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Short Commentary
Maintaining calcium homeostasis is necessary for the 
develop ment and survival of all animals. In multicellu-
lar organisms, calcium ions can enter the cytosol via the 
voltage-gated calcium channel at a rate of one million ions 
per second,1 and from there, they can target hundreds of 
effector proteins that engage pathways involved in mus-
cular contraction, neurotransmission, cell differentiation, 
and energy metabolism to name but a few (see Ref. 2 for 
an excellent discussion of calcium signaling). Many of the 
target proteins for calcium ions in the cytosol function in a 
buffering capacity to chelate free calcium in order to prevent 
activation of pathways including that of apoptotic pathways 
linked to excessive free calcium. In order to set appropri-
ate calcium levels inside cells, a superfamily of antiporters, 
called the sodium calcium exchangers, utilize the sodium 
gradient to transport calcium across various membranes. 
This superfamily is composed of the Na+/Ca2+ exchangers 
(NCX), which exchange sodium for calcium, Na+/Ca2+/K+ 
exchangers (NCKX), which exchange sodium for potas-
sium and calcium, and Ca2+/cation exchangers (also called 
NCLX), which exchange sodium or lithium for calcium.3–5 
In mammals, there are three genes encoding various isoforms 
of NCX transporters, five NCKX genes, and a single NCLX 
gene. The mammalian NCX gene products (NCX1–3)  

are highly expressed in cardiac muscle, skeletal muscle, 
and the central nervous system6–8; the mammalian NCKX 
genes (NCKX1–5) are also widely expressed in various  
cells including photoreceptor cells, retinal ganglion cells, plate-
lets, vascular smooth muscles, uterus, brain tissue, intestine,  
lungs, thymus, and epidermal cells.9–12 The mammalian NCLX  
is expressed in all tissues examined including the brain, 
thymus, heart, skeletal muscles, lungs, kidneys, intestines, 
and testes and has been shown to localize to the inner 
membrane of mitochondria.13,14 Disruption of Na+/Ca2+ 
exchanger activity has been linked to apoptosis due to 
excessive accumulation of cytosolic calcium: in cardiomyo-
cytes, overstimulation of Gαq protein downregulates NCX 
causing apoptosis,15 and in oligodendrocytes, glutamate-
mediated excitotoxicity can reverse NCX activity, which 
causes mitochondrial dysfunction and apoptosis.16 Con-
sidering the central role of Na+/Ca2+ exchangers and also 
the significant conservation between these exchangers 
in Caenorhabditis elegans and other animals,17 it was most 
unusual that in a recent genome-wide study,18 we failed 
to identify representatives of the NCLX in several species  
of nematodes.

The nematode C. elegans contains 10 Na+/Ca2+ exchanger 
genes: three NCX (ncx-1, ncx-2, ncx-3), two NCKX (ncx-4, 
ncx-5), and five NCLX (ncx-6, ncx-7, ncx-8, ncx-9, ncx-10). 
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These exchangers are highly conserved with their counterparts 
in mammals and flies,3,17,19 and these exchangers are widely 
expressed in numerous types of excitable cells and tissues in 
C. elegans.17 In an attempt to understand taxonomic special-
izations within this superfamily of transporters, we stud-
ied this family in a diverse group of nematode species that 
encompassed Clade III, Clade IV, and Clade V representa-
tives.18 Clade designations are as described by Blaxter et al.20  
Clade III is thought to contain the most ancient species of 
the three clades we examined.21 After reconstructing the 
phylogenetic and evolutionary relationships between these 
exchangers across each nematode species, we observed sev-
eral putative examples of gene gain and loss, but most surpris-
ing was the apparent absence of NCLX from the Clade III  
nematode taxa that we sampled (Fig. 1). We detected bet-
ween one and five NCLX within Clade V and also Clade IV  
nematode taxa that we examined but did not find evi-
dence of NCLX from any of the three Clade III species –  
these were Brugia malayi, Loa loa, and Ascaris suum. Fur-
thermore, based upon a tip from one of our anonymous 
reviewers during the review process of our original paper,18 
we have since observed that members of the Clade I group 
also appear to lack NCLX: these include Trichinella spiralis, 
Trichuris muris, Trichuris suis, and Trichuris trichiura. This is 

most unusual considering that Clade I taxa contain some of 
the most basal nematode species.21 Together, these findings 
reveal a dynamic evolutionary history of Na+/Ca2+ transport-
ers in nematodes that have been shaped by a series of putative 
gene loss and gain events. This is most surprising considering 
the central role mediated by Na+/Ca2+ transporters in con-
trolling calcium dynamics.3,22

The NCLX is considered to be the primary regulator of 
mitochondrial Ca2+ efflux, while mitochondrial Ca2+ influx 
is regulated predominantly by the mitochondrial calcium 
uniporter (MCU).14,23 MCU is a highly selective ion chan-
nel that facilitates the uptake of cytoplasmic Ca2+ ions into 
mitochondria and does not require adenosine triphosphate 
(ATP) hydrolysis or the exchange of other ions for conduct-
ing Ca2+ transport. Together, calcium handling via NCLX 
and MCU is critical for shaping intracellular calcium signal-
ing dynamics, mitochondrial ATP production, and regula-
tion of cell death pathways.24–27 We investigated if Clade III  
nematode taxa contain sequences for the MCU channel. 
While the Clade III taxa lack NCLX, their genomes con-
tain a putative sequence for the MCU channel (eg, BMA-
MICU-1). The presence of MCU but the absence of NCLX 
in this clade poses a unique challenge to the understand-
ing of how mitochondrial calcium dynamics are regulated 
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figure 1. representative tree of the phylogenetic relationships between nematode species belonging to clades i, iii, iV, and V. 
Note: the types of sodium calcium exchangers are color coded red (ncKX), blue (ncX), and green (nclX), and the number of colored lines represents 
the numbers of each exchanger detected from the genome of each nematode species in our analysis.18
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in some organisms. It is estimated that steady-state calcium 
transients are reduced by as much as 36% due to mitochon-
drial Ca2+ uptake.28 However, prolonged buildup of Ca2+ in 
the mitochondria is a trigger for cellular apoptotic pathways, 
and Ca2+ efflux is consequentially of utmost importance for 
maintaining cell and organismal health.29 It is unworkable 
that mitochondrial Ca2+-clearing mechanisms do not exist 
in these nematode species lacking the NCLX, but rather 
it is possible that mitochondrial Ca2+ efflux is regulated 
entirely by the NCX variants found within these organisms. 
Members of the NCX subfamily have been recently impli-
cated in mitochondrial Na+/Ca2+ exchange. Human NCX1 
is functional in the mitochondria of neuronal and glial cells 
and colocalizes with the excitatory amino acid carrier 1 to 
promote glutamate uptake in mitochondria.30 The human 
NCX2 and NCX3 localize and function at the mito-
chondria of dopaminergic neurons.31 Furthermore, NCX3  
activity in the outer mitochondrial membrane is essential 
for promoting cell survivability in neurons during hypoxic 
conditions.32 NCLX exhibits several functional differ-
ences to that of NCX, in particular, NCLX exhibits spe-
cific sensitivity to the inhibitor CGP 3715733 and also 
exhibits substrate specificity to Li+, which is not shared by 
NCX. However, both NCX and NCLX mediate Na+/Ca2+ 
exchange, and the Li+ specificity of NCLX is not considered 
physiological. Therefore, we speculate that in Clade III taxa, 
a lack of NCLX may be overcome by mitochondrial local-
ization and functioning of the NCX, which may function 
to handle plasma membrane exchange and also exchange at 
the mitochondrion.

It is quite striking that within the phylum Nematoda, 
there exists such remarkable diversity within the number 
of Na+/Ca2+ exchangers found within each species. This 
apparent diversity suggests that mechanisms regulating 
calcium homeostasis are precisely tailored to meet the vary-
ing physiological demands of individual species over their 
lifetime. Yet, the important regulatory domains of these 
exchangers appear to be highly conserved across nema-
todes, f lies, and humans17,18,34 and even fungi in the case 
of NCLX.22 Our observations on the absence of NCLX in 
Clade III nematodes highlight the importance of studying 
diverse systems in order to get a deeper understanding of 
the evolution and regulation of Ca2+ signaling critical for 
animal biology.
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