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Agricultural systems are increasingly managed for improving soil carbon (C) accumulation. 
However, there are limits to C returns in agricultural systems that constrain soil C 
accumulation capacity. Increasing the efficiency of how soil microbes process C is gaining 
interest as an important management strategy for increasing soil C and is a key feature 
of soil C dynamics in many new microbial-explicit models. A higher microbial C use 
efficiency (CUE) may increase C storage while reducing C system losses and is a 
fundamental trait affecting community assembly dynamics and nutrient cycling. However, 
the numerous ecological unknowns influencing CUE limit our ability to effectively manage 
CUE in agricultural soils for greater soil C storage. In this perspective, we consider three 
complex drivers of agroecosystem CUE that need to be resolved to develop effective C 
sequestration management practices in the future: (1) the environment as an individual 
trait moderator versus a filter, (2) microbial community competitive and faciliatory 
interactions, and (3) spatiotemporal dynamics through the soil profile and across the 
microbial lifecycle. We highlight ways that amendments, crop rotations, and tillage practices 
might affect microbial CUE conditions and the variable outcomes of these practices. 
We argue that to resolve some of the unknowns of CUE dynamics, we need to include 
more mechanistic, trait-based approaches that capitalize on advanced methods and 
innovative field research designs within an agroecosystem-specific context. By identifying 
the management-level determinants of CUE expression, we will be better positioned to 
optimize CUE to increase soil C storage in agricultural systems.
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INTRODUCTION

Annual agricultural ecosystems often deplete soil carbon (C) and release more reactive nitrogen (N) 
into the water and atmosphere than unmanaged, perennial ecosystems. Yet, we  also rely on 
these ecosystems for global food security and they represent the largest stock of soil C we  can 
directly manage to mitigate climate change. Can we  resolve this dichotomy, creating a win-win 
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scenario whereby agroecosystems remain productive while 
contributing to climate change mitigation? To address this 
grand challenge, agroecosystem soil biology is increasingly 
being managed to better regulate soil C and nutrient cycling 
(Wallenstein, 2017). Many approaches focus on soil C 
regeneration through increased residue returns and biomass 
production (cover crops) and decreasing C losses via reduced 
disturbance (no-till). The outcomes of these approaches do 
not always produce net C gains, and soil C accumulation is 
not always a linear function of inputs, in part because there 
are important and overlooked factors regulating the balance 
between inputs and outputs. One key determinant of this 
balance is the internal soil C cycling regulated by microbial 
C use efficiency (CUE), the proportion of C substrate microbes 
assimilate into new biosynthetic material relative to C lost out 
of the system as CO2. Microbial CUE directly affects the portion 
of C produced by net primary productivity (NPP) that becomes 
soil organic C, but we  remain unable to predict its response 
to different combinations of agricultural practices.

Microbial CUE principles are emerging from laboratory 
evidence, conceptual and quantitative models, and, to some 
degree, field-based experiments (Cotrufo et al., 2013; Abramoff  
et al., 2018; Malik et  al., 2018). Yet, the practicality of this 
knowledge for successfully implementing agricultural C 
sequestration requires addressing uncertainties in how CUE 
is manifested within an agroecosystem context. In this perspective, 
we  highlight where our knowledge remains underdeveloped, 
lacking the intricacies of microbial community abiotic, biotic, 
and spatiotemporal interactions that might be central to accurately 
predicting management outcomes on CUE. We  consider these 
uncertainties vis-à-vis potential management scenarios that may 
optimize CUE in agroecosystems. There are many methodological 
challenges and a lack of a commonly accepted CUE definition 
that have been recently addressed (e.g., Sinsabaugh et al., 2013; 
Geyer et  al., 2016, 2019), but here we  focus on the broader 
influences of land management on CUE that continue to 
challenge C sequestration management in agroecosystems. If 
these challenges can be  resolved, we  may be  able to enhance 
CUE through agroecosystem management tools, and thus 
increase the efficiency of soil C processes.

C USE EFFICIENCY AS A CORE TRAIT 
TO ACHIEVING SUSTAINABLE 
AGRICULTURE

Because harvesting limits the proportion of NPP-derived C 
that is returned to agricultural soils, increasing the efficiency 
of how microbes process C inputs is a critical approach for 
enhancing soil C storage. Recognizing this, many theoretical 
and process-based soil C models now represent CUE as a 
central regulator of soil C storage and decomposition dynamics 
(Cotrufo et  al., 2013; Wieder et  al., 2015; Abramoff et  al., 
2018). The influence of CUE on soil services is not just limited 
to soil C dynamics. Essentially a biosynthesis/uptake ratio, 
CUE determines microbial fitness and assembly (Shade et  al., 
2012; Wallenstein and Hall, 2012), crucial factors when 

considering agricultural practices intended to shift the soil 
microbiome (e.g., through microbial inoculums). Since CUE 
can be  coupled to microbial cellular nutrient use efficiency 
(NUE), it may also influence soil N cycling as microbes adjust 
their CUE and NUE accordingly to maintain stoichiometric 
balances, affecting nutrient turnover and plant available N 
(Mooshammer et  al., 2014).

Given the recognized importance of CUE, we  present three 
themes we believe require deeper exploration to more effectively 
and predictably manage for optimal CUE in agroecosystems 
for increased soil C accumulation: (1) the environment as a 
trait moderator versus a filter, (2) biotic interactions, and  
(3) spatiotemporal dynamics.

EXAMINING THE COMPLEXITIES OF C 
USE EFFICIENCY IN AGROECOSYSTEMS

The Environment As a Trait Moderator 
Versus Filter
Microbes are increasingly being grouped by their functional 
traits, any measurable heritable feature – including CUE – of 
an individual microbe, often affecting their fitness and 
performance (Krause et al., 2014). The interplay of the abiotic 
and biotic environment both filters and modifies how these 
traits emerge. Agricultural soil management (e.g., fertilization 
regime) can act as an environmental filter, determining the 
abundance of individual microbial taxa that collectively 
contribute to community-level CUE. For instance, long-term 
mineral fertilization can filter out some phyla such as 
Acidobacteria while selecting for a greater abundance of 
Betaproteobacteria (Ramirez et al., 2010; Francioli et al., 2016). 
But CUE is not determined by microbiome composition 
alone. Environmental changes can modify the existing 
community’s CUE through microbial trait plasticity. For 
example, stresses such as drought can increase maintenance 
energy requirements, thus lowering CUE (Schimel et  al., 
2007). As each individual approaches the edge of its trait 
window under changing conditions, competition from other 
taxa looms. The resultant community shift introduces new 
CUE limits to the system (Figure 1A). CUE is therefore an 
expression of microbial responses to the surrounding 
environment, and also the inherent physiological traits of 
the individuals of the community selected for by the 
environment (Allison, 2014).

One common way agricultural practices modify the soil 
environment is through altering microbial resource availability. 
Low C:N inputs like manure theoretically result in a higher 
organismal CUE (Sinsabaugh et  al., 2013). Consequently, it 
has recently been proposed that agricultural practices providing 
high-quality inputs (e.g., low C:N) facilitate a higher CUE 
and, in turn, soil C accumulation via greater microbial biomass 
production (Cotrufo et al., 2013; Kallenbach et al., 2015; Wood 
and Bradford, 2018). However, several deviations to this principle 
have been observed, where higher C:N substrates or less 
bioavailable C corresponds to a relatively greater CUE (e.g., 
Lipson et al., 2009; Keiblinger et al., 2010; Creamer et al., 2015; 
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Bölscher et al., 2016; Kallenbach et al., 2016; Bonner et al., 2018; 
Takriti et  al., 2018). These observations could be  explained by 
trait filtering, whereby a resource-poor environment selects 
for a greater abundance of efficient microbes, overriding the 
direct control of resource on individual CUE.

While field-based evidence remains thin (cf. Lipson, 2015), 
many classical microbiology culturing and chemostat experiments 
show wide variability in inherent microbial CUE limits (Geyer 
et  al., 2016). These limits are often used to define life-history 
traits where, for example, microbes with a higher upper CUE 
limit are characterized as slower growing and dominate in 
resource-limited, oligotrophic environments (Roller and Schmidt, 
2015). Populations thriving in more resource-rich environments 
are often described as having a relatively lower maximum CUE 
and sometimes higher cellular N requirements (Keiblinger et al., 
2010). Thus, any shift in community composition toward or 
away from populations with intrinsically different CUE could 
alter how community-level CUE is manifested (Figure 1A). 
Scenarios where resource inputs promote trait filtering may 
thus explain the observed variation in CUE response to resource 
quality. High-quality resource inputs may improve individual 
CUE (trait modification) but could also over-select for populations 
with inherently lower CUE limits, lowering community-level 
CUE (Figure 1B). This potential shift between resources 
promoting individual versus community CUE needs to be 
considered when interpreting new conceptual and quantitative 
models that link resource inputs to CUE and C accumulation 
(e.g., Cotrufo et al., 2013; Campbell et al., 2016). The challenge 
in targeting an optimal community-level CUE by altering 

resource availability is to better understand the threshold where 
the environment shifts from acting as an individual trait 
moderator to a community filter.

A diversity of inputs representing a wide range of C and 
nutrient availability and chemistry might facilitate a balance 
between individual and community-level CUE optimization 
(Figure 1B). Practices such as diversifying crop rotations or 
mixing legume cover crop biomass with corn or wheat residues 
could provide resources that promote species with different 
life histories to coexist. Each member can thereby approach 
its individual maximum CUE potential (Figure 1B). Thus, 
community CUE might be  maximized just before a threshold 
in community shift occurs, where a diversity of inputs provides 
resources for each member to realize their optimum CUE 
without shifting toward an overabundance of inefficient microbes.

Biotic Interactions
Microbial Competition
Biotic interactions directly alter how and when fitness traits 
are expressed. It is thus reasonable to assume that such 
interactions will modulate individual and community CUE 
(Frey et  al., 2001; Buchkowski et  al., 2017). In soils, many 
different competition relationships with varying strength likely 
occur over space and time, yet the consequences for CUE 
are relatively unexplored. In one of the few studies to directly 
test this, fungal competition increased CUE but only under 
indirect competition, when no single species was universally 
weak, while direct competition decreased CUE (Maynard et al., 
2017). The greater the system heterogeneity, the more likely 

A B

FIGURE 1 | Trait moderating and trait filtering across a changing environment. Environmental change influences CUE by (1) modifying the existing community 
(trait modification) and/or (2) by selecting for a new community with different life histories (trait filtering). The community CUE response depends on whether trait 
moderating or filtering occurs [Panel (A)]. As an example, high-quality (1/C:N) inputs such as poultry manure may increase the intrinsic CUE of all community 
members (trait moderating) but may also shift the community toward one dominated by inefficient members (Species B) (trait filtering) [Panel (B)]. At the other end of 
the resource quality spectrum, applications of high C:N  resources such as corn stover might shift the community toward more efficient microbes (Species A). Yet 
this community may still be C or N limited and thus have a lower CUE relative to its maximum potential. A community-level CUE “sweet spot” may exist in the middle 
that enhances the efficiency of all members without over-selecting for inefficient microbes or creating resource limitations.
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indirect competition will occur (Allesina and Levine, 2011). 
If CUE is positively related to indirect competition, as opposed 
to direct competition favored in more homogenous 
environments, greater soil heterogeneity may foster a higher 
CUE. More structured heterogenous environments also 
theoretically favor k-strategists outcompeting R-strategists, 
characterized by a relatively lower CUE (Pfeiffer et  al., 2001). 
The CUE response to competition could thus depend on 
which competitive behavior dominates in the soil and who 
wins. But are agroecosystems tractable enough to feasibly 
manage the nuances of microbial competition for distinct 
CUE outcomes?

As soils are already heterogenous systems, efforts to manipulate 
competition dynamics for optimal CUE might be most effective 
in agroecosystems that are relatively limited in their inherent 
heterogeneity (e.g., young soil, 1:1 minerals, high sand content). 
In such cases, the above competitive dynamics expected to 
favor a higher CUE might not be  well supported. Practices 
such as tillage reduction could create a more heterogenous 
environment with potentially positive effects on CUE via 
improved aggregation, increased pore size diversity, and by 
altering distribution of “hot spots.” Further, leaving more 
residues on the soil surface creates distinct resource zones 
through the soil profile (Williams et  al., 2016). Chemical 
diversity also enhances soil heterogeneity (Nunan, 2017). 
Diversification of inputs or inputs with a diversity of unique 
chemical compounds may similarly promote indirect over direct 
competition or favor k-strategist decomposers, with potentially 
positive outcomes for CUE.

Microbial Facilitation
Microbes can enhance one another’s fitness through faciliatory 
interactions such as cross-feeding – for example, when one 
population alters a resource making it more bioavailable for 
another population (McIntire and Fajardo, 2014). Microbial 
facilitations can increase the spatial extent of a realized niche 
and generate new metabolic niches, valuable where resources 
would otherwise be limiting (Bruno et al., 2003). For example, 
at later decomposition stages, most bioavailable residue C 
is exhausted but accumulated microbial biomass may allow 
late-stage decomposers to maintain a relatively high CUE if 
that labile microbial biomass turns over (Kaiser et  al., 2014). 
Assumptions that CUE declines with decomposition time 
might not necessarily be  accurate when considering the  
range of faciliatory interactions that occur during  
community succession and the by-products left behind by 
preceding communities.

For facilitation to occur, microbes also need to occupy a 
similar space to access and benefit from newly generated 
resources, requiring close microbial interactions (Folse and 
Allison, 2012). More interactive microbial networks are thought 
to improve ecosystem function and potentially CUE (de Vries 
and Wallenstein, 2017; Morriën et  al., 2017). In much of the 
soil though, microbial abundances are low, access to resources 
are limited, and metabolism is highly constrained. Practices 
that increase the amount and diversity of inputs into the 
resource-limited bulk soil may enhance both microbial 

abundances and niches that facilitate closer networks and 
cooperation. For example, instead of surface compost applications, 
incorporating compost into the soil could promote a microbial 
habitat analogous to the rhizosphere where more faciliatory 
interactions are likely to occur (Wallenstein, 2017).

Microbial connectivity can also be  influenced through other 
management approaches. The rhizosphere area can be expanded 
through diverse cropping systems with distinct rooting depths 
and architecture that minimize the bulk soil space where 
faciliatory interactions may be  limited and CUE depressed. 
Integrated livestock systems can also affect the spatial and 
temporal distribution of root C, though grazing effects on 
root dynamics vary considerably with grazing management 
system (Piñeiro et  al., 2009). Enhancing the movement of 
dissolved organic C and water into the bulk soil, by altering 
wetting (via irrigation), redox, and rooting patterns could 
further stimulate greater microbial connectivity and cooperation 
by increasing resource availability and microbial movement in 
water films (Manzoni et  al., 2014).

Microbial community interactions are varied, and we  do 
not yet know which types of interactions (e.g., competition 
versus facilitation) might support higher community CUE, 
let  alone how to target desired biotic interactions through 
agricultural practices. In reality, biotic interactions might 
be  sparse given that microbes occupy a small portion of the 
total soil surface area and have limited movement (Nunan, 
2017). In the bulk soil, environmental controls may be  the 
dominant influence on CUE, with biotic controls stronger in 
the rhizosphere or where connectivity is greater (Sokol et  al., 
2019). The needs for evaluating biotic effects on CUE are first 
to determine where and when biotic controls override abiotic 
factors, which and when a specific biotic interaction increases 
CUE and over what time period, and ultimately if we  can 
effectively facilitate these biotic interactions through management.

Spatiotemporal Dynamics
C Use Efficiency Through the Soil Profile
Isolating management efforts to the crop rooting zone may 
result in soil C trade-offs at deeper soil depths, affecting total 
soil C sequestration. If we  target management practices that 
enhance CUE at the soil surface, we  may inadvertently reduce 
CUE at deeper depths. The environment becomes increasingly 
harsh for microbes with increasing soil profile depth that likely 
favors more efficient oligotrophs. However, even with an 
intrinsically higher CUE, oligotrophs might not be  functioning 
at their optimum CUE, or may even be  dormant, given high 
resource constraints deeper in the soil.

Reducing tillage and maintaining crop residues on the 
soil surface might intensify these conditions, further 
constraining the oligotrophic population’s CUE. Rather, 
increasing organic materials deeper in the soil profile with 
tillage could enhance the fitness and CUE of the microbial 
community at depth. Indeed, van Groenigen et  al. (2013) 
have shown declines in CUE with depth under reduced tillage 
wheat systems but CUE increases with depth under 
conventional tillage. Introducing perennials into cropping 
systems or managing livestock grazing to facilitate greater 
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rooting depths will also increase organic inputs at depth. 
In a pasture-based system, Spohn et  al. (2016) show no 
effect of depth on CUE, perhaps due to a large belowground 
investment and subsequently reduced oligotrophic zone. While 
there are multiple benefits to reducing tillage, some data 
suggest that reduced tillage does not consistently increase 
total C stock but rather results in more C concentrated near 
the soil surface (Powlson et  al., 2014). Perhaps declines in 
CUE with depth are greater under no-till systems and explain 
why we  do not always observe overall increases in soil C. 
We  do not argue for increasing tillage but believe that 
understanding tillage effects on the final fate of crop residues 
may involve underappreciated, complex microbial mechanisms 
and that tillage may have benefits to improving CUE at 
greater soil depths.

Still, optimizing CUE through more of the soil profile may 
have its trade-offs. For instance, priming of existing soil organic 
matter at depth may occur in tandem with increasing CUE 
(Fontaine et  al., 2007). Currently, there is limited information 
describing CUE with depth and thus several outcomes can 
be  considered. For policy makers, climate change forecasters, 
and soil extension agents, this is an unproductive position to 
be  in. To help define systems that increase soil C stocks and 
do not simply redistribute it, we  need to invest more efforts 
into understanding management effects on CUE beyond the 
crop rooting zone and their potential trade-offs.

C Use Efficiency Temporal Variability
The fate of C assimilated into microbial biomass depends 
on the soil stabilization capacity (e.g., texture and mineralogy), 
but also changes over time, as CUE likely fluctuates with 
temporal environmental changes. The C used for biosynthetic 
microbial materials may not necessarily remain within a cell, 
as it can be  later exploited for catabolic processes during 
times of resource limitations (Joergensen and Wichern, 2018). 
Agroecosystems oscillate between periods of high and low 
resource availability and microbes are most often C limited, 
especially during the nongrowing seasons. As such, soil 
microbes spend much of their time in a state of dormancy, 
slow growth, or in feast-to-famine cycles. Though energy is 
conserved during dormancy, significant energetic costs occur 
during transition into and out of dormancy (Lennon and 
Jones, 2011). During dormancy, biomass production halts 
and C previously stored in biosynthesized materials can 
be recycled or spent during maintenance metabolism (Kempes 
et  al., 2017). Accordingly, with shorter dormancy periods, 
relatively more new biomass can be produced and reductions 
in endogenous metabolism may occur. Moreover, dormancy 
may delay microbial biomass turnover, reducing the production 
rate of dead microbial cells. This, however, represents  
another area of uncertainty. While it is reasonable to predict 
that dead microbial cells are more likely to stabilize on 
minerals than living cells, more research is needed to 
understand the relationships between CUE and microbial 
biomass turnover that can significantly influence both the 
short- and long-term rates of microbial C accumulation 
(Hagerty et  al., 2014).

Including cover crops, managing compost inputs as multiple 
split applications, or integrating perennial crops into rotations 
could moderate off-season C limitations, reducing the time 
microbes are dormant (Figure 2). Steep declines in CUE 
associated with resource exhaustion may also be  reduced by 
extending the length of time crop residues and other organic 
inputs persist in the soil (Figure 2). Maintaining a relatively 
lower CUE but a longer period of metabolic activity, may 
result in more microbial-derived C accumulation than managing 
for a higher CUE for a shorter time (Figure 2). A more 
active community for a longer time period evokes the soil C 
dilemma – “should we  hoard it or use it” (Janzen, 2006) – 
and reminds us that many agroecosystems are ultimately 

A

B

FIGURE 2 | Theoretical temporal dynamics of CUE under different resource 
inputs and timing. Single additions (arrows) of high-quality (low C:N) inputs 
early in the season result in a higher initial CUE but faster decomposition rate 
[Panel (A)]. Without replenishment, the microbial community will experience C 
limitations more quickly, reducing CUE, biomass production, and increasing 
biomass recycling [Panels (A,B)]. Such a decline in off-season microbial 
biomass production counteracts the benefits of a relatively higher early-
season CUE associated with higher quality residues. This potentially reduces 
the overall annual amount of C inputs ending up as microbial stable C. 
Alternatively, a lower quality input results in a lower initial CUE but continues 
to provide a C source longer due to slower decomposition. Thus, annual 
cumulative CUE and biomass production may be relatively greater with lower 
quality inputs [Panels (A,B)]. Perennial or cover crop systems (repeated 
inputs) provide a more constant resource, effectively alleviating C limitations 
throughout the year, allowing microbes to delay metabolic dormancy and 
maintain a relatively higher CUE.
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constrained by low C inputs relative to their natural counterparts. 
However, here, under higher C:N inputs, the microbial 
community is active longer but presumably growing slower 
(Figure 2). Consequently, the same quantity of added C may 
still last longer compared to a community that becomes dormant 
earlier after rapidly metabolizing the same quantity of added 
C (Figure 2). Moreover, a higher CUE does not necessarily 
translate to more C transferred to microbial biomass. A relative 
increase in CUE can occur with lower gross C uptake coinciding 
with lower respiration rates but no change to biomass production. 
In considering soil C accumulation via microbial inputs, such 
a scenario would have no meaningful benefit. Thus, it is 
important to not only understand CUE in terms of the amount 
of C being processed but also the rate, and finally the fate 
of assimilated C over time.

MOVING FORWARD

Basic Science and Trait-Based Research 
for Agroecosystems
Microbial CUE has system-wide effects on agricultural 
sustainability, yet how CUE is manifested within an agroecosystem 
context is idiosyncratic given the numerous interactions that 
arise between the environment, the individual microbe, microbial 
community membership, and management changes. We  can 
begin to unravel the complexity and challenges of predicting 
management controls on CUE by directing efforts toward more 
basic research in soil agroecosystems. Agricultural experiments 
designed to address more fundamental ecological questions 
could isolate leverage points to manipulate for desired 
agroecosystem services (Fierer et  al., 2009). Moreover, such 
experiments would identify trends and principles useful for 
predicting system responses (e.g., CUE) to disturbances such 
as tillage and drought.

One path to advance fundamental ecological concepts in 
agroecosystems is to apply a trait-based approach. Already 
recommended in multiple microbial models (Allison, 2012; 
Wieder et al., 2015; Treseder et al., 2018), a trait-based framework 
has had slow adoption in agricultural ecosystems which arguably 
stand to benefit the most given the high degree of human-
induced variability and malleability for ecosystem services. 
Understanding the underpinnings and dynamics of microbial 
traits could be an effective way forward in shaping our principles 
of agroecosystem soil C and N cycling (Krause et  al., 2014). 
More so than community composition and perhaps even function, 
microbial traits such as stress tolerance, growth rate, dormancy, 
and CUE can improve predictions of microbial performance 
in response to management shifts and affect outcomes of 
community assembly and competition (crucial for pest 
management and microbial inoculant applications) (Wallenstein 
and Hall, 2012; Fontana et  al., 2018). A framework focused 
on linkages between management and microbial traits will allow 
us to better describe, predict, and manage the relationships 
among critical soil services, the microbes that drive them, and 
the environment under which they are manifested.

Innovation and Creativity
Advanced analytical approaches such as network analysis, 
stable isotope probing (SIP), flow cytometry, and nanoSIMS 
are already being applied to better link biogeochemistry and 
the environment with microbial traits, spatial organization, 
and ecology (Stiehl-Braun et  al., 2011; Behrens et  al., 2012; 
Starr et al., 2018). Recent studies using DNA-SIPs and “omics” 
approaches have, for example, linked plant exudation and 
microbial C uptake traits to microbial community assembly 
dynamics (Zhalnina et  al., 2018) and demonstrated bacterial 
faciliatory interactions important for taxon-specific soil C 
transformations (Pepe-Ranney et  al., 2016). Increasing the 
intellectual investment and training in these methods, especially 
within an agricultural context, is an obvious requirement 
moving forward. Less obvious is the need for these techniques 
in combination with creative field experiments intended to 
test mechanistic hypotheses, in addition to purely monitoring 
management outcomes (Fierer et  al., 2009). For example, 
soil transplant experiments have provided valuable insight 
on microbial stability and decomposition dynamics (Waldrop 
and Firestone, 2006; Liang et  al., 2015), but are rare and 
could help inform the boundary between abiotic and  
biotic controls on CUE. Similarly, we  need to emphasize 
capturing spatial and temporal resolution to gain a more 
systems-based perspective of how microbes are interacting 
with each other and the environment (Gonzalez et  al., 2012; 
Schipanski et  al., 2014).

Given that principles (and methods) around CUE remain 
undeveloped and poorly tested, directing soil management 
outcomes based on CUE assumptions should be  done with 
caution. The reality is that the current state of knowledge is 
too limited to accurately predict CUE responses in the field. 
As we  move forward, recommendations to improve soil C 
sequestration and effectively engineer rhizosphere microbiota 
and enhance nutrient efficiency will require increased efforts in 
understanding fundamental soil-microbial processes within an 
agroecosystem context, emphasize a trait-based approach, and 
increase the use of advanced methods and innovative field 
research designs. By resolving CUE unknowns associated with 
abiotic and biotic forces and temporal and spatial dynamics, 
we  will be  better positioned to predict management outcomes 
for CUE and thus more reliable practices to increase soil C storage.
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