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A B S T R A C T   

Scientific evidence shows that acoustic analysis could be an indicator for diagnosing COVID-19. From analyzing 
recorded breath sounds on smartphones, it is discovered that patients with COVID-19 have different patterns in 
both the time domain and frequency domain. These patterns are used in this paper to diagnose the infection of 
COVID-19. Statistics of the sound signals, analysis in the frequency domain, and Mel-Frequency Cepstral Co-
efficients (MFCCs) are then calculated and applied in two classifiers, k-Nearest Neighbors (kNN) and Convolu-
tional Neural Network (CNN), to diagnose whether a user is contracted with COVID-19 or not. Test results show 
that, amazingly, an accuracy of over 97% could be achieved with a CNN classifier and more than 85% on kNN 
with optimized features. Optimization methods for selecting the best features and using various metrics to 
evaluate the performance are also demonstrated in this paper. Owing to the high accuracy of the CNN model, the 
CNN model was implemented in an Android app to diagnose COVID-19 with a probability to indicate the con-
fidence level. The initial medical test shows a similar test result between the method proposed in this paper and 
the lateral flow method, which indicates that the proposed method is feasible and effective. Because of the use of 
breath sound and tested on the smartphone, this method could be used by everybody regardless of the avail-
ability of other medical resources, which could be a powerful tool for society to diagnose COVID-19.   

1. Introduction 

Fighting against COVID-19 is still the most urgent issue across the 
world because of its serious damage to human health and even life. In 
order to fight against COVID-19, the first important thing is to diagnose 
the patient who has contracted COVID-19 and then treat them according 
to the conditions of the infection. 

At present, the main diagnostic methods are nucleic acid test, anti-
body test, and antigen test [1]. These methods are effective and accu-
rate. Particularly the nucleic acid test is the“gold standard” of diagnosis 
[1]. However, these diagnosis methods have application shortcomings. 
The first problem is its long testing process owing to the collection of 
samples, sending samples to test labs with professional equipment, and 
release of the result. This process needs at least a few hours, sometimes a 
few days, even up to 10 days in some countries, as laboratories become 
overwhelmed [2,3]. During this process, patients with COVID-19 could 
become spreaders. The second one is that people have to travel to a 
sample collection point, which makes them more likely to be exposed to 

coronavirus. The third one is that these methods are not good for people 
living remotely to use because of the lack of medical professionals to 
provide advice and help in collecting samples. New diagnosis methods 
are desperately needed. 

Recently some other methods were developed based on other phys-
ical phenomena, for example, based on quality of voice when a sustained 
vowel/a/ was pronounced and analyzed [4], and a series of vowels/i:/ 
,/e:/,/o:/,/u:/, and/a:/ was recorded and analyzed [5]. Similar to voice, 
speech is also an approach to diagnosing COVID-19. The latest research 
showed that 88.2% accuracy could be achieved on voice [6], and 
82–86% accuracy on speech [7]. 

Apart from voice and speech, the sound is also used to diagnose 
COVID-19. Pioneering research in using quality of sound to diagnose the 
infection of COVID-19 is to analye the cough sounds by scientists at MIT 
[8]. This diagnosis approach was verified from other studies [1,9–12]. 

One important tool behind these diagnosis methods is artificial in-
telligence (AI). The power of AI in classification made these approaches 
feasible. Apart from diagnosis, AI is also used in Covid-19 research for 
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outbreak detection and biomarker discovery [13]. This is confirmed by 
the latest research results, where researchers from Stellenbosch Uni-
versity [14] and Imperial College London [15] have successfully applied 
deep transfer learning and end-to-end convolutional neural network to 
the study of COVID-19 detection, respectively. 

Diagnosis from voice, sound, and coughing provides an approach 
that could be used by a vast majority, particularly for those living 
remotely because of no need for professional equipment and collection 
of samples. However, diagnosis based on the voice needs specific pro-
nunciations, so the tester should be trained before. Diagnosis based on 
speech [16] has a similar working principle to diagnosis based on the 
voice that is investigating short-duration speech segments (e.g., held 
vowel, nasal phrase), but more than 90% test accuracy is not achievable. 
Coughing is not a symptom of all COVID-19 patients, manifesting itself 
only in 67.7% of cases [17]. The latest discovery from Omicron variants 
in the UK also found that the top symptoms are runny nose, headache, 
fatigue, sneezing, and sore throat. Only 44% of people reported a 
persistent cough [18]. In contrast, many patients with the disease have 
obvious early signs of lung pathology before the onset of symptoms such 
as dry cough, fever, and dyspnea [19]. These lung lesion symptoms 
include a peripheral distribution (80%), ground-glass opacity (91%), 
and vascular thickening (59%), which will produce changes in the res-
piratory sound [20]. Therefore, in this paper, we have proposed another 
approach for diagnosing COVID-19, which is based on breathing. We 
believe diagnosis based on breathing is more appropriate because 
breathing is natural. It doesn’t need any training for users. 

From analyzing breathing signals and training with two algorithms, 
it verified that this approach is feasible. With the optimized training 
model, the diagnosis could reach more than 97%. In addition, we have 
implemented the diagnosis method on smartphones, which could be 
used by anybody with a smartphone, anywhere and anytime. The initial 
medical test indicates that the result from breathing is quite similar to 
lateral flow. This will be particularly useful for mass diagnosis or for 
those living remotely. 

In a summary, this paper has the following contributions: (1) 
Acoustic analysis of breath sound from COVID-19 patients were con-
ducted and change of frequency components was discovered, which 
provides a fundamental evidence for applying acoustic analysis for 
diagnosing COVID-19; (2) Deep learning classifier, convolutional neural 
network (CNN) in this case, provides a promising diagnosis tool, where 
accuracy reaches over 97% with the right features from acoustic anal-
ysis; (3) MFCC is confirmed an effective feature for diagnosing COVID- 
19 from breath sound; (4) The designed CNN model needs to be 
trained with optimizations by considering data type, imbalance of data, 
features, pre-processing of data, and length of data to obtain a best 
performance model; (5) The trained model could be implemented on 
smartphones to provide a fast turnaround test result, within two minutes 
even with a low performance smartphone; (6) Initial medical test veri-
fied the effectiveness of this diagnosis method by comparing with bio-
logical method. 

The remaining of this paper is organized as follows: following the 
introduction, technical details of the diagnosis method will be described 
in Section 2 Methods. Test results and performance evaluation, 
including test results after implementing the CNN model on smart-
phones, will be presented in Section 3 Results. Further results analysis 
will be presented in Section 4 Discussion. Finally, this paper concludes in 
Section 5 Conclusions. 

2. Methods 

Technical details, including the dataset of breath sound used for the 
research, signal analysis of the breath sound of both healthy people and 
patients with COVID-19, diagnosis method with two artificial intelli-
gence algorithms, k-Nearest Neighbors (kNN) and CNN are presented in 
this section. 

2.1. Dataset 

A dataset called Coswara-Data from the Indian Institute of Science 
(IISc) Bangalore was used for signal analysis, training and testing [21]. 
As a publicly available dataset, it asked participants to provide re-
cordings of fast and slow breathing sounds, deep and shallow coughing 
sounds, sustained phonation of vowels, and counting exercises at a slow 
and a fast pace, and each data was labeled with health status and other 
clinical information. 

This dataset includes 1107 healthy providers, 107 COVID-19 positive 
patients, 224 providers with uncertain health status, and 48 patients 
with other respiratory diseases but negative COVID-19 tests. Other in-
formation in the dataset is also worth considering in order to avoid bias 
in model training. In terms of gender distribution, there were 1123 
males and 363 females among the data providers. On the age distribu-
tion, the providers were mainly concentrated in the age range of 18 to 
30 years old, and decreasing in order. The oldest reaches 70 to 80 years 
old, and the youngest includes a portion of minors younger than 18 years 
old. In terms of geographical distribution, most of the data come from six 
states of India, including Karnataka, Maharashtra, Tamil Nadu, West 
Bengal, Telangana, and Kerala. 

To complement the disease identification method and to improve 
disease identification in different situations, for the choice of audio type, 
deep breathing audios are chosen in this research. The sound of respi-
ratory activity can be effectively used to assess the health of the lungs, 
and deep breathing can better expose the respiratory characteristics of 
the subject and facilitate medical diagnosis as opposed to ordinary 
breathing sounds [10]. Deep breathing data were collected at a sampling 
rate of 48 kHz and a resolution of 16 bits. 

2.2. Signal Analysis of Breath Sounds 

Breath sounds from 10 healthy people and 10 people with COVID-19 
were examined manually in the time domain and frequency domain to 
analyze the pattern. Fig. 1(a) shows a typical healthy breath sound 
signal and its corresponding spectrum derived from Fast Fourier 
Transform (FFT) is shown in Fig. 1(b). Figs. 1(b) and 2(b) show one 
typical type of breath sound with COVID-19 but show no symptom and 
its spectrum; Fig. 2(b) and Fig. 3(b) show another type of COVID-19 
signal with symptom and its spectrum, respectively. From direct 
observation, it can be found that the signals with COVID-19 differ 
significantly from the healthy ones. For the healthy breath sound, the 
strength of inhaling is very low, compared to exhaling. However, for the 
breath sounds with COVID-19, the strength of inhaling increases even if 
there is no symptom, and the strengths of exhaling and inhaling are 
almost the same for signals with COVID-19 symptoms, which means 
patients need to breath harder owing to the malfunction of the lungs. 

From the spectrum of healthy breath sound and sound with COVID- 
19, it can be seen that the main frequency components of the healthy 
breath sound are distributed between 50 Hz and 5000 Hz, and the low- 
frequency components have higher amplitudes, as shown in Fig. 1(b). 
However, sounds with COVID-19 generally have two cases of respiratory 
sounds. The first case has a similar frequency distribution to healthy 
breathing sound, but with more high energy components appearing at a 
higher frequency, even outside the normal healthy breath sound range, 
as shown in Fig. 2(b). The second case is that the high-frequency part of 
the breathing sound has concentrated high energy, and the low- 
frequency part has very little energy, as shown in Fig. 3(b). Through 
the analysis of more than 30 samples, we found that the phenomenon of 
high-frequency energy concentration in the unhealthy breathing sound 
is caused by the symptoms of breathing difficulties and nasal congestion, 
which result in the elevation of breath sounds. The condition similar to 
healthy breath sound is because the patient has no clinical symptoms 
such as fever and dyspnea, which is an asymptomatic infection. These 
results verified the clinical evidence that acoustics of breath sound had 
changed after infecting COVID-19 and acoustics could be used for the 

Z. Chen et al.                                                                                                                                                                                                                                    



Journal of Biomedical Informatics 130 (2022) 104078

3

diagnosis of COVID-19 [4]. 

2.3. Diagnosis Method of COVID-19 

In order to diagnose and classify COVID-19, a process was designed 
with four steps. After recording breath sound on a smartphone, the first 
step is to pre-process the raw data. The second step is to extract features 
from the pre-processed data. The third step is to use the features to train 
the classifiers, and the last step is to verify the testing result. The sche-
matic diagram is illustrated in Fig. 4. Details of each step will be 
described in each sub-section. 

2.3.1. Signal Pre-processing 
When the breath sound is recorded, the analog signal is digitalized. 

Quantization noise and distortion will be brought in the quantization 
process of the digitalized sound signal. The purpose of pre-processing is 
to reduce the influence of aliasing and high-order harmonic distortion 
from recorded signals. Four key pre-processing techniques are applied in 
this paper, including pre-emphasis, normalization, framing and win-
dowing, and noise reduction. 

2.3.1.1. Pre-emphasis. Most of the radiative effects of breath sound 
come from the lips, which results in normally lower amplitudes in the 
high-frequency components. A first-order FIR high-pass digital filter 
[22] was implemented to increase the spectral energy of the high- 
frequency component, which is defined as 

x(i) = x(i) − α ∗ x(i − 1) (1)  

where x(i) represents the raw data, i represents the i − th sampling point, 
α is the pre-emphasis factor, usually 0.9 < α < 1. Here α is taken as 0.97. 
The transfer function of this filter is H(z) = 1 − αz− 1, where z donates Z- 
transform (z = ejω). 

Fig. 1. (a) Healthy breath sound in time domain (b) Spectrum of healthy breath sound.  

Fig. 2. (a) Breath sound with COVID-19 in time domain (no symptom) (b) Spectrum of breath sound with COVID-19.  

Fig. 3. (a) Breath sound with COVID-19 in time domain (showing symptom) (b) Spectrum of breath sound with COVID-19.  

Fig. 4. Classification Flow Chart.  
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2.3.1.2. Normalization. The raw data collected from different devices 
have different specifications, which will affect feature extraction. 
Therefore, the signal needs to be normalized by following (2) to reduce 
the impact. 

xnorm(i) =
x(i)

max(|x(i) | )
(2)  

where x(i) represents the raw data, i represents the i − th sampling point, 
max(|x(i) | ) represents the maximum absolute value of the raw data x(i), 
and xnorm(i) is the normalized data. 

2.3.1.3. Framing and Windowing. The requirement of the Fourier 
transform is that the input signal has to be stationary. The time-varying 
breathing signals can be considered to be approximately constant in a 
short period of time (generally 10–30 ms), that is, breathing signals have 
short-term stability. Here the frame length to 32 ms and frameshift to 
50% were adopted. At the same time, in order to reduce the leakage in 
the frequency domain after framing, a rectangle window function was 
introduced by following (3): 

w(n) =
{

1, 0⩽n⩽N − 1
0, otherwise (3)  

where N is the frame size, which can be calculated as 32m× sampling 
rate= 32m × 48k = 1536,w(n) is the function of the rectangle window 
and n represents the sampling points in each frame. 

2.3.1.4. Noise reduction. The acquired sound signal is the superposition 
of the original signal and the noise signal. These additive noise signals 
are either smooth or slowly changing and could be removed to extract 
the breath sound. The most commonly used method in speech denoising 
- spectral subtraction - was applied to denoise the recorded signals. As 
shown in Fig. 5(a) and (b), by comparing the spectrogram, it can be 
found that the color of the de-noised signal becomes lighter in the 
voiceless segment, which indicates that the noise energy is reduced. 

2.3.2. Feature Extraction 
Unlike speech signal, breath sound is a kind of bandwidth noise. 

Therefore, feature extraction is the most important part before classifi-
cation. Common feature extraction methods include Mel-Frequency 
Cepstral Coefficients (MFCCs), wavelet transform, autoregressions 
modeling, etc. [23–25]. MFCCs are adopted as one group of main fea-
tures. MFCCs are a set of features widely used in audio and speech 
processing [26], which are superior to the linear prediction coefficient 
(LPC). These features will be used in this paper to classify the breath 
sound signals. Apart from MFCCs, clear evidence shows that the shape of 
breath sound in both the time domain and frequency domain has been 
changed after the contraction of COVID-19. Because of the change of 

shapes, statistics of the signals and parameters used to differentiate the 
shape of the signals in both the time domain and frequency domain are 
also used as features in this paper to classify the signals, which include 
Mean Value, Standard Deviation, Mean Absolute Deviation, Quantile 25, 
Quantile 75, Interquartile Range, Skewness, Kurtosis, Signal Entropy, 
Spectral Entropy, Dominant Frequency Value, Dominant Frequency 
Magnitude, and Dominant Frequency Ratio. Because they are standard 
parameters, details for calculating them are not presented here. 

MFCCs are based on the logarithmic spectrum expressed in a 
nonlinear Mel scale and its linear cosine transform. In this paper, the 
first 13 coefficients are used. 

Given a pre-processed signal x′(i), from a raw signal x(i), after FFT 
transform, amplitude spectrum of the signal becomes: 

X(n) =
∑N− 1

n=0
x′(i)e− j2πn/N , 0⩽n⩽N (4)  

where x′(i) is the pre-processed signal, N is the frame size and n repre-
sents the sampling points in each frame. 

Power spectrum, P, is obtained as: 

P(n) =
1
N
⃒
⃒X(n)2⃒⃒ (5)  

where N is the frame size and n represents the sampling points in each 
frame. 

After calculating the energy spectrum of each frame, the energy 
spectrum is passed through a Mel-scale triangular filter bank to smooth 
the spectrum, eliminate the effect of harmonics, and highlight the 
original speech resonance peak [26]. The specific process is to, firstly, 
convert the signal from the actual frequency to Mel-frequency, and then 
pass the power spectrum through 26 Mel-scale triangle filters, and the 
obtained value is the energy value of the frame data in the corre-
sponding frequency band of the filter. 

The Mel-frequency is defined as: 

Fmel(f ) = 1125ln
(

1 +
f

700

)

(6)  

where Fmel is the perceived frequency in Mel, and f is the actual fre-
quency in Hz. 

The center frequency of the triangle filter is defined as: 

f (m) =

(
N
fs

)

F− 1
mel

(

Fmel(fl) + m
Fmel(fh) − Fmel(fl)

M + 1

)

(7)  

where fl and fh are the lowest and the highest frequency of the filter, 
respectively, N is the length of FFT, M represents the total number of 
filters, which is 26. 

The frequency response of the triangle filter is defined as: 

Fig. 5. (a) Original signal (b) De-noised signal.  
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H(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , n < f (m − 1)

2(n − f (m − 1))
(f (m + 1) − f (m − 1))(f (m) − f (m − 1))

, f (m − 1)⩽n⩽f (m)

2(f (m + 1) − n)
(f (m + 1) − f (m − 1))(f (m) − f (m − 1))

, f (m⩽n⩽f (m + 1))

0 , n⩾f (m + 1)
(8)  

where m = 1,2,…,26 represents 26 triangle filters, n represents the 
sampling points in each frame, and f(m) is the center frequency of the 
triangle filter. 

Taking the logarithm of the energy output of each filter bank, it 
yields: 

s

(

m

)

= ln

(
∑N− 1

n=0
|X(n)|2H

(

n

))

, 0⩽m⩽26 (9)  

where s(m) represents the logarithmic energy of the output of each filter 
bank, m = 1, 2,…,26 represents 26 triangle filters, N is the frame size 
and n represents the sampling points in each frame. 

The above logarithmic energy is put into the discrete cosine trans-
form (DCT) to find the L-order Mel cepstrum coefficient: 

C(k) =
∑N− 1

m=0
s(m)cos(

πk(m − 0.5)
26

) (10)  

where k = 1, 2,…L represents the order of MFCC coefficient, usually 
setting to 12–16, and here we set L = 13 to take 13 of 26 coefficients 
from 26 triangle filters and N is the frame size. 

Fig. 5(a) and (b), and Fig. 6(b) show the graphic results obtained by 
using MFCC feature extraction. The vertical axis of the image represents 
13 MFCCs, and the horizontal axis represents time, meaning the change 
of MFCCs in the time domain. By comparison, we can see that there are 
differences between healthy breath sound and breath sound with 
COVID-19. 

2.3.3. Classification Models 
Previous studies have shown that sound analysis is an effective 

method to detect and diagnose various respiratory diseases. In order to 
explore the advantages of breath sound diagnosis and resolve the 
problem based on subjective auscultation diagnosis, researchers have 
applied various automated signal processing and classification methods 
[23,27–32]. For example, in [27], two different machine learning 
techniques: Gaussian Mixture Model (GMM) and Support Vector Ma-
chine (SVM) were employed to extract acoustic features for speech 
modeling of an adolescent with depression. A similar system was pro-
posed in [28], which combined MFCCs to extract and classify voice 
features, resulting in an accuracy of 96.1% in the diagnosis of voice 
diseases. In a recent study of COVID-19 detection in cough, breath and 

speech [14], three pre-trained deep neural networks: CNN, LSTM, and 
Resnet50 combined with deep transfer learning achieved the highest 
AUCs of 0.982. 

In this paper, two classifiers were designed to determine whether a 
user has suffered from COVID-19 or not. One is kNN and the other is 
CNN. The reason to select kNN is to use a simple-to-implement algorithm 
in smartphones with low computing resources so that all the smartphone 
carriers may benefit from this diagnosis method. 

2.3.3.1. k-Nearest Neighbors (kNN). kNN is one of the simplest and most 
commonly used supervised learning classification algorithms in data 
mining. The idea of this algorithm is very intuitive: if most of the k 
closest samples in the feature space belong to a certain category, then 
the sample also belongs to this category. Due to the non-parametric and 
inert characteristics of kNN, the kNN algorithm used in this paper to 
build the model has the advantages of fast training time, easy to use, and 
good prediction effect. 

After pre-processing, all pre-processed signals are divided into audio 
chunks of 3 s in length with labels, where 3-s chunks are supposed to be 
the best for the CNN model. These signals are then input into the kNN 
model. The validation method is the hold-out validation with a 25% 
hold-out percentage. This kNN model has a number of neighbors of 10, 
and a distance metric of Euclidean, which measures the absolute dis-
tance between points in a multidimensional space, and distance weight 
is equal. 

Here three different kNN models are used for classification. 
Model 1: 26 features extracted from the audio are used for classifi-

cation, without any other optimization techniques. 
Model 2: In order to improve the performance, the first approach 

adopted was to find out the effective features used for training this 
model. To this end, a parallel coordinate plot was implemented to 
evaluate all 26 features on four metrics, True Negative, True Positive, 
False Negative, and False Positive. Each feature is scaled to a different 
range in a numerical form, which represents the feature value. By 
comparing all 26 feature values, it can be initially determined that the 
Features Standard Deviation, Mean Absolute Deviation, Quantile75, 
Signal IQR, Dominant Frequency Magnitude, and Dominant Frequency 
Ratio, are likely to have no positive effect on the classification because 
their feature values are distributed in a uniformly dispersed state 
without particularity. Therefore, we can conclude that not all 26 fea-
tures are valid when training the model. However, the large number of 
feature values produced by this approach is inconvenient to observe and 
is crude. In order to further optimize this model, the Neighbourhood 
Component Analysis (NCA) method was further used to analyze the 
data, where the importance of all 26 features is shown in Fig. 7. The 
horizontal coordinates represent each feature in sorted order and the 
vertical coordinates represent the importance of this feature. By making 
this selection, features were reduced from 26 to 14. Selected features 
include Sample Kurtosis (horizontal coordinate 8), Signal Entropy 

Fig. 6. (a) MFCCs of healthy breath sound (b) MFCCs of sound with COVID-19.  
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(horizontal coordinate 9), Dominant Frequency Values (horizontal co-
ordinate 11), MFCC1 to MFCC9 (horizontal coordinate 14 to 22), 
MFCC12 (horizontal coordinate 25), and MFCC13 (horizontal coordi-
nate 26). 

The selected 14 features were again put into the kNN model and 
tuned using Bayesian optimization with the number of iterations setting 
to 45. As can be seen in Fig. 8, the Best point hyperparameters and the 
Minimum error hyperparameters appear simultaneously at the 20th 
iteration. In this model, the number of neighbors is 1, the distance metric 
is City block, and the distance weight is Inverse. This optimized model is 
noted as Model 2. 

Model 3: The performance of Model 2 has been improved. However, 
considering that the model will be used for the diagnosis of disease, the 
false-negative rate of the confusion matrix requires additional attention. 
This is because the consequences of a positive patient being incorrectly 
classified as negative are more serious than the consequences of a 
healthy person being incorrectly classified as positive in practice. To 
address this problem in a targeted manner, a misclassification cost 
matrix was introduced in this model. The expected cost L(a, i) of sample 
a being classified as class i can be expressed as: 

L(a, i) =
∑

j
P(j|a)C(i, j) (11)  

where a is an sample, (a, i) denotes its classification into category i,P(j|a)
denotes the posterior probability obtained in the algorithm that a be-
longs to category j, and C(i, j) denotes the real cost of the algorithm 
misclassifying a sample from category i as category j. 

In such an equation, because of the inclusion of the loss weight bias 
factor C(i, j), the objective model will not only simply focus on how to 
obtain the maximum value of P(j|a), but also take into account both the 
predicted outcome P(j|a) and the loss C(i, j) caused by the different 
predicted outcomes C(i, j), resulting in these two factors holding each 
other in check. 

2.3.3.2. Convolutional Neural Network (CNN). CNN, as an effective tool 
for the analysis of visual imagery [33], was applied in this paper to 

classify the differences between MFCCs from healthy and unhealthy 
people. After that, it will be able to give pre-screening diagnostics. Our 
proposed model, as shown in Fig. 9, takes a recording of breaths, per-
forms signal pre-processing, and inputs features into a CNN model to 
output a pre-screening diagnostic. 

At the pre-processing stage, each recorded breath sound is split into 
3-s audio chunks, padded as needed, processed with the MFCC package 
[34] and subsequently passed into a CNN as described in the next 
paragraph. 

The CNN architecture is mainly made up of one ResNet50; there are 
2048 classes for the ResNet50, which can be interpreted as one- 
dimensional features extracted from MFCCs. These features are then 
fed into a 1024 neuron deeply connected neural network layer (dense) 
with a ReLU activation function, and finally a binary dense layer with a 
sigmoid activation function. 

For our experiments, the CNN model was trained in a computing 
environment with eight CPU cores and one GPU core. The model of the 
CPU is Intel ® Xeon ® Platinum 8255C CPU @ 2.50 GHz. The L1 cache is 
32 KB  + 32 KB; L2 cache is 4096 KB; L3 cache is 36608 KB. For each 
CPU core, 4.5 GB memory is assigned. That is to say, we have 36 GB 
memory available with a total of eight CPU cores. The model of the GPU 
is NVIDIA ® Tesla ® V100 SXM2 32 GB Computational Accelerator. It 
has a memory of 32 GB HBM2 and the memory bandwidth is 900 GB/s. 

To effectively examine the feasibility of the proposed method, two 
techniques were adopted when the CNN model was trained. 

Firstly, since the size of the dataset is relatively small, data 
augmentation was performed. Unlike the conventional CNN task where 
the photos may be rotated or re-scaled to increase the number of training 
samples, this work requires a different data augmentation method 
because the input features are MFCCs, which become meaningless when 
processed in these ways. Therefore, when the breath sound was split into 
3-s audio chunks, a 90% overlapping was employed. The size of our 
training dataset was expanded almost 10 times with this data augmen-
tation, which is a significant help in training the model and improving 
accuracy. 

After the training data was augmented, it was found that the dataset 
was slightly imbalanced, as shown in Table 1. In order to optimize the 
training effectiveness and the model performance, Mean Squared False 
Error (MSFE) was chosen as the loss function when training the best- 
optimized model [35]. According to research in [35], MSFE out-
performs the conventional Mean Squared Error (MSE) at a class- 
imbalanced problem. Our experiment supports this conclusion. 

CNN is a very powerful tool for classifying objects. CNN is employed 
in this paper as another classifier to evaluate the effectiveness of diag-
nosing COVID-19. By using CNN, questions to be answered include: (1) 
whether recorded raw breath sound could be implemented directly on 
CNN or not? (2) whether pre-processing of raw data will improve the 
performance or remove the features or not? and (3) whether other fea-
tures representing different properties of the signals make the classifi-
cation more accurate and efficient or not?. 

To answer the question (1), two approaches were adopted in this 
paper to input the data into the CNN model; one is to input the raw data 
directly, and the other is to extract the MFCCs and then use MFCCs as 
input to the CNN model. 

To answer the question (2), signal pre-processing needs to be eval-
uated. Considering that pre-processing might exclude features that 
contribute to the classification between unhealthy and healthy users, we 
want to first verify whether pre-emphasis and normalization can in-
crease the prediction accuracy or not. And after evaluating the necessity 
of including pre-emphasis and normalization, we want to explore 
whether noise reduction can help improve the model performance or 
not. We take the previously analyzed model with both pre-emphasis and 
normalization as a baseline. 

To answer the question (3), several variants of MFCC were applied 
for classification. 

To make it possible to diagnose COVID-19 on a smartphone through 

Fig. 7. Feature Selection.  

Fig. 8. Minimum Classification Error Plot.  
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acoustic analysis, we have managed to develop an Android app incor-
porating the trained CNN model, which can be downloaded from [36]. 
The design of the app is very simple with only a button to start the 
recording, a button to stop the recording, and then a button to do the 
diagnosis, where the screenshot of the app is shown in Fig. 10. The 
possibility of infecting COVID-19 is presented. For calculating the 
probability, only three steps are required. Firstly, the input audio is split 
into 3-s audio chunks with 90% overlapping. Secondly, these audio 
chunks are used as the input for CNN inference. After the inference 
calculation of the neural network, the probability of each 3-s segment 
will be directly output. Finally, the average of all these inference results 
is calculated as below: 

P =
1
n
∑n

i=1
I(xi) (12)  

where n represents the total number of chunks that the user’s breath 
sound can be split with 3-s length and 90% overlapping, xi represents the 
i − th input chunk of the user and i = 1…n. I(xi) represents the output of 
neural network, which refers to the probability that the input chunk xi. P 
represents the probability that the user is infected with COVID-19 virus. 

One example shown in Fig. 10 is the probability of 0.12, which is the 
test result from one of the authors and shows a very low possibility of 

infecting COVID-19. The calculation time depends on the types of 
smartphones and also the length of breath sounds recorded. It normally 
takes less than one minute to complete the calculation. If the length of 
recorded breaths is long, such as far more than three seconds, it will take 
a longer time to finish it but normally in less than 2 min on a reasonably 
powerful smartphone. 

3. Results 

The complete diagnosis method was introduced in the previous 
section. In this section, results are going to be presented to evaluate the 
effectiveness and performance of the proposed method. Firstly the 
evaluation method is going to be introduced. Then the performance of 
the two models is evaluated. Finally, the implementation of CNN on 
Android phones and its use of it in the initial medical test are presented 
to verify the application of the proposed method. 

3.1. Evaluation Method 

In order to evaluate the performance of our proposed model, 75% of 
randomly selected audio chunks were used for training and the rest 25% 
were used for testing. The test accuracy, confusion matrix, Receiver 
Operating Characteristic (ROC), and Area under the ROC Curve (AUC) 
can then be obtained for quantitative assessment. 

Test accuracy is defined from the four parameters, namely True 
Positive (TP), True Negative (TN), False Positive (FP), and False Nega-
tive (FN), of the confusion matrix, as: 

TestAccuracy =
TP + TN

TP + TN + FP + FN
× 100% (13)  

In case of multiple times of training for one model are conducted, ac-
curacy is determined from the average of each training. 

3.2. Model Performance 

3.2.1. kNN performance 
Model 1: As seen from the table that the accuracy of kNN model 1 

reached only 70.0%, while the True Positive Rate (TPR = TP
TP+FP× 100) 

reached only 53.6%, which is not a satisfactory result. 
Model 2: After optimisation of features, the performance is shown in 

Table 2 under label Model 2. It can be seen that an increase of 10.1% in 
accuracy was achieved. The Validation ROC Curve is shown in Fig. 11 

Fig. 9. Architecture of CNN Model.  

Table 1 
Imbalanced Training Data.  

COVID-19 Status Negative Positive Total 

Number of Audio Chunks 3974 2774 6748 
Percentage 58.9% 41.1% 100.0%  

Fig. 10. Screenshot of the application.  

Table 2 
kNN Model Performance.  

Model Number of 
features selected 

Accuracy AUC TPR TNR    

1 26 70.0% 0.78 53.6% 80.8%    
2 14 80.1% 0.80 71.2% 85.9%    
3 14 78.0% 0.83 82.4% 75.2%     
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(b) and the calculated AUC value also verified the improvement. 
Model 3: By adjusting the weights, the performance is shown in 

Table 2 under label Model 3, and the Validation ROC is shown in Fig. 11 
(c). This classification model provides a substantial improvement in the 
judgment of positive patients without a significant reduction in accu-
racy. Although the false-positive component rises slightly, slightly 
affecting the performance evaluation of the classifier, such a cost should 
be acceptable in the anticipated application scenario. 

3.2.2. CNN performance 
The performance results are listed in Table 3. From the table, it can 

be seen that performance by using MFCCs as features have been 
significantly improved by comparing with taking the raw data directly 
from the breath sound, where accuracy can reach more than 97%. This 
verifies the effectiveness of taking MFCCs as features and the appro-
priate approach of using breath sound to diagnose COVID-19. 

In addition, Table 3 shows the model performance when these two 
pre-processing steps were not-employed, partly-employed or fully- 
employed. As observed from the table, when using pre-emphasized 
and normalized 13-dimensional MFCCs as the input features, the pro-
posed CNN model had the best test accuracy, sensitivity, and precision; 
the AUC is also almost the best, while the specificity is only 0.11% lower 
than the best. Although this model does not achieve the best AUC and 
specificity, we still consider it to have the best prediction performance 
among the four. This is because of two reasons. Firstly, even though the 
specificity is not the best, it is still higher than 99% and is only 0.11% 
lower than the best. Secondly, sensitivity should be paid slightly more 
attention than specificity here because identifying COVID-19 positive 
patients is more important. Apart from the prediction performance, it 
can be observed that when using pre-emphasized and normalized 13- 
dimensional MFCCs as the input features, the model achieves the best- 
optimized state at the earliest epochs. That is to say, with both pre- 

Fig. 11. Validation ROC Curve of (a) Model 1 (b) Model 2 (c) Model 3.  

Table 3 
Model Performance with Different Pre-processing Steps.  

Input Feature Pre-emphasized Normalized Test Accuracy Optimized Epoch Number AUC Sensitivity Specificity Precision 

Raw Data N N 60.85% 84 0.6877 54.45% 67.32% 66.85% 
MFCC N N 97.51% 90 0.9972 94.10% 99.80% 99.69% 
MFCC Y N 97.04% 64 0.9969 93.62% 99.59% 99.41% 
MFCC N Y 97.57% 80 0.9979 94.19% 99.90% 99.85% 
MFCC Y Y 97.63% 61 0.9977 94.55% 99.80% 99.70%  
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emphasis and normalization, not only the prediction performance of the 
model is the best, but also the training process can be the most time- 
saving. 

To further explore the difference between using original, pre- 
emphasized, and normalized 13-dimensional MFCCs as the input fea-
tures, training loss and validation loss for both cases were plotted. 
Comparing Fig. 11(c) and Fig. 12(b), we can find that although the 
general trend of validation losses is both decreasing, there is a rather 
significant discrepancy at the early stage of training the CNN model. 
When using pre-emphasized and normalized MFCCs as the input feature, 
validation loss can be much higher than the training loss for the first 15 
epochs, while this pattern does not show when original MFCCs are fed 
into the CNN model. This observation is worth highlighting because if 
the early-stopping strategy is employed for the training process, a dis-
torted conclusion that pre-emphasizing and normalizing the MFCCs are 
unwanted and unnecessary may be drawn, given that the training would 
stop well before the neural network is properly optimized for the clas-
sification task. Actually, when the pre-processed MFCCs are used as 
input features, the CNN model needs to be trained for about 20 epochs 
before a synchronous decrease in training and validation loss can be 
observed. As shown in Table 3, if the models with original or pre- 
processed MFCCs as input features are both trained for a sufficiently 
large number of epochs (100 epochs), it can be observed that pre- 
processing slightly increases the best-optimized performance of the 
CNN model. 

Table 4 shows the model performance with or without Noise 
Reduction. It can be found that the noise reduction step does actually 
improve the overall prediction accuracy. It can be further analyzed from 
the result that the sensitivity is improved, while the specificity slightly 
deteriorates. Moreover, with the audio de-noised, the AUC and precision 
are slightly higher and the proposed CNN model can be optimized at the 
cost of a similar number of epochs. To conclude, considering that the 
sensitivity, which is perhaps of the greatest significance for our task, is 
higher when noise reduction is added. This can be confirmed that noise 
reduction is necessary for the best-optimized model. However, this 
result may differ based on the choice of dataset. With the dataset of little 
noise, this step may be unnecessary and even unwanted, given that noise 
reduction technique spectral subtraction may remove patterns from the 
feature, which are critical for the classification between unhealthy and 
healthy users. 

Apart from pre-processing with pre-emphasis, normalization, and 
denoising, we want to explore whether the 3-s audio chunk is the best 
length for diagnosing COVID-19 or not. Table 5 shows the model per-
formance when audio chunks of different lengths are processed with the 
MFCC package [34] and then used as input features. As can be observed 
from this table, when audio chunks of 3 s are fed into the CNN model, the 
prediction accuracy of the model is the best. Moreover, the sensitivity is 
the highest, implying that this model has the best ability to distinguish 
COVID-19 positive patients from the crowd. It can be argued that this 
time interval reaches the best compromise between the size of the 

training dataset and the length of MFCC plots. To be specific, the test 
accuracy is the lowest when 1-s audio chunks are fed into the CNN, 
which is likely to be caused by the narrow MFCCs that lack the crucial 
patterns for the CNN to distinguish between healthy and unhealthy 
samples. On the other hand, although 6-s audio chunks are used to train 
the model for diagnosing COVID-19 using cough sounds [8], in our 
experiment, 6-s audio chunks may not be the best choice because the 
total number of audio chunks for training, validating and testing is less 
than 3000. As a result of this basic evaluation, it can be concluded that 3- 
s audio chunks are enough to reveal the different patterns of MFCCs 
between healthy and unhealthy samples. 

There are several other variants of MFCC, including ΔMFCC, 
ΔΔMFCC, and log-mel spectrum, inspired from MFCC and sometimes 
they outperform MFCC for sound classification and recognition [37–39]. 
For this task, we want to explore whether ΔMFCC, ΔΔMFCC, and log- 
Mel spectrum can be effective features for the classification between 
healthy and unhealthy samples. 

ΔMFCC, and ΔΔMFCC. They are delta-cepstral features proposed in 
[38] to add dynamic information to the static MFCC features. A previous 
study in [39] noted that the addition of these features to the static 13- 
dimensional MFCCs strongly improved speech recognition accuracy. 
However, there is a lack of research on sound classification tasks. 

Log-Mel Spectrum. As suggested in [37], log-mel spectrum, which 
removes the DCT step of deriving MFCCs, is likely to be more appro-
priate when deep learning is used for digital signal processing because 
DCT removes information and destroys spatial relations of the breathing 
signals. 

Table 6 displays the model performance when these MFCC-inspired 
features are used to train the CNN with the length of audio chunks to 
be 3 s. It can be seen that adding delta-cepstral features to MFCC does 
not improve the classification accuracy. We further explore whether 
ΔMFCC or ΔΔMFCC can be used alone as effective features for the 
classification. As shown in Table 6, the test accuracy of both of them 
does not remain competitive with that of MFCC. Therefore, it is 
reasonable to say that adding them to the MFCC impairs the classifica-
tion effect. On the other hand, the CNN trained with log-Mel spectrum 
has slightly lower test accuracy than the model trained with MFCCs. This 
result is contradicting the argument in a previous study [37] that DCT is 
unwanted and unnecessary with deep learning models processing sound 
signals. 

3.2.3. Android app performance 
From the signal analysis and performance evaluation of both classi-

fiers kNN and CNN, it can be seen that diagnosis of COVID-19 on 
smartphones via acoustic analysis is a feasible approach to detect 
COVID-19. The evaluation of two different classifiers cross-verified the 
effectiveness of using machine learning methods to support the classi-
fication of COVID-19. Between these two classifiers, CNN is apparently a 
better choice for implementing this diagnosis technique. 

Currently, medical trials are being organized. The medical trial will 

Fig. 12. Training Loss and Validation Loss with (a) Original 13-dimensional MFCC, and (b) Pre-emphasized and Normalized 13-dimensional MFCC.  
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have two purposes; one is to validate the method in diagnosis; the other 
is to define a probability threshold to confirm the confidence level of the 
diagnosis. The first test has been completed by following the medical 
protocol. Test results of this method and lateral flow are shown in 
Fig. 13. It can be seen that the results are quite similar between these two 
methods. Details of the medical trial and more results will be reported 
afterward. 

4. Discussion 

From the investigation of this diagnosis technique, several solid 
findings were discovered and lessons were also learned on the possible 
limitations of this method. These findings include: 

(1) Signal analysis of breath sound in both time domain and 

frequency domain clearly showed that the breath sound after contract-
ing COVID-19 differs scientifically from the healthy people. This has 
provided a piece of solid scientific evidence for using breath sound to 
diagnose COVID-19. 

(2) Same as other research such as diagnosing COVID-19 from 
coughing, artificial intelligence plays a very important role in classifying 
patients with COVID-19 from healthy people. 

(3) Initial medical test verified that the proposed diagnosis method 
in this paper is feasible and effective. 

However, during the development of this method, a few issues need 
to be considered, including: 

(1) Dateset: Because of the limited volume of breath sounds data 
provided in the existing dataset, although some samples of other lung 
diseases were provided and models were trained to differentiate COVID- 
19 from these diseases, samples didn’t cover the whole range of lung 
diseases. There is a possibility that some other lung diseases may have 
similar patterns to COVID-19. Broader research could be conducted to 
analyze the acoustic properties of all known diseases so as to avoid the 
wrong diagnosis. Whist this paper is being prepared and revised, a new 
variant name Omicron was detected in South Africa. A scientific study 
published in Nature revealed that this variant causes less damage to the 
lungs than upper airways [40]. If the lung is not infected or infected 
slightly, in theory, the acoustic signals produced from patients with 
Omicron might be different from previous variants. In this case, the 
existing model could be trained again with new datasets to diagnose 
Covid-19. Research is ongoing with the development of a new variant of 
Covid-19 and results will be reported once any new results were 
discovered. 

(2) Raw data or pre-processed data for training and testing: From the 
test results, it can be observed that after signal pre-processing, perfor-
mance has been significantly improved. This is because signal pre- 
processing emphasizes the importance of features, which will have a 
better contribution to the results. 

(3) Length of the sound chunks: Although the 3-s sound chunk is 
supposed to be the best one to produce the highest accuracy, it didn’t 
differ too much from other chunks. The accuracy maintains high for all 
chunks with different lengths. However, different length of chunks af-
fects the computation speed, particularly on smartphones. This param-
eter could be well balanced in practical development by balancing the 
accuracy and computation load. 

(4) Feature selection: Selection of the right features is of utmost 
importance in training the models. Based on the nature of the artificial 
intelligence algorithms, the right number and type of features may 
significantly improve the performance. This is the area that should be 
considered seriously in practical development. 

(5) Training of the model: Models cannot be used directly to di-
agnose COVID-19. They need to be trained and optimized by considering 
the data type, effective features, amount of data, imbalance of the data, 

Table 4 
Model Performance with or without Noise Reduction.  

Pre-emphasized & Normalized De-noised Test Accuracy Optimized Epoch Number AUC Sensitivity Specificity Precision  

Y N 97.63% 61 0.9977 94.55% 99.80% 99.70%  
Y Y 97.87% 59 0.9978 95.26% 99.79% 99.71%   

Table 5 
Model Performance with Different Lengths of Audio Chunks (ACs).  

Length of ACs (s) Total Number of ACs Test Accuracy AUC Sensitivity Specificity Precision 

1 21789 96.04% 0.9944 91.93% 98.99% 98.50% 
2 10529 96.70% 0.9964 92.85% 99.36% 99.01% 
3 6748 97.87% 0.9978 95.26% 99.79% 99.71% 
4 4943 95.95% 0.9986 99.80% 93.39% 90.98% 
5 3778 97.57% 0.9982 93.98% 100.00% 100.00% 
6 2970 96.64% 0.9884 98.37% 95.41% 93.79%  

Table 6 
Model Performance with Different Features (Each Model is Trained 6 Times).  

Features Test 
Accuracy 

AUC Sensitivity Specificity Precision 

MFCC 97.87% 0.9978 95.26% 99.79% 99.71% 
ΔMFCC 97.04% 0.9980 93.16% 100.00% 100.00% 

ΔΔMFCC 97.45% 0.9979 94.45% 99.50% 99.23% 
MFCC +

ΔMFCC +

ΔΔMFCC 

97.39% 0.9979 93.61% 100.00% 100.00% 

Log-mel 
Spectrum 

97.21% 0.9976 93.75% 99.79% 99.70%  

Fig. 13. Test results and lateral flow.  
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pre-processing of the data, and appropriate training methods to develop 
a high-performance model for diagnosis. 

(6) Complex CNN model can be implemented in smartphones so as to 
make this diagnosis method applicable to everybody. It is envisioned 
that this technique will have tremendous impacts on society in fighting 
against COVID-19. Apart from the aforementioned providing a mass 
detection method, this technique will particularly help medical pro-
fessionals to reduce their contact time with patients so as to protect 
themselves from contracting COVI-19 from the patient, where quite a 
few cases happened across the world that medical staff died from 
COVID-19 when they were treating patients with COVID-19. This will 
reduce their stress and burnout, and improve their mental well-being so 
that they can provide better services to the public because COVID-19 has 
severely affected the life of medical staff as demonstrated in the latest 
studies [41,42]. This technique could also be implemented as a tele-
medicine scheme for diagnosis, treatment, and post-COVID-19 care, 
which was suggested in [43]. 

5. Conclusions 

A new method of diagnosing COVID-19 is proposed in this paper, 
which is based on the acoustic analysis of breath sound and artificial 
intelligence. From the signal analysis, it discovered the scientific evi-
dence to support this method. The high-performance test results and 
initial medical tests verify the effectiveness of the proposed method. In 
addition, this method could be implemented in smartphones, which 
makes it applicable to everybody with a smartphone, regardless of 
where he/she is or the existence of medical professionals, because 
breath sound is natural and no particular training is needed. This 
method doesn’t need medical equipment either. Because of no need for 
training, medical professionals, and medical equipment, this method 
could be a mass diagnosis method for society to diagnose and fight 
against COVID-19. Over time, new virus variants will gradually emerge 
later, in which case the new dataset will need to be used for new training 
to ensure the accuracy of the model in diagnosing COVID-19. 
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