EC50 = 1.7–5.1 µM cf. Metronidazole EC50 = 5.0 µM), potent activity against
Trichomonas vaginalis (EC50 = 0.6–1.4 µM cf. metronidazole EC50 = 0.8 µM) and moder-
ate activity against the intestinal bacterial pathogen Clostridium difficile (0.5–2 µg/mL,
cf. metronidazole = 0.5 µg/mL). The new compounds showed lower toxicity against
mammalian kidney and liver cells (CC50 > 100 µM).
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Tao et al. (2016) designed a series of novel pyrazole-nitroimidazole derivatives (115a–
j), and these compounds were tested for EGFR/HER-2 tyrosine kinase inhibitory activity
and anti-proliferative properties against cancer cell lines (MCF-7, Hela, HepG2, B16-F10)
(Scheme 57). In this study, most of the synthesized compounds exhibited potential anti-
proliferation activity, with the IC50 values ranging from 0.13 µM to 128.06 µM in all four
tested tumor cell lines. [168] The compound 115c (R1 = CF3, R2 = H) has shown potent
inhibitory activity against EGFR/HER-2 tyrosine kinase with IC50 values of 0.26 µM/
0.51 µM, respectively.

Mandalapu et al. (2016) synthesized a library of sixty 2-methyl-4/5-nitroimidazole
derivatives (117a–u), (118a–z), and evaluated these compounds against drug-susceptible
and resistant Trichomonas vaginalis (Scheme 58). All the molecules except for two were
found to be active against both susceptible and resistant strains with MICs ranging from
8.55–336.70 µM and 28.80–1445.08 µM, respectively. Most of the compounds showed better
activity than the standard metronidazole. The potent compounds were also found to be
safe against human cervical HeLa cells with a good selectivity index [115].

Li et al. in 2012 designed and synthesized a series of secnidazole analogs (119a-i and
120a–i) based on the oxadiazole scaffold. These compounds were tested for antibacterial
activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus
aureus (Scheme 59) [94]. These new nitroimidazole derivatives had shown strong antibacte-
rial activities. The compounds 2-(2-methoxyphenyl)-5-((2-methyl-5-nitro-1H-imidazol-
1-yl)methyl)-1,3,4-oxadiazole (119h) with MIC of 1.56–3.13 µg/mL against the tested
bacterial strains and 2-((2-methyl-5-nitro-1H-imidazol-1-yl)methyl)-5-(2-methylbenzyl)-
1,3,4-oxadiazole (119i) with MIC of 1.56–6.25 µg/mL were the most potent inhibitors of
Escherichia coli FabH.
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Metronidazole EC50 = 6.1–18 μM). The other compounds have shown improved activity 
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Scheme 55. Synthesis of pyrazolo-5-nitroimidazole derivatives as antibacterial agents. Reagents and
conditions: (i) K2CO3, DMF (yield not reported); (ii) NH2-NH2.H2O, MeOH (yield not reported);
(iii) ClCH2CO2Et, K2CO3, MeCOMe (yield not reported); (iv) Ni(NO3)2.6H2O, EtOH, rt, 75–88%.

Spitz et al. (2016) developed the metal-free synthesis of 5-nitroimidazole-based enan-
tiopure amides (121). The new method having mild reaction conditions and tolerance of
various substitutions makes this approach effective for the construction of pharmacologi-
cally active compounds (Scheme 60) [169].
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and conditions: (i) KMnO4, MeCOMe, −5 ◦C-rt, 85%; (ii) oxalyl chloride, cat. DMF, DCM, 0 ◦C-
rt (yield not reported); (iii) amine, TEA, DCM, 0 ◦C-rt, 19-58%; (iv) HNO3, H2SO4, 80 ◦C, 54%;
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Scheme 57. Synthesis of pyrazolylnitroimidazole derivatives as anticancer agents. Reagents and
conditions: (i) EtOH, NaOH/H2O, rt, 8 h (yield not reported); (ii) CH3COOH, hydrazine hydrate,
reflux, 12 h (yield not reported); (iii) DCM, EDC, DMAP, reflux, 12 h, 58–72%.
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Scheme 58. Synthesis of 2-Methyl-4/5-nitroimidazole derivatives as antibacterial agents. Reagents
and conditions: (i) (±)-Epichlorohydrin, AlCl3, EtOAc, 0 ◦C-rt, 24–26 h, 79%; (ii) Aq. NaOH, DCM, 2
h, 91%; (iii) substituted-1-carbodithioate, H2O:acetone, 0 ◦C, 2–4 h, 68-91%; (iv) substituted amines,
MeCN, 80 ◦C, overnight, 40–85%.
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Scheme 60. Synthesis of 5-nitroimidazole-based enantiopure amides as antibacterial agents. Reagents
and conditions: (i) TDAE, DMF, −20 ◦C to rt, 76%.

2.4. Scaffold
2.4.1. CGI-17341 17 and Its Derivatives

CGI-17341 17 was the first molecule belonging to the bicyclic nitroimidazole analog,
developed by Hindustan Ciba-Geigy in 1989, that was active against drug-susceptible
as well as MDR TB. CGI-17341 showed a minimum inhibitory concentration (MIC) of
0.06 µg/mL in vitro assay. In addition, it showed excellent efficacy in an in vivo mice
model (Figure 21) [16]. It was the first molecule from the nitroimidazole class to enter the
clinical trials against tuberculosis, but later on, it was halted due to its mutagenic behavior
from phase I clinical trials.
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Figure 21. Activity profile of CGI-17341 17 [16].

Nagrajan et al. (1989) discovered CGI-17341 17b as anti-tubercular agents (Scheme 61).
In this, the authors had synthesized a series of fused bicyclic compounds bearing aliphatic
moiety. Among the synthesized compounds, most of the compounds had shown MIC
values less than 1 µg/mL (mostly in the range of 0.95–0.0037 µg/mL). Among them, CGI-
17341 17b had shown a better in vitro as well as in vivo profile (Table 4). The synthetic
strategy involved the nucleophilic epoxide opening with 2,4-dinitroimidazole followed by
the base catalyzed cyclisation [17].
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Scheme 61. Synthesis of CGI-17341 17 as anti-tubercular agent. Reagents and conditions: (i) sodium
acetate, EtOH, 70 ◦C, 12 h (yield not reported); (ii) NaH, dioxane, 50 ◦C, 1 h, 9–35%.

Table 4. In vitro and in vivo Anti-tubercular activity.

Sr. No. R R1 R2
Anti-Tubercular Activity

MIC µg/mL In Vivo Efficacy mg/kg p.o ED50

17a H CH3 H 1.95 25
17b (CGI-17341) H C2H5 H 0.06 10

17c H CH2Cl H 0.12 30–100
17d H Ph H 0.95 φ at 100
17e H Bu (n) H
17f H CH2Br H 0.24 30–100
17g H CCl3 H 31.2
17h H CH2OPr (iso) H 3.9 φ at 200
17i H CH2Oallyl H 3.9 φ at 200
17j H CH2OPh H 0.24 φ at 200
17k H Bu (n) CH3 0.015
17l H (C7H15)n CH3 0.0037

17m H (CH2)5 H 0.03 φ at 100

17n H
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2.4.2. Delamanid 18 and Its Derivatives

Delamanid 18 is an anti-tuberculosis agent, belonging to the class of nitro-dihydroimid-
azooxazole, developed and marketed by Otsuka Pharmaceutical Co. Ltd. (Tokyo, Japan,
Figure 22). It has a dual mechanism of action by inhibiting mycolic acid biosynthesis and is
an NO donor. It is used in the treatment of multidrug-resistant (MDR-TB) and extensively
drug-resistant tuberculosis (XDR-TB) in a combination regimen. Delamanid 18 has the
highest potency in vitro testing against sensitive and resistant strains, i.e., 0.006 µg/mL,
including RifR, INHR and, non-replicating phase of bacteria [170–172]. Delamanid 18 has
also shown good plasma exposure in a pharmacokinetic study in all three species, i.e., mice,
rats, and dogs, and has in vivo efficacy in both acute and chronic mice models of MTB
infection. The clinical studies also reveal that Delamanid 18 has better potency against
multidrug-resistant tuberculosis. It was approved by the European Union of Medicine
(EMA) in 2014 and is marketed under the trade name Deltyba as oral tablet.

The first synthesis of Delamanid 18 was performed by Sasaki et al. in 2006, which
involved the preparation of two key fragments (fragments 1 and 2) (Scheme 62). The
synthesis of fragment 1 involved the nucleophilic attack of imidazole on epoxide in
the presence of base trimethylamine, followed by deprotection, mesylation and epox-
ide formation. Simultaneously, 2-(4-bromophenoxy)tetrahydropyran was reacted with
4-(4-trifluoromethoxy)phenoxypiperidine to produce the intermediate, which upon depro-
tection with pyridinium p-toluenesulfonate in ethanol, produced the desired fragment 2.
Then, the final step involved coupling and cyclisation of both fragments in the presence of
sodium hydride, to give Delamanid 18 [172].
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Scheme 62. Synthesis of OPC-67683 18 as anti-tubercular agent (Sasaki et al.). Reagents and con-
ditions: (i) Et3N, AcOEt, 60–65 ◦C, 6 h, 87%; (ii) K2CO3, MeOH, rt, 2 h, 97%; (iii) MsCl, C5H5N,
<15 ◦C, 2 h (yield not reported); (iv) DBU, AcOEt, rt, 2 h, 75%; (v) 3,4-dihydro-2H-pyran Et3N,
EtOH, 60-65 ◦C, 6 h (yield not reported); (vi) 4-(4-(trifluoromethoxy)phenoxy)piperidinePd2(dba)3,
rac-BINAP, Cs2CO3, toluene, 70 ◦C, 6 h (yield not reported); (vii) pyridinium p-toluenesulfonate,
EtOH, 70 ◦C, 24 h (yield not reported); (vii) NaH, DMF, 50 ◦C, 2 h, 48%.

In 2008, Hidetsugu et al. from Otsuka Pharmaceuticals developed an alternative
approach for Delamanid 18, wherein an epoxy containing fragment was synthesized by
treating 4-(4-(trifluoromethoxy)phenoxy)piperidin-1-yl)phenol with (2-methyloxiran-2-
yl)methyl 4-nitrobenzenesulfonate in the presence of sodium tert-butoxide as base. The
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intermediate obtained then underwent nucleophilic reaction with 2-bromo-5-nitroimidazole
followed by cyclization-furnished Delamanid 18 in 71% yield. (Scheme 63) [173].
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Scheme 63. Synthesis of OPC-67683 18 as anti-tubercular agent (Tsubouchi et al.). Reagents
and conditions: (i) R-(2-methyloxiran-2-yl)methyl-4-nitrobenzenesulfonate, NaOtBu, acetone, 93%;
(ii) 2-bromo-5-nitroimidazole, NaOAc, 110 ◦C, 2 h, and then DMF, −5 ◦C, NaOtBu, 3 h, and then
H2O, EtOAc, 60 ◦C, 71%.

Akihiro et al. (in 2011) from Otsuka pharmaceuticals developed the new synthetic
strategy (Scheme 64) [174]. In this method, β-methallyl alcohol was converted to (S)-2-
methylglycidol via sharpless epoxidation, which was then treated with bromophenol to
produce diol and then to epoxide. Then, the final step involved nucleophilic addition of an
imidazole ring to epoxide, followed by ring closure to furnish 18 with high enantiomeric
excess (99.4% ee).
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Scheme 64. Synthesis of OPC-67683 18 as anti-tubercular agent (Yamamoto et al.). Reagents
and conditions: (i). D-(-)-diisopropyl tartrate, toluene, −18 ◦C; Ti(OPr-i)4, cumene hydroper-
oxide, -18 ◦C, DMSO, rt; (ii) 4-bromo phenol, toluene, 25% aq. NaOH, 40 ◦C, 9 h; (iii) 4-
(4-(trifluoromethoxy)phenoxy)piperidine, Pd2(dba)3, NaOtBu, tBuXPhos, toluene, 70 ◦C, 6 h;
(iv) Et3N, EtOAc, MeSO2Cl; (v) K2CO3, MeOH, 0 ◦C to rt; (v) 2-bromo-4-nitro-1H-imidazole, AcONa,
t-BuOAc, 3.5 h, 100 ◦C, and then MeOH, aq. NaOH, 42% (overall yield).

In 2015, Timmins et al. patented another route for the synthesis of N15-labeled Dela-
manid 18 (Scheme 65). In this approach, epoxide fragment and 2-chloro-5-nitroimidazole
were reacted in the presence of base triethylamine to produce intermediate, which upon
further treatment with methanol, produced the diol product. The diol was mesylated
followed by cyclization-produced epoxide, and finally this epoxide was coupled with
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4-(4-(trifluoromethoxy)phenoxy)piperidine to furnish the objective N15-labeled Delamanid
18 [175].
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Scheme 65. Synthesis of OPC-67683 18 as anti-tubercular agent (Graham et al.). Reagents and
conditions: (i) Et3N, EtOAc, 60 ◦C, 6 h, and then K2CO3, MeOH, rt, 12 h (yield not reported);
(ii) MsCl, Pyridine, <15 ◦C, 2 h, and then DBU, EtOAc, rt, 2 h (yield not reported); (iii) 4-(4-
(trifluoromethoxy)phenoxy)piperidine, NaH, DMF, 50 ◦C (yield not reported).

Patterson et al. synthesized Delamanid 18 by using 2-bromo-4-nitroimidazole instead
of chloro-imidazole used by the Sasaki et al. in the same route as shown in Scheme 66 [176].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 63 of 97 
 

Patterson et al. synthesized Delamanid 18 by using 2-bromo-4-nitroimidazole in-
stead of chloro-imidazole used by the Sasaki et al. in the same route as shown in Scheme 
66 [176]. 

 
Scheme 66. Synthesis of Delamanid 18 (Fairlamb et al.). Reagents and conditions: (i) DIPEA, AcO-
Et, 60–65 °C, 20 h (yield not reported); (ii) K2CO3, MeOH, rt, 16 h (yield not reported); (iii) MsCl, 
C5H5N, DCM, 0 °C-rt 16 h (yield not reported); (iv) DBU, AcOEt, rt, 16 h (yield not reported); (v) 
4-(4-(trifluoromethoxy)phenoxy)piperidine, NaH, DMF, 50 °C, 1.5–4 h (yield not reported). 

Recently, our group (2020) developed a concise and sequential route for the synthe-
sis of Delamanid 18 (Scheme 67). In this method, 2-methylallyl chloride 1 (or 
3-chloro-2-methylprop-1-ene) was taken as the starting material, which underwent se-
quential reaction cascades viz. allylation, selective N-arylation, Mitsunobu etherification, 
Sharpless asymmetric dihydroxylation, and epoxidation to furnish chiral epoxide as the 
key starting material. The coupling of chiral epoxide with 2-bromo-4-nitroimidazole 
furnished the required product 18 with an overall yield of 27% [177]. 

 
Scheme 67. Synthesis of Delamanid 18 (Sharma et al.) [177]. Reagents and conditions: (i) K2CO3, 
DMF, 60 °C, 97%; (ii) 4-hydroxypiperidine, CuI, L-Proline, DMF, 10–24 h, 81%, (iii) mesyl chloride, 
Et3N, DCM, 0 °C to rt, 93%; (iv) 4-trifluoromethoxyphenol, PPh3, DEAD, THF, rt, 24 h, 70%; (v) AD 
mix-β, tert-butanol: water (1:1), 0 °C, 6h, 89%; (vi) mesyl chloride, Et3N, DCM, 0 oC to rt, and then, 
DBU, rt, 2 h, 82%; (vii) 2-bromo-4-nitroimidazole, DIPEA, 115 °C, and then, Cs2CO3, DMF, 50 °C, 2 
h, 70%. 

2.4.3. Pretonamid (PA-824) (19) 
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losis. Inspired from the promising activity profile of CGI-17341 17, Pathogenesis Corpo-
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Scheme 66. Synthesis of Delamanid 18 (Fairlamb et al.). Reagents and conditions: (i) DIPEA, AcOEt,
60–65 ◦C, 20 h (yield not reported); (ii) K2CO3, MeOH, rt, 16 h (yield not reported); (iii) MsCl,
C5H5N, DCM, 0 ◦C-rt 16 h (yield not reported); (iv) DBU, AcOEt, rt, 16 h (yield not reported);
(v) 4-(4-(trifluoromethoxy)phenoxy)piperidine, NaH, DMF, 50 ◦C, 1.5–4 h (yield not reported).

Recently, our group (2020) developed a concise and sequential route for the synthesis
of Delamanid 18 (Scheme 67). In this method, 2-methylallyl chloride 1 (or 3-chloro-2-
methylprop-1-ene) was taken as the starting material, which underwent sequential reaction
cascades viz. allylation, selective N-arylation, Mitsunobu etherification, Sharpless asym-
metric dihydroxylation, and epoxidation to furnish chiral epoxide as the key starting
material. The coupling of chiral epoxide with 2-bromo-4-nitroimidazole furnished the
required product 18 with an overall yield of 27% [177].
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Scheme 67. Synthesis of Delamanid 18 (Sharma et al.) [177]. Reagents and conditions: (i) K2CO3,
DMF, 60 ◦C, 97%; (ii) 4-hydroxypiperidine, CuI, L-Proline, DMF, 10–24 h, 81%, (iii) mesyl chloride,
Et3N, DCM, 0 ◦C to rt, 93%; (iv) 4-trifluoromethoxyphenol, PPh3, DEAD, THF, rt, 24 h, 70%; (v) AD
mix-β, tert-butanol: water (1:1), 0 ◦C, 6h, 89%; (vi) mesyl chloride, Et3N, DCM, 0 ◦C to rt, and then,
DBU, rt, 2 h, 82%; (vii) 2-bromo-4-nitroimidazole, DIPEA, 115 ◦C, and then, Cs2CO3, DMF, 50 ◦C,
2 h, 70%.

2.4.3. Pretonamid (PA-824) (19)

Pretomanid, also known as PA-824 19 (Figure 23), belongs to nitroimidazooxazine.
Pretomanid was recently approved (2019) for the MDR and XDR Mycobacterium tuberculosis.
Inspired from the promising activity profile of CGI-17341 17, Pathogenesis Corporation
(Novartis) had made an extensive effort and came up with the discovery of pretomanid
(PA-824) with improved potency and without any mutagenicity. Pretomanid (PA-824)
has promising bactericidal activity against replicating and non-replicating phases of MTB
as well as potent activity against MDR-TB along with oral bioavailability and excellent
in vivo activity [178,179]. Pretomanid 19 has also shown an excellent activity profile against
various strains of leishmaniasis and was provided another opportunity for its development
as an anti-leishmanial drug [180].

Baker et al. (2000) developed the synthetic route for the synthesis of PA-824 19. In
this, the authors started the synthesis of a targeted molecule from 2,4-dinitroimidazole
(Scheme 68) [182]. The first step involved the epoxide opening of tert-butyldimethyl(oxiran-
2-ylmethoxy)silane with 2,4-dinitroimidazole, which led to the formation of intermediate
(S)-1-((tert-butyldimethylsilyl)oxy)-3-(2,4-dinitro-1H-imidazol-1-yl)propan-2-ol, which sub-
sequently underwent protection of secondary alcohol with dihydropyran followed by
deprotection of tert-butyldimethylsilyl group and cyclisation leading to the formation of
an oxazine ring, i.e., (R)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-ol, which was
then coupled with 4-trifluoromethoxy benzyl bromide to produce the target molecule 19.

Orita et al. (2007) developed another process with improved yield for the synthesis of
PA-824 19 [183]. The yield was improved from 53% to 80%. The process involved the ring
opening of glycidyl ether with 2,4-dinitroimidazole followed by the protection of primary
hydroxyl group with triisopropylsilane (better protecting group compared to TBS) under
the solventless conditions. Another advantage of this route was the use of cinnamyl ester
instead of THP, which increased the yield of cyclic intermediate to 66%. The overall yield
was increased nearly 2.5 times as compared with the previous method (Scheme 69).

Marsini et al. (2010) developed a concise and convergent synthesis of PA-824 19. The
synthetic route involved in this process was safest and practical. The starting material used
in the previous method was explosive (Scheme 70) [184]. In this protocol, the key strategic
concern was based on the straight, convergent coupling of a safer starting material, i.e.,
2-chloro-4-nitroimidazole with an appropriately functionalized glycidol derivative. The key
steps involved N-alkylation of 2-chloro-4-nitroimidazole with chloro-intermediate in the
presence of sodium iodide and potassium carbonate, which produced the key intermediate
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followed by saponification of benzoate ester at 0 ◦C to room temperature, which involved
the spontaneous anionic cyclization–elimination to produce the product with >99.9% ee.

Recently, Rao et al. (2018) described the synthesis of PA-824 19 in a similar way to
that of the strategy by Baker et al. (Scheme 71). The only difference was the use of starting
material 2-chloro-4-nitroimidazole instead of 2,4-dinitroimidazole. The current developed
strategy was amenable to the bulk scale synthesis of the drug candidate [185].
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strategic concern was based on the straight, convergent coupling of a safer starting ma-
terial, i.e., 2-chloro-4-nitroimidazole with an appropriately functionalized glycidol de-
rivative. The key steps involved N-alkylation of 2-chloro-4-nitroimidazole with chlo-
ro-intermediate in the presence of sodium iodide and potassium carbonate, which pro-
duced the key intermediate followed by saponification of benzoate ester at 0 °C to room 
temperature, which involved the spontaneous anionic cyclization–elimination to produce 
the product with >99.9% ee. 

Scheme 68. Synthesis of PA-824 19 (Baker et al.). Reagents and conditions: (i) tert-
butyldimethyl(oxiran-2-ylmethoxy)silane, DIPEA, toluene, 70 ◦C (yield not reported); (ii) DHP,
p-TsOH, TBAF, THF (yield not reported); (iii) CH3COOH, THF (yield not reported); (iv) 4-
trifluoromethoxy benzyl bromide, NaH, DMF, 70%.



Pharmaceuticals 2022, 15, 561 64 of 94

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 65 of 97 
 

 
Scheme 68. Synthesis of PA-824 19 (Baker et al.). Reagents and conditions: (i) 
tert-butyldimethyl(oxiran-2-ylmethoxy)silane, DIPEA, toluene, 70 °C (yield not reported); (ii) DHP, 
p-TsOH, TBAF, THF (yield not reported); (iii) CH3COOH, THF (yield not reported); (iv) 
4-trifluoromethoxy benzyl bromide, NaH, DMF, 70%. 

Orita et al. (2007) developed another process with improved yield for the synthesis 
of PA-824 19 [183]. The yield was improved from 53% to 80%. The process involved the 
ring opening of glycidyl ether with 2,4-dinitroimidazole followed by the protection of 
primary hydroxyl group with triisopropylsilane (better protecting group compared to 
TBS) under the solventless conditions. Another advantage of this route was the use of 
cinnamyl ester instead of THP, which increased the yield of cyclic intermediate to 66%. 
The overall yield was increased nearly 2.5 times as compared with the previous method 
(Scheme 69). 

 
Scheme 69. Synthesis of PA-824 19 (Orita, Akihiro et al.). Reagents and conditions: (i) Glycidyl silyl 
ether, EtOH, 70 oC, 85%; (ii) Cinnamic acid, DCC, DMAP, toluene, rt, 92%; (iii) TBAF, THF, rt, 1 h, 
91%; (iv) Ti(O-i-Pr)4, MeOH, reflux, 24 h, 93%; (v) 1-(bromomethyl)-4-(trifluoromethoxy)benzene, 
NaH, DMF, rt, 70%. 

Marsini et al. (2010) developed a concise and convergent synthesis of PA-824 19. The 
synthetic route involved in this process was safest and practical. The starting material 
used in the previous method was explosive (Scheme 70) [184]. In this protocol, the key 
strategic concern was based on the straight, convergent coupling of a safer starting ma-
terial, i.e., 2-chloro-4-nitroimidazole with an appropriately functionalized glycidol de-
rivative. The key steps involved N-alkylation of 2-chloro-4-nitroimidazole with chlo-
ro-intermediate in the presence of sodium iodide and potassium carbonate, which pro-
duced the key intermediate followed by saponification of benzoate ester at 0 °C to room 
temperature, which involved the spontaneous anionic cyclization–elimination to produce 
the product with >99.9% ee. 

Scheme 69. Synthesis of PA-824 19 (Orita, Akihiro et al.). Reagents and conditions: (i) Glycidyl silyl
ether, EtOH, 70 ◦C, 85%; (ii) Cinnamic acid, DCC, DMAP, toluene, rt, 92%; (iii) TBAF, THF, rt, 1 h,
91%; (iv) Ti(O-i-Pr)4, MeOH, reflux, 24 h, 93%; (v) 1-(bromomethyl)-4-(trifluoromethoxy)benzene,
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VL-2098 20 belongs to the class of 4-nitroimidazooxazole series, synthesized by TB 

Alliance as an anti-tubercular agent but later screened by the Drugs for Neglected Dis-
eases Initiative and was identified as a potent anti-leishmanial compound (Figure 24). 
Initially, a series of nitroimidazole-based compounds were selected, and among them, 
VL-2098 20 was found to be a potent and safe molecule and was therefore selected for 
in-depth evaluation of its efficacy, pharmacokinetic and early safety profile. VL-2098 20 
has shown potent activity against Leishmanial species as well as tuberculosis and trypa-
nosomal species in in vitro assays. It has also shown an excellent in vivo profile against 

Scheme 70. Synthesis of PA-824 19 (Erik J. Sorensen et al.). Reagents and conditions: (i) imidazole,
CH2Cl2, 0 ◦C to rt, 78–82%; (ii) (4-(trifluoromethoxy)phenyl)methanol, NaH, Cl3CCN, TBME, heptane,
0 ◦C to rt, 98%; (iii) TfOH, CH2Cl2, 0 ◦C to rt, 80%; (iv) 2-chloro-5-nitroimidazole, K2CO3, NaI, DMF,
120 ◦C, 40–50%; (v) KOH, MeOH, 0 ◦C to rt; (vi) 0 ◦C to rt, 1 h, 60–70%.
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2.4.4. VL-2098 (20) and Its Derivatives

VL-2098 20 belongs to the class of 4-nitroimidazooxazole series, synthesized by TB
Alliance as an anti-tubercular agent but later screened by the Drugs for Neglected Diseases
Initiative and was identified as a potent anti-leishmanial compound (Figure 24). Initially,
a series of nitroimidazole-based compounds were selected, and among them, VL-2098
20 was found to be a potent and safe molecule and was therefore selected for in-depth
evaluation of its efficacy, pharmacokinetic and early safety profile. VL-2098 20 has shown
potent activity against Leishmanial species as well as tuberculosis and trypanosomal species
in in vitro assays. It has also shown an excellent in vivo profile against acute and chronic
visceral leishmaniasis animal models after oral dosing. However, in longer duration studies,
a narrow therapeutic window halted its further development, which is now being actively
pursued for a new generation of better analogs [186].
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Sasaki et al. (2006) synthesized VL-2098 20 [172]. In this, the authors started the syn-
thesis by the reaction of 5-nitroimidazole with (2-methyloxiran-2-yl)methyl 4-nitrobenzoate
to obtain the intermediate, which underwent deprotection to produce diol. Then, the next
step involved the protection of primary alcohol with mesyl chloride, epoxidation, and
nucleophilic opening with aromatic phenol furnishing the desired compound VL-2098 (20)
(Scheme 72).

Satam et al. (2017) developed a scalable process for the synthesis of VL-2098 20. In
this, the authors had developed the synthesis of VL-2098 20 in four steps (Scheme 73) [187].
The target compound synthesis involved: (i) sharpless asymmetric epoxidation of 2-
methyl-2-propen-1-ol; followed by (ii) nucleophilic opening of the epoxide ring with
4-trifluoromethoxyphenol; (iii) sulfonylation of diol with p-nitrobenzenesulfonyl chloride;
and then (iv) reaction with 2-bromo-4-nitroimidazole.

Recently, our group developed another shorter route for the synthesis of VL-2098
(20). In this, 2-methylallyl chloride was reacted with 4-trifuoromethoxy phenol under basic
conditions to obtain 1-((2-methylallyl)oxy)-4-(trifuoromethoxy)benzene (Scheme 74). The
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next step involved the Sharpless asymmetric dihydroxylation where 1-((2-methylallyl)oxy)-
4-(trifuoromethoxy)benzene was treated with AD mix-α to obtain the diol product. The
diol was then converted into a key intermediate epoxide via mesylation. The final step
involved the coupling between epoxide and 2-bromo-4-nitroimidazole to obtain the desired
product VL-2098 (20). This new approach has an overall yield of 36% [177].
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Scheme 72. Synthesis of VL-2098 20 (Sasaki et al.). Reagents and conditions: (i) Et3N, AcOEt,
60–65 ◦C, 6 h, 87%; (ii) K2CO3, MeOH, rt, 2 h, 97%; (iii) MsCl, C5H5N, <15 ◦C, 2 h (yield not
reported); (iv) DBU, AcOEt, rt, 2 h, 75%; (v) 4-(trifluoromethoxy)phenol, NaH, DMF, 50 ◦C, 2 h (yield
not reported).
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2.4.5. TBA-354 (21) and Its Derivatives 
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Scheme 73. Synthesis of VL-2098 20 (Satam et al.). Reagents and conditions: (i) Ti(O-iPr)4, D(-)DIPT,
TBHP, DCM, −25 ◦C to −30 ◦C (yield not reported); (ii) K2CO3, 4-trifluromethoxyphenol, MeOH,
rt −60 ◦C, 43%; (iii) p-nitrobenzenesulfonyl chloride, Et3N, DCM, 0 to −5 ◦C (yield not reported);
(iv) aqueous NaOH solution, 0 to 15 ◦C, 92%; (v) 2-bromo-4-nitroimidazole, DIPEA, 110 ◦C −115 ◦C,
96%; (vi) K2CO3, DMF, 90 ◦C, 51%.
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Scheme 74. Synthesis of VL-2098 (20). Reagents and conditions: (i) 2-methylallyl chloride, K2CO3,
DMF, 60–65 ◦C, 2 h, 97%; (ii) AD-mix α, t-BuOH–H2O (1:1), rt, 2 h, 88%; (iii) MsCl, Et3N, EtOAc,
<15 ◦C-rt, 2 h; (iv) DBU (4 mmol), EtOAc, rt, 2 h, 89%; (v) DIPEA, 110 ◦C, 2 h; (vi) Cs2CO3, DMF,
50 ◦C, 2 h, 48%.

2.4.5. TBA-354 (21) and Its Derivatives

TBA-354 21 was the second-generation TB drug candidate belonging to the class of
nitroimidazo-oxazine (PA-824) developed by the Global Alliance for TB Drug Development.
It is a pyridine-containing biaryl compound with improved promising bioavailability and
efficacy against chronic murine tuberculosis (Figure 25). It entered into phase 1 of clinical
trials, but based on the observed side effects, was withdrawn [188].
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Kmentova et al. in 2010 synthesized new heterocyclic analogs of the potent biphenyl
class derived from antitubercular drug PA-824, intending to improve aqueous solubil-
ity and maintain high metabolic stability and efficacy. From this strategy, one com-
pound (TBA-354) emerged as a potent new anti-tubercular lead and was taken up for
a phase I clinical trial. The synthesis of TBA-354 21 was made from (5-bromopyridin-2-
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yl)methanol, which upon reaction with N-bromosuccinamide, converted into 5-bromo-2-
(bromomethyl)pyridine. This intermediate underwent reaction with 2-nitro-6,7-dihydro-
5H-imidazo[2,1-b][1,3]oxazin-6-ol followed by Suzuki coupling to furnish the desired
product 21 (Scheme 75) [189].
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h, 91%; (ii) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-ol, NaH, DMF, 0–20 ◦C, 2–3 h, 88%;
(iii) ArB(OH)2, toluene, EtOH, K2CO3, Pd(dppf)Cl2 under N2, reflux, 20 min −21 h, 70%.

2.4.6. Miscellaneous Fused Nitroimidazoles

Kmentova et al. (2010) synthesized and developed the structure–activity relationship
for the aza and diazabiphenyl analogs of the antitubercular drug PA-824 19 (Schemes 76–78).
In this, the authors had developed new heterocyclic analogs of the potent biphenyl class
in order to improve the aqueous solubility, metabolic stability and efficacy. The authors
had performed the modifications by replacing one or both phenyl groups by pyridine,
pyridazine, pyrazine, or pyrimidine in order to reduce lipophilicity. After synthesizing, the
compounds were evaluated. In this study, the terminal pyridine or proximal heterocycle
compounds showed good potency, better solubility, high metabolic stabilities, and excellent
pharmacokinetics. Broadly, these showed that replacement of one of the phenyl groups
with pyridine lowered ClogP values by ~1.3 units, whereas replacement with a diaza
heterocycle had a more variable effect, with lipophilicity differences ranging from −1.41
(30, 50-pyrimidine) to −2.84 (pyridazine). Additional replacement of the second phenyl
group with pyridine further reduced the ClogP values (by ∼0.6–1.1 units), providing
particularly hydrophilic analogs [189]. This study has led to the discovery of TBA-354,
which is discussed in the previous section.

Palmer et al. (2009) synthesized and developed structure–activity relationship studies
for biphenyl analogs of PA-824 19 (Scheme 79) [190]. In this, the authors had performed
the synthesis of biphenyl analogs by coupling the iodobenzyl alcohols with iodides and
appropriate boronic acids and then evaluated them against antitubercular activity. The
structure–activity relationship of synthesized biphenyl analogs clearly showed that para-
linked biaryls more active flowed by meta then ortho-linked biaryl analogs under both
replicating and non-replicating conditions. Then, most potent analogs were screened
for detailed study for the in vivo efficacious study in acute MTB infections. The three
compounds with better lipophilicity and electron-withdrawing groups showed > 200-fold
higher efficacies than the parent drug.

Sutherland et al. (2010) developed a new series of 2-nitroimidazooxazine bearing
heterocyclic side chains as anti-TB agents (Scheme 80) [191]. After developing biphenyl
analogs, the authors had designed the heterobiaryl analogs where 5-membered hetero-
cycles replaced the phenyl ring. The compounds were constructed by the coupling of
2-nitroimidazooxazine with the halo partner of heteroaryl halides. The aryl heterocyclic
compounds showed the most potent activity against replicating M. tb. while having im-
proved solubility profiles. Among the synthesized compounds, two compounds with
a pyrazole ring showed >10-fold more efficacy than the parent drug in the acute infec-
tion model.



Pharmaceuticals 2022, 15, 561 69 of 94

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 70 of 97 
 

tent biphenyl class in order to improve the aqueous solubility, metabolic stability and ef-
ficacy. The authors had performed the modifications by replacing one or both phenyl 
groups by pyridine, pyridazine, pyrazine, or pyrimidine in order to reduce lipophilicity. 
After synthesizing, the compounds were evaluated. In this study, the terminal pyridine 
or proximal heterocycle compounds showed good potency, better solubility, high meta-
bolic stabilities, and excellent pharmacokinetics. Broadly, these showed that replacement 
of one of the phenyl groups with pyridine lowered ClogP values by ~1.3 units, whereas 
replacement with a diaza heterocycle had a more variable effect, with lipophilicity dif-
ferences ranging from −1.41 (30, 50-pyrimidine) to −2.84 (pyridazine). Additional re-
placement of the second phenyl group with pyridine further reduced the ClogP values 
(by ∼0.6–1.1 units), providing particularly hydrophilic analogs [189]. This study has led to 
the discovery of TBA-354, which is discussed in the previous section. 
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Scheme 76. Synthesis of Aza analogs of PA-824 19. Reagents and conditions: (i) ArB(OH)2, toluene,
EtOH, KOAc, Pd(dppf)Cl2 under N2, reflux, 10 min–3 h, 19–97%; (ii) substituted halopyridine,
toluene, EtOH, K2CO3, Pd(dppf)Cl2 under N2, reflux, 0.5–3 h, 50–83%; (iii) NBS, PPh3, CH2Cl2,
20 ◦C, 3–4 h, 87–97%; (iv) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-ol, NaH, DMF, 0–20 ◦C,
2.2–2.5 h, 74–84%.
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studies for biphenyl analogs of PA-824 19 (Scheme 79) [190]. In this, the authors had 
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Scheme 77. Synthesis of Aza analogs of PA-824 19. Reagents and conditions: (i) TFAA, 20 ◦C, 30 min,
and then reflux, 30 min, and then aqueous NaHCO3, 20 ◦C, 16 h, 78% (ii) SOCl2, CHCl3, 0–20 ◦C,
20 h, or reflux, 1 h, 83%; (iii) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-ol, NaH, DMF, −5 to
20 ◦C, 1–16 h, 65%; (iv) ArB(OH)2 (or pinacol ester), toluene, EtOH, K2CO3, Pd(dppf)Cl2 under N2,
reflux, 10 min–6 h, 42–92%.
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Scheme 78. Synthesis of Aza analogs of PA-824 19. Reagents and conditions: (i) NBS/NCS, PPh3,
CH2Cl2, 20 ◦C, 3–3.5 h, 83%; (ii) NaH, DMF, 0–20 ◦C, 2–3 h, 81%; (iii) ArB(OH)2 (or pinacol ester),
toluene, EtOH, K2CO3, Pd(dppf)Cl2 under N2, reflux, 20 min, 21 h, 54–80%.
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Scheme 79. Synthesis of derivatives of PA-824 19 as anti-tubercular agents. Reagents and conditions:
(i) iodo/bromo benzylhalides, NaH, DMF, 20 ◦C, 61–97%; (ii) ArB(OH)2, toluene, EtOH, KOAc,
Pd(dppf)Cl2, DMSO, 90 ◦C, 1 h, 51–61%; (iii) halobenzenes, toluene, K2CO3, Pd(dppf)Cl2 under N2,
reflux, 15–70 min, 51–80%; (iv) 33% HBr, acetic acid, 20 ◦C, 6–11 h, 100%; (v) 2-nitro-6,7-dihydro-
5H-imidazo[2,1-b][1,3]oxazin-6-ol, NaH, DMF, 0–20 ◦C, 3 h, 70–79%; (vi) (5-Br, 2-Cl)PhOH, toluene,
EtOH, K2CO3, Pd(dppf)Cl2 under N2, reflux, 30 min, 81%; (vii) NaOCOCClF2, K2CO3, DMF, 80 ◦C,
14 h, 37%; (viii) LiAlH4, Et2O, 0–20 ◦C, 2 h, 100%; (ix) PBr3, Et2O, 0–20 ◦C, 3 h, 82%.
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Cherian et al. (2011) developed the newer generation analogs by exploring the linker 
and lipophilic tail of PA-824 19 (Schemes 81–83) [192]. In this, the authors had performed 
the modification by incorporating “N” instead of “O”. The new generation analogs had 
been synthesized by introducing substitution at the third position of 4-trifluoromethox-
ybenzylamino tail, which was evaluated against replicating as well as non-replicating 
strains of MTB. Most of the compounds had shown better activity as compared with the 
parent molecule. 

Scheme 80. Synthesis of PA-824 19 and its derivatives (Sutherland et al.). Reagents and condi-
tions: (i) NaH, DMF, 0 ◦C, 2 h, B-26–54%, C-71–73%, D-81–94%, E-69–85%, F-36%; (ii) ArB(OH)2,
toluene, EtOH, K2CO3, PdCl2(dppf), N2, reflux, A-51–67%; (iii) SOCl2, reflux, 0.5 h, B-83–93%;
(iv) NaOAc, aq. AcOH, 100 ◦C, 15 h, 46–94%; (v) isoamyl nitrite, THF, reflux, 20 h followed by LiAlH4,
Et2O, 0 ◦C, 20 h, and then PBr3, Et2O, 0–20 ◦C, 2–17 h, 12–81%; (vi) EtOH, 70 ◦C, 0.5 h, 41–78%;
(vii) acetic anhydride, 20 ◦C, 0.5 h, Cs2CO3, THF, 20 ◦C, and then (CH2O)n, 2M HCl, reflux, 2 h,
and then NaBH4, MeOH, 20 ◦C, 0.5 h followed by addition of PBr3, Et2O, 0–20 ◦C, 15–16 h, 51–67%;
(viii) methylhydrazine, H2SO4, aq. NaHCO3, CuI, PdCl2(PPh3) THF, 20 ◦C, 48 h under CO, and then
HCl, THF, 80 ◦C, 16h followed by addition of PBr3, Et2O, 0–20 ◦C, 16 h, 69–85%; (ix) oxalyl chloride,
ethylacetate, reflux, 30 min, followed by addition of POCl3, reflux, 2 h, 74%.

Cherian et al. (2011) developed the newer generation analogs by exploring the
linker and lipophilic tail of PA-824 19 (Schemes 81–83) [192]. In this, the authors had
performed the modification by incorporating “N” instead of “O”. The new genera-
tion analogs had been synthesized by introducing substitution at the third position of
4-trifluoromethoxybenzylamino tail, which was evaluated against replicating as well as
non-replicating strains of MTB. Most of the compounds had shown better activity as
compared with the parent molecule.
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Scheme 82. Synthesis of PA-824 19 and its derivatives (Berry et al.). Reaction conditions: (i) n-BuLi, 
ZnCl2, CuI, THF, −78 °C to rt, 1.5 h, and then 4-trifluoromethoxybenzoyl-chloride, rt, 1 h, 40%; (ii) 
diisopropylcarbamyl chloride, DIPEA, 4-trifluoromethoxybenzaldehyde, CH3CN, reflux, 19 h, 73%; 

Scheme 81. Synthesis of PA-824 19 and its derivatives (Berry et al.). Reagents and conditions:
(i) HCO2H, Ac2O, THF, 0 ◦C, 1 h, 55%; (ii) R1COCl, NaH, DMF rt to 70 ◦C, 48–55%; (iii) R2CHO,
NaBH(OAc)3, MeOH/AcOH, 27–64%; (iv) triphosgene, EtNH2.HCl, Et3N, THF, 0 ◦C to rt, 66%.
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Scheme 82. Synthesis of PA-824 19 and its derivatives (Berry et al.). Reaction conditions: (i) n-BuLi,
ZnCl2, CuI, THF, −78 ◦C to rt, 1.5 h, and then 4-trifluoromethoxybenzoyl-chloride, rt, 1 h, 40%;
(ii) diisopropylcarbamyl chloride, DIPEA, 4-trifluoromethoxybenzaldehyde, CH3CN, reflux, 19 h,
73%; (iii) 50% TFA in water, THF, reflux, 15 h, 82%; (iv) H2, Pd/C, MeOH, 1 atm, 81%; (v) MsCl, Et3N,
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CH2Cl2, rt, 1 h (yield not reported); (vi) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-amine,
NaH, THF, rt, 40 h, 15%; (vii) RMgBr, THF, 0 ◦C to rt when R = Et and n-Pr; n-BuLi, THF, −78 ◦C
to rt when R = n-Bu (yield not reported); (viii) PBr3, ether, 0 ◦C to rt (yield not reported); (ix) 2-
nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-amine, K2CO3, DMF, KI, 90 ◦C (yield not reported);
(x) 4-trifluoromethoxybenzaldehyde, neat, 100 ◦C, 5 min, and then TMSCN, 100 ◦C, 30 min, 50%;
(xi) EtOH/HCl, −10 ◦C, 38%; (xii) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-amine,
NaCNBH3, AcOH, EtOH, 5%; (xiii) 4-methoxybenzylalcohol, KOtBu, 60 ◦C, 2 h, 34%; (xiv) PDC,
CH2Cl2, rt, 24 h, 62%; (xv) TBDMSOTf, CH2Cl2, rt, 5 min, 86%; (xvi) ethylbromoacetate, Zn, CH2Cl2,
rt, 3 h; (xvii) LiAlH4, THF, 0 ◦C to rt, 2 h, 25% over two steps; (xviii) MnO2, CH2Cl2, rt, 6 h, 50%;
(xix) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-amine, Ti(iOPr)4, AcOH, NaBH3CN, 9%.
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styrene, Pd(OAc)2, Et3N, 95 oC,16 h, 64%; (ii) OsO4, NaIO4, acetone-water, rt, 16 h, 16%; (iii) 2-nitro-
6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-amine, NaCNBH3, AcOH, DMF, 20 h, 13–72%; (iv) eth-
ylene glycol, p-TSA, benzene, 80 °C, 8 h, 86%; (v) Pd(OAc)2, Cs2CO3, Xantphos, dioxane, amine, 90 
°C, 8 h, 18-31%; (vi) THF, 6 N HCl, 30 min, rt, 55%; (vii) n-BuLi, THF, −78 °C, DMF, 15 min, 57–72%. 

3. Mutagenicity and Genotoxicity of Selected Nitroimidazole Derivatives 
Nitroimidazole derivatives are well known for their therapeutic effect through nitro 

group reduction [38]. However, the same is also responsible for mutagenic, genotoxic, and 
cytotoxic properties [30]. Metronidazole is relatively well tolerated in animals, and no 
signs of chronic toxicity problems were observed in rats [193]. In humans, metronidazole 
is also well tolerated and is used in pregnant women [194]. Several nitroimidazoles pos-
sess good oral therapeutic activity, but there are concerns with toxicity related to muta-
genicity, especially if base-pair tester strains are used and if bacterial nitroreductases are 
present. Therefore, genotoxicity has made this drug development problematic [195]. 
These toxicity properties were related to DNA damage by the products of the bio-reduc-
tion of the nitro group. Consequently, positive Ames tests were observed, for instance, for 

Scheme 83. Synthesis of PA-824 19 and its derivatives (Berry et al.). Reagents and conditions:
(i) styrene, Pd(OAc)2, Et3N, 95 ◦C,16 h, 64%; (ii) OsO4, NaIO4, acetone-water, rt, 16 h, 16%;
(iii) 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-amine, NaCNBH3, AcOH, DMF, 20 h,
13–72%; (iv) ethylene glycol, p-TSA, benzene, 80 ◦C, 8 h, 86%; (v) Pd(OAc)2, Cs2CO3, Xantphos,
dioxane, amine, 90 ◦C, 8 h, 18-31%; (vi) THF, 6 N HCl, 30 min, rt, 55%; (vii) n-BuLi, THF, −78 ◦C,
DMF, 15 min, 57–72%.

3. Mutagenicity and Genotoxicity of Selected Nitroimidazole Derivatives

Nitroimidazole derivatives are well known for their therapeutic effect through nitro
group reduction [38]. However, the same is also responsible for mutagenic, genotoxic, and
cytotoxic properties [30]. Metronidazole is relatively well tolerated in animals, and no signs
of chronic toxicity problems were observed in rats [193]. In humans, metronidazole is also
well tolerated and is used in pregnant women [194]. Several nitroimidazoles possess good
oral therapeutic activity, but there are concerns with toxicity related to mutagenicity, espe-
cially if base-pair tester strains are used and if bacterial nitroreductases are present. There-
fore, genotoxicity has made this drug development problematic [195]. These toxicity prop-
erties were related to DNA damage by the products of the bio-reduction of the nitro group.
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Consequently, positive Ames tests were observed, for instance, for the 5-nitroimidazole
derivatives such as metronidazole, secnidazole, tinidazole, ornidazole, carnidazole and
panidazole (Structure shown in Figure 26) using Salmonella typhimurium [113]. Despite this,
several of these compounds are used for the clinical treatment of bacterial and protozoal
infections. In addition, one of the reasons for their use is that the mutagenicity is different in
mammalian cells, bacteria, and protozoa, which is discussed in the below subsection [196].
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3.1. Azomycin 1

Voogd et al. studied the mutagenic properties of Azomycin 1 in Klebsiella pneumonia
using Luria and Delbruck’s fluctuation tests. The mutagenic potential was studied in two
concentrations of 0.5 and 0.25 mM, where mutation frequency was measured. In the studied
method, azomycin did not show any increase in mutation frequency and was found to
be non-mutagenic [197]. In this paper, the authors made a comparison of Azomycin with
2-nitroimidazole derivatives having a side chain at N-atom. The substituted derivatives
have shown potential mutagenic activity.

3.2. Benznidazole 2

The mutagenic activity of Benznidazole 2 was studied in a plate incorporation assay
using Salmonella typhimurium TA100 and its nitroreductase-deficient strain, TA100 NR,
under aerobic or anaerobic conditions as well as with/without the addition of liver ex-
tracts. Benznidazole 2 has shown significant mutagenic activity in the Salmonella typhi
TA100 strain under both aerobic and anaerobic conditions; however, the addition of liver
enzyme did not alter any effects. Conversely, Benznidazole 2 did not show any mutagenic
activity in the nitroreductase-deficient strain, TA100 NR, under aerobic conditions. These
results revealed that Benznidazole 2 becomes mutagenic to a mammalian system under
anaerobic conditions, and such environments are not expected to occur in most mammalian
tissues [198]. Later on, Buschini et al. studied the mutagenic activity of Benznidazole 2 in
Salmonella strains (TA100, TA100NR, TA98 and TA98NR) and revealed that Benznidazole 2
is more active for base-pair substitution than frameshift induction [199].

The genotoxic potential of Benznidazole 2 was evaluated by Comet assay test and
micronucleus assay by Buschini et al [200]. The Comet assay was performed on fresh human
leukocytes. Comet assay detected Benznidazole 2-induced DNA damage at doses in the
range of therapeutically treated patient plasma concentration and exerted its effect through
ROS generation. In the micronucleus assay, Benznidazole 2 did not alter micronuclei
frequency in the lower dose; however, it exerted its effects at higher doses and for a longer
time (72 h). In the test assay, nifurtimox (NFX) was used as a comparator, showing its
effects at lower concentrations in short duration assays (24 h).
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3.3. Misonidazole 3

The mutagenic potential of Misonidazole 3 was studied by Chessin et al. using E. coli
strain WP2 uvrA-, a tryptophan-requiring strain. Reversion to tryptophan independence
on selective plates was used as the quantitative test of mutagenesis. In this study, the nitro
containing drugs and leads (nitrofurantoin, Nifuroxime, Misonidazole 3, Metronidazole 7,
NF-167, NF-269) were studied and was found that as the concentration of Misonidazole 3
was increased significantly, the frequency or survival of Trp+ revertants also increased
significantly. These studies revealed that Misonidazole 3 induced mutation and was found
to be mutagenic [201].

3.4. Azathioprine 6

In 1976, Herbold and Buselmaier studied the mutagenicity of azathioprine with liver
microsomal assay by using different bacterial tester strains, namely Salmonella typhimurium
TA1535, TA1536, TA1537, TA1538 and G46 [202]. It was observed that Azathioprine 6
produced negative results with TA1536, TA1537 and TA1538 in the frameshift strains of
the test set, whereas a clear mutagenicity was demonstrated with TA 1535 and G46. Later
on, Voogd et al. in 1979 studied the in-depth mutagenic action of Azathioprine using the
fluctuation test of Luria and Delbruck using Klebsiella pneumoniae as a test organism [199].
In this study, Azathioprine 6 was found to be mutagenic even without metabolic activation
at the concentration range from 2-0.1mmol/L. Similarly, Azathiopurine was compared
with 6-mercaptopurine; it was interesting to observe that 6-mercaptopurine (0.6 mol/L)
showed no mutagenic action on K. pneumonia, which indicates that this part of the aza-
thioprine molecule does not contribute to the mutagenic activity. Later, Voogd reported
that mutagenicity of Azathioprine for bacteria seems to be irrelevant for man because the
nitroimidazole moiety can be reduced by bacteria but not by mammalian tissues [203].

The genotoxicity of Azathioprine 6 was investigated by performing a micronucleus
test (mice/rats) and lymphocyte metaphase test (rabbits) [204]. In the micronucleus test, it
was found that there was a dose-dependent increase in the number of cells with micronuclei.
In the lymphocyte test, a dose of 20 and 5 mg per kg body weight was given orally to rabbits
on three successive days after pertussis injection, where azathioprine induced a significant
increase in cells with chromosomal abnormalities. The obtained results suggested that
Azathioprine 6 is genotoxic.

3.5. Metronidazole 7

The mutagenicity of Metronidazole 7 was performed by Voogd et al. in the year 1974
through Luria and Delbruck’s fluctuation test using the following strains, viz., Klebsiella
pneumoniae, Escherichia coli KI2 HfrH and Citrobacter freundii 425 with concentrations starting
from 2–0.01 mM. Metronidazole 7 showed significant mutagenicity to Klebsiella pneumonia
and Escherichia coli. It was found that 0.1 mM concentration of Metronidazole 7 induced
5.2- to 9.7-fold higher mutation than that of a spontaneous mutation rate, while the con-
centration of 1 mM increased the mutation rate by a factor of 39.6. When the mutagenic
action of Metronidazole 7 was checked against Salmonella typhimurium TA 1530 and LT2,
Voogd et al. found that it exerted clear mutagenic action and concluded that Metronidazole
induced base-pair substitution mutation in TA 1530 and LT2 [205].

The genotoxic potential of Metronidazole 7 was evaluated by using the comet assay,
micronucleus assay and chromosomal aberration tests. In Comet assay, metronidazole
induced DNA damage in human lymphocytes (Comet assay), whereas in micronucleus
assay, not much change was observed, making Metronidazole 7 non-genotoxic. However,
in chromosomal aberrations in V79-379A cells, Metronidazole 7 exhibits a significant
clastogenic action in hypoxic but not in aerobic cells [200,206].

3.6. Ornidazole 8

Voogd et al. in 1977 determined the mutation frequency of Ornidazole 8 in the Luria
and Delbruck’s fluctuation tests using Klebsiella pneumoniae mutant requiring uracil and
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proline [207]. Ornidazole 8 has shown high mutagenic actions at a lower concentration;
however, the effects are less at higher concentration levels. A possible explanation is also
provided for the effects where an observed lower effect at the high concentration levels
may be from the formation of charge-transfer complexes or other associations.

The genotoxic activity of Ornidazole 8 was evaluated in cultured human lymphocytes
at various therapeutic concentrations [25]. The endpoints analyzed included: mitotic index
(MI), replication index (RI), sister chromatid exchange (SCE) and chromosomal aberrations
(CA). Among the endpoints describing genotoxic damage, a significant decrease in MI and
an increase in SCE was observed in all cultures treated with Ornidazole 8, and an increased
percentage of cells with aberrations was observed during in vitro treatments. The analysis
of chromosome aberrations also showed that most of the CA detected with Ornidazole 8
were chromatid breaks. These results suggested that Ornidazole 8 has a genotoxic effect.

3.7. Tinidazole 9

The mutagenicity of Tinidazole 9 was studied by Voogd et al. using Luria and Del-
bruck’s fluctuation test in the strains viz., Klebsiella pneumoniae, Eischerchia coli and Cit-
robacter freundii with a concentration ranging from 1 to 0.02 mM/l [207]. The mutation
frequency of test organisms increased spontaneously on increasing the concentration of
Tinidazole 9 from 0.05 to 1 mM/L. These results suggest its mutagenic nature; however,
there is no linear relationship between the concentrations of the mutagenic agents and their
mutation frequencies.

Nigro et al. studied the genotoxic activity of Tinidazole 9 in cultured human lym-
phocytes at various therapeutic concentrations and searched for the mitotic index (MI),
replication index (RI), sister chromatid exchange (SCE) and chromosomal aberrations (CA).
A significant decrease in the frequency of mitoses was observed, while a significant increase
in the concentration of SCE was also observed. The analysis of chromosomal aberrations
showed that most of the breaks detected were of the chromatid type. In addition, morpho-
logical changes in the nucleus and cytoplasm were observed in the treated cells. These
results concluded that Tinidazole 9 is genotoxic, cytotoxic and is able to modulate cell death
through apoptotic mechanisms [208].

3.8. Nimorazole 11

Nimorazole 11, an antitrichomonal drug, also displayed a mutagenic effect. Voogd
et al. determined the mutagenic potential of Nimorazole 11 using Luria and Delbruck’s
fluctuation test. Nimorazole 11 had shown a dose-dependent response, and the effect was
significant at higher concentrations [205].

3.9. Secnidazole 12

The mutagenicity of Secnidazole 12 was conducted in Ames assay using various
strains of Salmonella typhimurium and one strain of Eischerchia coli. The concentration dose
was chosen from 5000 to 33 µg/plate, and the number of revertant colonies also increased
significantly. Thus, it was found to be mutagenic in these strains with and without the
metabolic activation in rat liver extracts [94].

The genotoxic potential of Secnidazole 12 was evaluated through bone marrow mi-
cronucleus assay in Sprague–Dawley rats. There were no reductions in the ratio of PCEs
to total erythrocytes. In addition, no significant increase in the incidence of mnPCEs was
observed. According to the study conducted, it was concluded that Secnidazole 12 was
negative in the rat micronucleus assay [94].

3.10. Dimetridazole 13

Luria and Delbruck’s fluctuation tests were carried out to evaluate the mutagenicity
of Dimetridazole 13. The test was carried out on different organisms such as Klebsiella
pneumoniae, Escherichia coli, and Citrobacter freundii at different concentrations ranging from
1 to 0.01 mM. Dimetridazole 13 was found to be less active in the test assay in comparison
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to other nitroimidazole. With Klebsiella pneumoniae, solutions of 0.1 mM of Dimetridazole
13 increased the mutation rate by a factor of 3.4 to 4.1, whereas 1 mM solutions raised it to
32.2. Similar results were obtained with the two other test organisms Escherichia coli and
Citrobacter freundii. Later on, the mutagenic action of Dimetridazole 13 was tested against
different strains of S. typhimurium, which showed that Dimetridazole 13 also exerted a
clear mutagenic action upon these Salmonella strains. With strains his G46 and TA 1530,
a possible effect on the uvr repair system was detected. It may be concluded that the
substances investigated induced base-pair substitution mutations in TA 1530 and his G46.
The possibility of frame-shift mutations was investigated with strains TA I531, TA 1532
and TA 1534 of S. typhimurium. It shows that Dimetridazole also induced frame-shift
mutations [199,205].

The genotoxicity of Dimetridazole 13 has been evaluated in human lymphocytes using
the comet assay by Re et al. [206]. The test has been performed using three doses of 70.9,
212.6 and 354.3 mM under three experimental protocols: aerobiosis, anaerobiosis (90%
N2, 10% CO2) and with the presence of the microsomal fraction S9 mix. In this study, the
protective effects of four antioxidants, 8-hydroxyquinoline (8HQ), vitamin C (VitC), catalase
(CAT) and superoxide dismutase (SOD), have been investigated on DNA damage generated
by fixed concentrations of Dimetridazole 13 354.4 mM. In aerobic conditions, Dimetridazole
13 produced significant dose–response relationships. The dose-related effects of the drug
decreased or were abolished in anaerobic conditions or in the presence of S9 mix. 8HQ,
VitC, CAT and SOD induced dose-related protective responses against DNA damage due
to Dimetridazole 13. These findings suggest that Dimetridazole 13 induced DNA damage
in human lymphocytes through the futile cycle.

3.11. Fexinidazole 14

The mutagenic activity of Fexinidazole 14 was determined through Ames test using
different strains of Salmonella typhimurium. Fexinidazole 14 has shown mutagenicity in all
strains with different degrees. In each case, mutagenicity was either lost (e.g., TA98NR
versus TA98) or significantly attenuated (e.g., TA100NR versus TA100) in the strains
deficient in nitroreductase compared to their nitoreductase-proficient counterpart. In
most cases, where mutagenicity was observed, potency of the signal was increased in the
presence of rat liver S9 [209].

Fexindazole 14 was tested for by in vitro micronucleus tests using human peripheral
lymphocytes. It did not induce chromosomal damage in human lymphocytes under these
conditions. In addition, Fexinidazole 14 was tested for by in vivo mouse bone marrow
micronucleus test, where the percentage of polychromatic erythrocytes of the total of
erythrocytes in each bone marrow sample was used to estimate toxicity. The results revealed
that Fexinidazole 14 does not induce any chromosomal damage in human lymphocytes.
Similarly, in in vivo assay in the rat, no genetic damage was detected in the jejunum or
liver even at a dose six times higher than that possible in the mouse study. The study
concluded that Fexinidazole 14 and its metabolites have low redox potentials and therefore
do not show any effects in the battery of assays. Thus, Fexinidazole 14 does not pose a
genotoxic hazard to patients, which therefore qualifies it as a drug candidate for therapeutic
applications [209].

3.12. Megazol 15

The mutagenicity of Megazol 15 was also determined by Mello et al. in the year 2013
through Ames test using various strains of Salmonella typhimurium with the concentration
ranging from 1.0 to 0 µg/plate with and without metabolic activation by rat liver micro-
somes and was found to be mutagenic to all these strains tested for mutagenicity. However,
due to its mutagenic and carcinogenic activity related to the nitro group, megazol is not
used clinically [210].

The genotoxicity of Megazol 15 was reported by Nesslany et al. in the year 2004 by
performing in vitro human lymphocyte metaphase analyses with and without metabolic
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activation and in vivo micronucleus assay test in rats [211]. It showed significant clastogenic
activity in the in vitro human lymphocyte metaphase analysis test, with and without
metabolic activation, and can therefore be considered as a clastogenic agent in cultured
human lymphocytes. However, no numerical aberrations were observed despite the
presence of structural aberrations and complex exchanges. Without metabolic activation
in the 4 h treatment assay with one sampling at 20 h after the start of treatment, Megazol
induced a dose-related increase in the number of chromosomal aberrations. At the highest
dose tested of 0.625 mM, which is the maximum dose compatible with its cytotoxicity, a
statistically significant increase in the number of breaks per cell and in the frequency of
aberrant cells was observed. At the two lower doses of 0.312 and 0.156 mM, a slight increase
in the number of aberrant cells was found, but this increase was not statistically significant.
In the second assays without metabolic activation, a dose-related increase in the number
of chromosomal aberrations was observed with a statistically significant increase in the
number of breaks per cell and in the frequency of aberrant cells excluding or including
cells with gaps only, at the three dose levels tested with the 20 h continuous treatment. In
the in vivo micronucleus test in rats, a dramatic and statistically significant decrease in the
ratio PCE to NCE was noted for the treatment group compared to the negative control
group. Such an effect, reflecting a marked depression of the cell division in bone marrow,
provides evidence that a sufficiently toxic dose had been administered and that exposure
of bone marrow cells had taken place. A dark-yellow discoloration of the urine of treated
animals was additional evidence of systemic exposure. Therefore, it was concluded that
Megazol 15 displayed in vivo genotoxic activity after dosing by the oral route in the in vivo
micronucleus rat bone marrow assay. Megazol 15 is a clear in vivo genotoxic compound,
and as a consequence, it could be a human carcinogen.

3.13. CGI-17341 17

It has been found to be mutagenic in the Ames test, but no data were found [17].

3.14. Delamanid (OPC-67683) 18

The mutagenicity of Delamanid 18 was determined through Ames test using different
strains of Salmonella typhimurim and Escherichia coli. The mutagenicity was evaluated
both with and without the metabolic activation by rat liver extracts using the BRM test
in accordance with OECD Guideline 471, and the number of revertants was counted 48 h
after incubation at 37 ◦C. The selected dose range varied from 0 to 5000 µg/plate, and
the number of revertants did not increase much, which revealed that Delamanid 18 is
non-mutagenic [171].

Again in 2017, Matsumotu et al. examined the initial metabolic rate and mutagenic-
specific activity of a series of nitro compounds in S. typhimurium TA100. The higher the
metabolism (reduction), the higher the mutagenicity potential, but Delamanid 18 was not
metabolized even after 60 h of treatment. In addition, Delamanid 18 was not reduced
by two human nitroreductases. Thus, it was concluded that Delamanid 18 is devoid of
genotoxicity in both in vitro and in vivo tests [212].

3.15. Pretomanid (PA-824) 19

The mutagenic activity of Pretomanid 19 was also determined through Ames test. The
test organisms used were Salmonella typhimurium (different strains) and Escherichia coli. The
mutagenicity was checked at different concentrations of the drug. PA-824 19 was positive
for mutagenic potential in the bacterial reverse mutation assay. Revertants were increased
with TA100, TA1535 and WP2uvrA in the presence and absence of S9 mix. In addition,
revertants were increased with TA98 in the presence of S9 mix and with TA1537 in the
absence of S9 mix, suggesting that PA-824 19 has some mutagenic properties [31].
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3.16. VL-2098 20

Mukavilli et al. in 2014 have found VL-2098 20 to be non- mutagenic in the Ames test,
micronucleus and chromosomal aberration assay [186].

3.17. Nitroimidazole Derivatives Mutagenicity and Genotoxicity SARS: Selected Examples

Ehlhardt et al. demonstrated that 1-methyl-4-phenyl-5-nitroimidazole (141) is at least
1000-fold less cytotoxic for CHO cells and mutagenic for Ames tester strain TA100 than
its corresponding homologous nitroso compound, 1-methyl-4-phenyl-5-nitrosoimidazole
(142, Figure 27) [213]. The authors suggested that unlike the nitroimidazoles, the en-
hanced bactericidal activity of nitrosoimidazoles is expressed under both aerobic and
anaerobic conditions resulting in nitrosoimidazoles that are more proximate to a common
reactive species.
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Another study performed by Voogd et al., as shown in Figure 28, summarizes the
increase in mutagenic action of several 2- and 5-nitroimidazoles against Klebsiella pneumo-
niae [197,205]. Among the nitroimidazole derivatives, Ronidazole 143 showed the highest
mutagenic activity, increasing the mutation rate of Klebsiella pneumoniae, whereas Metron-
idazole 7, Nimorazole 11, Dimetridazole 13, Ro-7-1051 (misoindazole 3) and Ro-5-9963
144 displayed similar activities. Without any substituent on the nitroimidazole ring, no
mutation rate was observed such as with Azomycin 1 as well as with the substituted
5-nitroimidazole Panidazole 145 [214].

Arredondo et al. prepared and tested for their antimicrobial activity as well as for
mutagenicity (Salmonella typhimurium reverse mutation). To achieve this, series of 21
1-methyl-2-substituted 5-nitroimidazole derivatives were synthesized with the general
formulas I (147) and II (148) compared with metronidazole (Figure 29) [215].

At a glance, the introduction of a bulky group in R1 or R2 decreased the mutations in
Salmonella typhimurium.

Boechat et al. synthesized a series of ten 4- and 5-nitroimidazoles, including mega-
zole 15, bearing different substituent moieties that were investigated for their poten-
tial induction of genotoxicity (Comet assay) and mutagenicity (Salmonella typhimurium)
(Figure 30) [30]. The 4-nitroimidazole derivatives 150 and 152 were not genotoxic versus the
5-nitroimidazoles 153, 154 and 155. The same result was observed with the 4-nitroimidazole
150 and the corresponding 5-nitroimidazole 148, which is genotoxic. No influence on geno-
toxicity was observed regarding the position of the nitro group without methyl moiety
in position 2, compound 151 versus 156. Generally, the introduction of a fluorine atom
induced genotoxicity (153 versus 155, 154 versus 156, 149 versus 151).
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The mutagenic and genotoxic properties of various forty-eight 5-nitroimidazoles
derivatives including Metronidazole 7 and Dimetridazole 13 have been evaluated using
Ames test and the SOS Chromotest (Table 5). In the Ames test, Salmonella typhimurium
strain TA 100 was used with and without metabolic activation, whereas Escherichia coli
strain PQ 37 was used with and without metabolic activation in the SOS Chromotest [216].
Forty-five nitroimidazoles showed mutagenic and genotoxic properties, whereas three
molecules showed neither mutagenic nor genotoxic activity with and without the metabolic
fraction. Good correlation was observed between the mutagenic potencies (MP) and the
SOS induction powers (SOSIP) without the S9: log(MP) = 0.88 X log (SOSIP) + 2.675 with
r = 0.845 (n = 84). As shown in Table 4, compound 157 displayed the highest MP and
SOSIP, whereas the transfer of the nitro group from possition 5 at position 4 decreased the
mutagenic potency, which became similar to that of dimetridazole. The replacement of the
nitro moiety by a cyano group also decreased the mutagenicity.
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Table 5. Ames test and SOS Chronotests for Metronidazole 7 and Dimetridazole 13, 157, 158 and 159.

Compounds AMES Test Mutagenic Power SOS Test Induction Power

−S9 + S9 −S9 + S9
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Twenty-four antiprotozoal 5-nitroimidazole derivatives bearing an arylsulfonylmethyl
group were prepared by M. D. Crozet et al. [155]. In vitro antiparasitic activity was deter-
mined against trichomonas vaginalis, whereas in vitro mutagenicity was evaluated by the
Salmonella mutagenicity assay. All the tested molecules were mutagenic in the Salmonella
mutagenicity assay using the most sensitive strain, TA100. The tested compounds showed
better activity against T. vaginalis than metronidazole. Good correlation was observed
between the antiprotozoal activity and the mutagenicity for the 21 compounds, reflecting
their ability to damage DNA through covalent binding and induction of DNA breaks.
5-Nitroimidazole derivatives with an additional methyl group on the 2 position displayed
a lower mutagenicity than Metronidazole. Moreover, 11 derivatives had an SI over the one
of metronidazole, and compound 170 showed an SI of 13136 (Figure 31).

Buschini et al. analyzed the genotoxicity of Nifurtimox 176, Benznidazole 2, and
Metronidazole 7 (Figure 32) [200].

Benznidazole 2 was evaluated by both comet and MN assay. Discrepancies between
the results obtained by the Comet and MN tests were observed. Comet assay, at a low con-
centration, displayed significantly increased DNA damage. No increase in chromosomal
damage was detected by MN assay at low concentrations. Importantly, nifurtimox and
benznidazole are more mutagenic than metronidazole 7. These two compounds induced
DNA damage at doses in the range of therapeutically treated patient plasma concentrations
through ROS generation and dose-dependent mechanisms of DNA damage for Benznida-
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zole 2 and Nifurtimox 176, respectively. For metronidazole, no effects on mammalian cells
were observed, whereas MN induction is observed for Nifurtimox 176 and Benznidazole 2.
The effects with metronidazole 7 are dependent on anaerobic/hypoxic conditions, whereas
for Nifurtimox 176 and Benznidazole 2, interaction with the DNA of mammalian cells and
cellular damage are the two processes regarding their toxicities.
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4. Conclusions and Future Perspectives

Nitroimidazoles and their derivatives have drawn continuing interest over the years
because of their varied biological activities. In 1953, Maeda et al. discovered the first
nitroimidazole with anti-bacterial activity. Then, numerous nitroimidazole derivatives
were prepared and developed, with remarkable broad-spectrum activity, as anti-bacterial,
anti-cancer, anti-HIV, anti-parasitic, anti-tuberculosis, anti-leishmaniasis agents, etc.

In short, nitroimidazole-based drugs and leads are better defined as prodrug, and their
bio-activation utilizing the nitro functionality is the major reason for their mechanisms of
action. In addition to this, the position of the nitro group also plays an important role for
bio-activation, which is activated differently by diverse conditions (redox potential of host
and parasites based upon the diseases) and is the reason for activity against diverse disease
conditions. In general, each class has shown some trends against the disease conditions.
Among the four subclasses discussed in the review, (i) 2-nitroimidazole-based drugs are
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known as anti-protozoal agents and radio-sensitizers agents, (ii) 4-nitroimidazole-based
drugs are used as an immunosuppressive drug, (iii) 5-nitroimidazole-based are known
for anti-bacterial and anti-parasitic properties, and (iv) fused nitroimidazole-based drugs
were exploited as anti-tubercular agents; however, the recent study also reported them as
anti-leishmanial and as anti-parasitic agents. More robust strategies and approaches are
still required to understand the exact mechanisms of action for each of the classes discussed,
which will definitely open new opportunities to bring more effective drugs into this class.
Nitroimidazoles can target a broad range of parasitic and bacterial pathogens that infect
different sites within the human body, where no other drug classes are effective. There
has been renewed interest, and in the last decade, nitroimidazole derivatives belonging to
bicyclic-fused nitroimidazole have also shown great potential in TB drug discovery.

Here, we have compiled and summarized mutagenic data (bacterial reverse mutation
assay) and genotoxicity (Comet assay, chromosomal aberrations assay under in vitro con-
ditions and micronucleus assay under in vivo conditions) of nitroimidazole-based drugs
available in the literature. Although the different assays were used for screening, a unique
trend is developing for their mutagenic and genotoxic profile. The Ames test data (using
different bacterial strains) of nitroimidazole-based drugs belonging to 2-.4-,5- and fused
nitroimidazoles revealed that most of the drug candidates have mutagenic potential except
for Azomycin 1, Delamanid 18 and VL-2098 20. Azomycin 1 is a 2-nitroimidazole and
represents the first molecule discovered in the scaffold and is without any substitution.
Afterward, several other drugs were synthesized with diverse functionality. Delamanid
and VL-2098 20, belonging to fused nitroimidazole, were presented as recent discoveries,
where the former is approved as a drug against MDR-TB and the latter is presented as a
potent pre-clinical anti-leishmanial candidate. Among all the drugs and leads, these two
candidates are free of mutagenic and genotoxic liabilities, suggesting that introduction of a
five-member cyclic ring helped the molecules to escape from nitroreduction by bacterial
strains and mammalian cells, which is responsible for the mutagenicity and genotoxicity.

Apart from these, another notable trend is also developing where some of the drug
candidates are positive in bacterial Ames tests (Mutagen); however, they become negative
in mammalian genotoxic assays (Figure 33). The overall effects of the candidates against
all the assays are the deciding factors for the selection of drugs. The molecules that do not
have any effect in the in vivo micronucleus assay are qualified for further development.
Moreover, the dosage is also another important parameter in overall selection, if the
molecules are active in higher concentrations, which should have good and acceptable
fold selectivity and are considered for the overall selection. There are also candidates
belonging to the nitroimidazole class, which are positive in in vitro assays but become
negative in in vivo conditions. The molecules belonging to this category are Metronidazole
7, Secnidazole 12, Fexinidazole 14 and Pretomanid 19. Metronidazole 7, Secnidazole 12,
and Fexinidazole 14 belong to 5-nitroimidazole having di-substitutions, and conversely,
Pretomanid 19 belong to fused nitroimidazole, having a fused six-membered ring that also
helps the candidate to escape genotoxicity. In summary, the introduction of an additional
ring and substitution helps nitroimidazole to escape from mutagenicity and genotoxicity.
This vital information could be helpful for future design and discoveries.
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The presence of a nitro group and its role in mutagenicity and genotoxicity is one of
the major reasons for not actively pursuing this scaffold in drug discovery; however, the
current understanding is providing a way to deal with such a problem. However, more
design and effort are required to understand the balance between activity and toxicity. Con-
sidering the track record of nitroimidazole-based drugs to counter anaerobic and parasitic
infections, nitroimidazole is still the choice to deal with the other related complications
and diseases. Moreover, the multi-target engagement of nitroimidazole-based drugs also
provides an opportunity for a comparatively low prevalence for drug resistance, which is
one of the major concerns for anti-bacterial drug discovery. Computational, proteomics,
bioinformatics and polypharmacological approaches can be used for future drug design.
Finally, the development and expansion of the nitroimidazole family collection to address
unmet needs in the area of neglected infectious diseases should be strongly encouraged.
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Abbreviations

ADMET absorption, distribution, metabolism, elimination, and toxicity
AUC0-t area under the concentration–time curve from 0 to the last quantifiable concentration

estimated by the trapezoidal rule
AUC0-∞ area under the curve extrapolated to infinity, after a single dose
BSA body surface area
Cmax maximum (or peak) serum concentration that a drug achieves
CL/F oral clearance
Cl rate at which the active drug is removed from the body
ELISA enzyme-linked immunosorbent assay
FDA Food and Drug Administration
F(%) oral bioavailability
IC90 concentrations leading to relative effects of 10%
KI inhibitory constant
MIC50 minimum inhibitory concentration (inhibition of 50%)
MIC90 minimum inhibitory concentration (inhibition of 90%)
MRT mean residence time of drug in the body
PK drug pharmacokinetics
R&D research and drug development
Tmax amount of time that a drug is present at the maximum concentration in serum
t1/2 time taken for levels of drug to decrease by half (a measure of the rate of elimination

of the drug from plasma)
V/F ratio of volume of distribution/bioavailability
Vd olume of distribution is the theoretical volume that would be necessary to contain the

total amount of an administered drug at the same concentration that it is observed in
the blood plasma
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