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Abstract: Tactile sensation is a highly desired function in robotics. Furthermore, tactile sensor arrays
are crucial sensing elements in pulse diagnosis instruments. This paper presents the fabrication of an
integrated piezoresistive normal force sensor through surface micromachining. The force sensor is
transferred to a readout circuit chip via a temporary stiction effect handling process. The readout
circuit chip comprises two complementary metal-oxide semiconductor operational amplifiers, which
are redistributed to form an instrumentation amplifier. The sensor is released and temporarily
bonded to the substrate before the transfer process due to the stiction effect to avoid the damage and
movement of the diaphragm during subsequent flip-chip bonding. The released sensor is pulled
off from the substrate and transferred to the readout circuit chip after being bonded to the readout
circuit chip. The size of the transferred normal force sensor is 180 µm × 180 µm × 1.2 µm. The
maximum misalignment of the flip-chip bonding process is approximately 1.5 µm, and sensitivity
is 93.5 µV/µN/V. The routing of the piezoresistive Wheatstone bridge can be modified to develop
shear force sensors; consequently, this technique can be used to develop tactile sensors that can sense
both normal and shear forces.

Keywords: complementary metal-oxide semiconductor; MEMS; tactile sensor; stiction effect; tempo-
rary handling; stiction contact; Au–Si eutectic; flip-chip

1. Introduction

Tactile sensation is a highly desired function in the robotics industry [1–9]. Mak-
ihata [5] recently reported that the requirements for tactile sensors include large-area
sensing capability, which requires a large number of sensors, rapid response time, and
low cost.

Tactile sensor arrays are also crucial sensing elements in pulse diagnosis instru-
ments [10–13], which mimic traditional Chinese doctors and determine pulse signals to
assess the health of patients. The tactile sensors used for pulse taking must be organized in
a large dense array to cover the entire area around the radial arteries, with a sub-millimeter
resolution. The integration of sensors with readout circuits is a crucial technology required
for large-area, high-resolution sensing.

Extensive research has been conducted to integrate microelectromechanical systems
(MEMS) and readout circuits [14–19]. Monolithic integration features low-electronic para-
sitics, reduced chip pinout, and small size. However, the strict thermal budget and process
compatibility results in complex processes and performance tradeoff, which present various
problems. Hybrid integration [20–22], which enables MEMS and complementary metal-
oxide semiconductor (CMOS) devices to be optimized independently, is currently the most
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widely used approach for MEMS and CMOS integration, owing to its short development
time, low cost, flexible material selection, and simple fabrication process [23].

Singh et al. [22] proposed a transfer process that can achieve high-density integration
by transferring the released MEMS structures onto the readout circuit. Readout circuits can
be manufactured using a normal IC foundry and do not undergo etching for release, since
the MEMS structures are released before transfer. However, the released MEMS microstruc-
tures are movable during the transfer process and can be damaged by shear forces during
the bonding and transferring processes. Additionally, the movement of the released MEMS
structures decreases the alignment precision of the transferring processes. In a previous
study, we proposed a stiction effect temporary handling (SETH) process [24] to temporarily
bond the released MEMS structures to the substrates through a stiction effect, which enables
temporary handling during the transfer process and reduces alignment errors.

Herein, we present an integrated normal force (force in the z-axis) sensor for pulse
diagnosis instruments, wherein the piezoresistive normal force sensor and CMOS readout
circuit are integrated using the SETH process. The routing of the piezoresistive Wheatstone
bridge can be modified to develop a shear force sensor; consequently, this technique can be
used to develop tactile sensors that can sense both normal and shear forces.

2. Design and Fabrication
2.1. Design of the Integrated Normal Force Sensor

In this study, we primarily focused on normal force sensors, since only the force
perpendicular to the sensor surface must be measured for pulse taking. The integrated
normal force sensor was fabricated by transferring the released force sensor to a CMOS
readout circuit chip, as shown in Figure 1. The normal force sensor, which comprises
a diaphragm with piezoresistors installed, was fabricated and released through surface
micromachining. The diaphragm was suspended by four beams and temporarily attached
to the substrate through the stiction effect [25] of surface micromachining to ensure that the
normal force sensor did not move during the transfer process, as shown in Figure 1a. The
readout circuit chip comprises two CMOS operational amplifiers, which are redistributed
to form an instrumentation amplifier. Pads with amorphous silicon/Ti/Au layers on the
surface were fabricated on the chip to serve as anchors for the normal force sensor, as
shown in Figure 1b. The normal force sensor was then bonded to the readout circuit chip
via Au/Si eutectic bonding, as shown in Figure 1c. The diaphragm was transferred to the
readout circuit chip after pulling off from the substrate and breaking the suspension beams,
as shown in Figure 1d.

The normal force sensor was designed as the sensing element of the pulse diagnosis
instrument, which is used in traditional Chinese medicine. A square, flat diaphragm was
employed in the normal force sensor, as shown in Figure 2. The size of the low-stress SiNx
diaphragm was 180 µm × 180 µm × 1.2 µm. The polysilicon layer was heavily doped with
boron and patterned with piezoresistors and their interconnections. Cr/Pt/Au electrodes
were fabricated on top of the polysilicon layer for eutectic bonding and employed as
anchors for the diaphragm after transfer. The size of the diaphragm within the electrodes
was approximately 120 µm × 120 µm.

Next, the performance of the normal force sensor was simulated. Two piezoresistors
were placed perpendicular to the edge of the diaphragm, while two were placed parallel
to the edge. Figure 3 depicts the stresses on the piezoresistors, when 500 µN is loaded on
the center of the diaphragm. The force 500 µN is equivalent to 260 mmHg pressure on
a 120 µm × 120 µm diaphragm, which is slightly higher than the normal blood pressure.
The sensitivity of the normal force sensor was calculated to be 34 µV/µN/V, when the
longitudinal and transverse gauge factors of boron-doped polysilicon in [26] were used. The
normal force sensor is designed to measure pulse signals, whose frequencies are typically
lower than 3 Hz. Because the resonant frequency of the sensor is simulated to be as large as
1.11 MHz, as shown in Figure 4, the sensitivities of pulse signals can be considered equal to
the DC sensitivity.
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Figure 1. Design process flow of the integrated normal force sensor using stiction effect temporary
handling (SETH). (a) Normal force sensor is fabricated and temporarily attached to the substrate
through the stiction effect; (b) readout circuit chip is redistributed, and the pads for eutectic bonding
are fabricated; (c) normal force sensor is bonded to the readout circuit chip; (d) diaphragm is
transferred to the readout circuit chip after being pulled off from the substrate and broken from the
suspension beams.

Figure 2. Schematic of the diaphragm of the normal force sensor.
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Figure 3. COMSOL simulation results for the normal force sensor. (a) Txx along the piezoresistor
perpendicular to the edge; (b) Tyy along the piezoresistor parallel to the edge.
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The diaphragm was attached to the substrate after release to improve the alignment
precision of flip-chip bonding. The temporary bonding strength produced due to stiction
must be lower than the bonding strength of the flip-chip to ensure that the normal force
sensor can be successfully transferred to the readout circuit chip. Bumps were fabricated
under the electrode to decrease the stiction area, as shown in Figure 1a. The total area of
the bump surface was designed to be 2869 µm2, which was much lower than the area of
the electrodes (9792 µm2). The normal force sensors can be successfully transferred, even if
the temporary bonding strength is equal to the eutectic bonding strength.

To demonstrate integration capability, the normal force sensors were transferred to
the CMOS readout circuit chips. The output of the piezoresistive Wheatstone bridge must
be amplified using instrumentation amplifiers. Because non-diced wafers of commercial
instrumentation amplifiers were unavailable, LMV358 wafers (Yangzhou Genesis Micro-
electronics Co., Ltd., Yangzhou, China) were employed in our experiments, owing to ease
of accessibility. Two LMV358 amplifiers, considered the CMOS version of the LM358 opera-
tional amplifier, were redistributed as 2-op amp instrumentation amplifiers [27], as shown
in Figure 5. Amplification was determined using external resistors R1–R4, which presented
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resistances of 36, 9.1, 9.1, and 36 kΩ, respectively; the amplification was calculated to be
4.96 using the following equation:

Vo =

(
Vin2 − Vin1

(
1 +

R4

R3

)
(1)

where Vin1 and Vin2 are the outputs of the Wheatstone bridge. The 3 dB bandwidth
exceeded 100 kHz.

Figure 5. LMV358 is redistributed to serve as a 2-op amp instrumentation amplifier.

2.2. Fabrication

A normal force sensor was fabricated using surface micromachining processes
as follows:

(a) A 450 nm thick SiO2 layer was thermally grown to passivate the substrate. Then,
a layer of 800 nm thick low-stress polysilicon was deposited as the sacrificial layer
by LPCVD. The polysilicon was subsequently patterned and selectively etched to
define the shape of the bumps. Another 200 nm thick layer of low-stress polysilicon
was deposited by LPCVD to define the distance between the bumps and substrate.
Thereafter, the polysilicon layer was patterned and selectively etched to define the
shape of the anchors.

(b) A 1 µm thick silicon-rich SiNx layer [28] was deposited by LPCVD to serve as
the mechanical layer, tuned to reach a low-residual tensile stress of approximately
50 MPa [29,30]. A 300 nm thick LPCVD polysilicon layer was deposited and heavily
doped by boron implantation, followed by patterning and selective etching to form
the piezoresisitors. Next, a low-stress SiNx layer of 200 nm thickness was deposited
to protect the piezoresisitors.

(c) A composite metal layer of Cr/Pt/Au was sputtered and patterned on the piezore-
sisitors once the contact windows of the piezoresisitors were etched using the RIE
technique. The thicknesses of Cr, Pt, and Au were 50, 100, and 300 nm, respectively.
The Pt layer of Cr/Pt/Au prevents the Au–Si alloy formed by the subsequent Au–Si
eutectic flip-chip bonding process from penetrating the metal pads.

(d) The SiNx layer was patterned and selectively etched to form the diaphragm of the
tactile sensor and temporarily supported anchors in the silicon nitride diaphragm.

(e) The XeF2 etching technique was employed to remove the polysilicon sacrificial layer.
The released device was subsequently placed in DI water for 24 h and dried at 25 ◦C
for another 24 h to bond the stiction-contact structures temporarily to the substrate
using the stiction effect.

Figure 6 illustrates the redistribution flow of the readout circuit chip, as
described below:

(a) The composite layers of SiO2/SiNx/SiO2 were deposited by PECVD to serve as
insulating layers for redistribution. The thickness of each layer was 200 nm. A layer
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of amorphous silicon of 1 µm thickness was deposited and patterned for subsequent
Au–Si eutectic bonding, as shown in Figure 6a.

(b) The contact holes were patterned on the insulating layer and the composite metal
layers of Ti/Au were sputtered and patterned to redistribute the operational amplifiers
to serve as instrumentation amplifiers, as shown in Figure 6b. The Ti layer was used
to decompose native oxide on the surface of amorphous silicon during subsequent
Au–Si eutectic bonding [31]. The thicknesses of the Ti and Au layers were 50 and
400 nm, respectively.

Figure 6. Redistribution flow of the readout circuit chip. (a) After composite layers of SiO2/SiNx/SiO2

were deposited by PECVD to serve as insulating layers for redistribution, a layer of amorphous
silicon was deposited and patterned for subsequent Au–Si eutectic bonding; (b) the contact holes
were patterned on the insulating layer, and composite metal layers of Ti/Au were sputtered and
patterned for redistributing the operational amplifiers to serve as the instrumentation amplifiers.

The released normal force sensor was transferred to the readout circuit chip by flip-chip
bonding as follows:

(a) The released normal force sensor was bonded to the readout circuit chip using a
flip-chip bonder (FinePlacer Lambda, Fintech, Germany), and the temperature, force,
and time required for this process were 380 ◦C, 20 N, and 300 s, respectively.

(b) The released normal force sensor was subsequently pulled off from the substrate
and broken from the suspension beams by applying a pulling force perpendicular
to the bonded device. Because the normal force sensors were released before the
transfer process, the readout circuit chips did not undergo release etching. This
process demonstrates good CMOS compatibility.

3. Results and Discussion

Figure 7a illustrates the released normal force sensor. The interference fingers in the
diaphragm and supporting fingers indicated that these structures were temporarily bonded
to the substrate due to the stiction effect. The stiction strength during the stiction process
was estimated using the longest unattached cantilever to be higher than 7.06 kPa and lower
than 22.31 kPa, as shown in Figure 7b.

Figure 8 depicts the integrated normal force sensor, the size of which is approximately
equal to those of LMV358, 1070 µm × 640 µm × 525 µm. The maximum alignment error of
eutectic bonding was measured to be approximately 1.5 µm, sufficient for the proposed
integration process. A Dage Series 4000 bond tester (Nordson DAGE, UK) was used to
test the shear strength of Au–Si eutectic bonding. The shear strength of the bonded test
structure was approximately 30.74 MPa. The serial resistance of the Au–Si eutectic bonding
area is lower than 2 Ω [32], which is much lower than that of polysilicon piezoresistors and
can be neglected.

The stress in the transferred normal force sensor caused by the Au–Si eutectic flip-chip
bonding process was estimated by comparing the output voltages of the Wheatstone bridge
before and after the transfer. The change in the output voltage was in the range of −7.76 to
+7.25 mV. Therefore, the stress produced by the Au–Si eutectic flip-chip bonding process
was calculated to be in the range of −9.95 MPa to +9.30 MPa, which can be neglected.
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Figure 7. Optical images of released structures; (a) diaphragm supported by four beams; (b) cantilever
array. Cantilevers longer than 80 µm are colorful due to the interference patterns of uneven gaps,
while those shorter than 60 µm exhibit uniform color, which indicates that all cantilevers longer than
80 µm adhered to the substrate. Stiction strength is estimated using the longest unstuck cantilever
and shortest stuck cantilever.

Figure 8. (a) Scanning electron micrographs of the integrated normal force sensor; (b) close-up view
of the transferred diaphragm.

The integrated normal force sensor was measured using a set of homemade copper
wire weights [24]. The source voltage of the Wheatstone bridge was set to 5 V using
Agilent E3631A (Agilent, Santa Clara, CA, USA), and the corresponding output voltage of
the instrumentation amplifier was recorded using Agilent 34401A (Agilent, USA), when
different masses of the beam-shaped copper wire weights were placed on the diaphragm
of the transferred normal force sensor under the microscope; Figure 9 presents the mea-
surement results. The sensitivity was calculated to be 93.5 µV/µN/V. The sensitivity of the
piezoresistive Wheatstone bridge was calculated to be 18.8 µV/µN/V at an amplification of
4.96. Nonlinearity was approximately 4%, which was quite large and mainly caused by the
uncertainty of the point-of-force application. Five sensors were measured. The deviation of
sensitivity was less than 20%. System noise was measured at approximately 200 µV.
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Figure 9. Measurement results of the integrated normal force sensor. Sensitivity was calculated to be
93.5 µV/µN/V.

Shear force sensors can also be developed with flat diaphragms [33] by modifying
piezoresistive Wheatstone bridge routing. When shear force in the x direction is applied on
the center of the diaphragm, the left side of the diaphragm moves down while the right
side moves up, as shown in Figure 10a. The stress of piezoresistor R1 in Figure 10b is
tensile, while that of R3 is compressive. When the piezoresistors are connected, as in the
Wheatstone bridge in Figure 10c, the output is sensitive to shear force and insensitive to
normal force. The bumps in the center of the diaphragm can be used as a mesa to improve
shear force sensitivity.

Figure 10. Shear force sensors developed by modifying routing of piezoresistive Wheatstone bridges.
(a) When shear force in the x direction is applied on the center of the diaphragm, the left side
of the diaphragm moves down while the right side moves up. (b) Released shear force sensor.
(c) Wheatstone bridge of the shear force sensor.

4. Conclusions

Although the integration of sensors with readout circuits is a crucial technology
required for large-area, high-resolution tactile sensing, to date, few integrated tactile
sensors have been identified, owing to strict thermal budgets and process compatibility.
Tactile sensors are typically integrated with the readout circuit in system levels [1–13]. In
this study, an integrated piezoresistive normal force sensor was presented. The surface
micromachined normal force sensor was transferred to the readout circuit chip, with a
temporary stiction effect handling process.
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The piezoresistive normal force sensor was manufactured using surface micromachin-
ing. The readout circuit chip comprised two CMOS operational amplifiers, which were
redistributed to form an instrumentation amplifier. The SETH process was used to transfer
the released sensor to the readout circuit chip. Because the MEMS structure and readout
circuits were manufactured separately, they were optimized independently. Because the
MEMS structures were released before transfer, readout circuits did not undergo etching
for release and could be manufactured using a normal IC foundry. These processes feature
excellent compatibility with IC chips.

The normal force sensor was designed for pulse diagnosis instruments. The size
of the transferred normal force sensor was 180 µm × 180 µm × 1.2 µm. The maximum
misalignment in the flip-chip bonding process was approximately 1.5 µm. The sensitivity
was measured to be 93.5 µV/µN/V. The routing of the piezoresistive Wheatstone bridge
can be modified to develop shear force sensors; hence, this technique can be used to develop
tactile sensors, capable of sensing both normal and shear forces.

The size of the integrated normal force sensors is approximately equal to those of the
readout circuit chips, because the sensors are significantly smaller and sit on top of the
readout circuit chips. In our experiments, the wafers of a very-old-version operational
amplifier (LMV358) were employed to verify the technology, owing to ease of accessibility.
The LMV358 chip size is approximately 1070 µm × 640 µm × 525 µm, and of approximately
0.5 µm minimum line width. Hence, extremely compact sensors can be developed with
modern instrumentational amplifiers.
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