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Abstract: Alanine-serine-cysteine transporter 2 (ASCT2) has been associated with increased levels of
metabolism in various malignant tumors. However, its biological significance in the proliferation of
prostate cancer (PCa) cells remains under investigation. We used the cBioPortal database to assess
the effect of ASCT2 expression on the oncological outcomes of 108 PCa patients. To evaluate the
function of ASCT2 in castration-sensitive PCa (CSPC) and castration-resistant PCa (CRPC), LNCaP
cells and the ARV7-positive PCa cell line, 22Rv1, were assessed using cell proliferation assays and
Western blot analyses. The ASCT2 expression level was associated with biochemical recurrence-free
survival after prostatectomy in patients with a Gleason score ≥ 7. In vitro experiments indicated that
the growth of LNCaP cells after combination therapy of ASCT2 siRNA and enzalutamide treatment
was significantly reduced, compared to that following treatment with enzalutamide alone or ASCT2
siRNA transfection alone (p < 0.01, 0.01, respectively). After ASCT2 inhibition by siRNA transfection,
the growth of 22Rv1 cells was significantly suppressed as compared with negative control siRNA via
downregulation of ARV7 both in fetal bovine serum and androgen-deprivation conditions (p < 0.01,
0.01, respectively). We demonstrated that ASCT2 inhibition significantly reduced the proliferation
rates of both CSPC and CRPC cells in vitro.
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1. Introduction

Suppression of androgen receptor (AR) signaling through androgen deprivation ther-
apy (ADT) remains the primary treatment for metastatic prostate cancer (mPCa). Although
most patients with metastatic castration-sensitive prostate cancer (mCSPC) initially respond
to ADT, the majority progress to metastatic castration-resistant prostate cancer (mCRPC),
which is refractory to ADT within one year [1–3].

Most castration-resistant prostate cancers (CRPCs) rely on AR signaling due to several
adaptive tumor responses that facilitate ligand availability and AR activation, foster the
emergence of ligand-independent forms of AR activation, or have acquired broader ligand
sensitivity [4]. Considering these findings, the clinical researchers have been developed,
resulting in the approval of potent AR-targeted therapies for patients with mCRPC [5].
However, resistance to AR-targeted therapies is often acquired, and most mCRPCs still
depend on AR activation. The biological behavior of mCRPC through the AR axis cannot
yet be accurately predicted by estimating the increased or diminished expression level of
any single gene or small number of genes.

Cancer cells are metabolically reprogrammed to stimulate proliferation [6,7]. Several
reprogramming activations have been recognized as hallmarks of cancer. Recent studies
have shown that cancer cells metabolize glutamine to fulfill their metabolic needs [8,9].
Moreover, recent reports have highlighted the importance of several other major metabolic
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pathways such as the tricarboxylic acid (TCA) cycle and glutamine metabolism in many
malignancies [10,11]. Understanding how to interfere with cancer cell metabolic repro-
gramming mechanisms will result in the development of new strategies for the therapy
of malignancies.

Alanine-serine-cysteine transporter 2 (ASCT2) is a Na+-dependent neutral amino
acid transporter involved in the cellular uptake of neutral amino acids such as glutamine,
and is the primary transporter of glutamine in cancer cells [12]. Previous studies have
shown that high-expression of ASCT2 is observed in various tumors, including breast,
melanoma, colorectal, pancreatic, tongue, and lung cancers [9,13–17]. Moreover, Teixeira
et al. concluded that ASCT2 inhibition and the combination of ASCT2 inhibitors with other
anti-tumor therapies might be promising antineoplastic strategies [18]. Several investiga-
tors have emphasized the role of glutamine transporters in prostate cancer (PCa) [19–24].
Saarinen et al. demonstrated that both high-and low-Gleason grade tumors expressed
ASCT2 in patients with CSPC and histologically confirmed PCa who underwent PET/CT
before prostatectomy [24]. On the other hand, Chu et al. showed that the expression
of ASCT2 in radical prostatectomy specimens was associated with better outcomes, by
measuring ASCT2 using two different radiotracers in prostate PET scans [23]. Accordingly,
the relationship between the expression and biological function of ASCT2 in PCa is still
under investigation.

Herein, we examined the expression level of ASCT2 and its effect on the AR axis in
PCa to better understand the mechanism of action of ASCT2 on castration-sensitive prostate
cancer (CSPC) and CRPC progression. We also investigated the relationship between AR,
ARV7, and ASCT2 in CSPC and CRPC cell lines using chemically synthesized ASCT2
siRNA and enzalutamide.

2. Materials and Methods
2.1. Cell Lines

The human PCa cell lines LNCaP and 22Rv1 were purchased from American Type Cul-
ture Collection (ATCC, Manassas, VA, USA). Cells were maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) (Life Technologies, Burlington, ON,
Canada), charcoal/dextran-treated FBS (CSS) (Thermo Fisher Scientific, Waltham, MA,
USA), and 1% penicillin/streptomycin (Life Technologies) at 37 ◦C in a humidified atmo-
sphere containing 5% CO2.

2.2. siRNA Transfection in LNCaP or 22Rv1 Cells

LNCaP and 22Rv1 cells were grown overnight in RPMI 1640 medium supplemented
with 10% FBS or CSS without antibiotics (day 0). Chemically synthesized ASCT2 siRNA
or negative control siRNA (Sigma-Aldrich, St. Louis, MO, USA) diluted in Opti-MEM I
with Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA) or Lipofectamine alone
was added to each well and incubated for four hours (day 1). The siRNA ASCT2 target-
ing sequences (5′-3′) were GUCAGCAGCCUUUCGCUCA (sense), and UGAGCGAAAG-
GCUGCUGAC (antisense). The medium was then changed to RPMI 1640 supplemented
with 10% FBS or CSS in order to perform cell assays or Western blotting analyses.

2.3. Cell Growth Assay

To monitor the growth of ASCT2 siRNA-transfected cells, LNCaP and 22Rv1 cells
(5 × 104 cells per well) were seeded into 6-well plates in RRPMI 1640 medium supple-
mented with 10% FBS or CSS without antibiotics overnight (day 0). Transfection was
performed using 1, 10, or 50 nM ASCT2 siRNA, negative control siRNA, or Lipofectamine
alone (day 1). The cells were cultured for four days at 37 ◦C in a humidified atmosphere
containing 5% CO2, and cell proliferation was checked on day 4. Cell proliferation was eval-
uated by using the cell counting kit-8 (Dojindo Laboratories, Kumamoto, Japan), according
to the manufacturer’s instructions. The absorbance was measured using a spectrophotome-
ter and the level was 450.
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To monitor the growth in cells treated with enzalutamide (Selleck Chemicals, Hous-
ton, TX, USA), LNCaP cells (5 × 104 cells per well) were seeded into 6-well plates in
RPMI 1640 medium supplemented with 10% FBS containing 1% penicillin/streptomycin
overnight (day 0). On day 1, 20 µM enzalutamide was added to each plate, and cell
proliferation was evaluated on day 3.

In order to monitor the growth of cells after the combination therapy of ASCT2 siRNA
and enzalutamide, LNCaP cells (5 × 104 cells per well) were seeded into 6-well plates in
RPMI 1640 medium supplemented with 10% FBS without antibiotics overnight (day 0).
On day 1, cells were transfected with 20 nM ASCT2 siRNA or negative control siRNA.
On the second day, enzalutamide (20 µM) was added to each well. Cell proliferation was
evaluated on day 4.

2.4. Western Blotting

To perform immunoblotting of enzalutamide-treated LNCaP lysates, cells (20× 104 per dish)
were first seeded in a 100-mm dish and grown in RPMI 1640 medium supplemented with
10% FBS with antibiotics overnight (day 0). On day 1, 10 µM enzalutamide was added to
each dish. Cells were harvested on day 3.

To perform immunoblotting of LNCaP and 22Rv1 lysates after ASCT2 siRNA trans-
fection, cells (20 × 104 per dish) were first seeded in a 100-mm dish and grown in RPMI
1640 medium supplemented with 10% FBS or CSS without antibiotics overnight (day 0).
On day 3, those cells were harvested for ASCT2 siRNA transfection, and on day 4 for the
combination therapy of ASCT2 siRNA transfection (20 nM) and enzalutamide (20 µM).

Cells were collected and lysed using RIPA buffer (25 mM Tris, 0.1 M NaCl, 1% Triton
X-100, 0.5% deoxycholic acid, 0.1% SDS, pH 7.4). Protein expression levels were evaluated
using Western blotting. Forty micrograms of the total protein from each sample were
loaded onto NuPAGETM 4%–12% Bis-Tris Protein Gels (Invitrogen). The following primary
antibodies were used: ARV7 (1:1000; RevMAb Biosciences, San Francisco, CA, USA), ASCT2
(1:1000; Cell Signaling Technologies, Danvers, MA, USA), AR (1:1000; Abcam, Cambridge,
UK), and β-actin (1:1000; Abcam). LuminoGraph I (ATTO, Tokyo, Japan) was used for
the captures and analyses of images. Western blot quantification was performed with CS
Analyzer4 (ATTO, Tokyo, Japan).

2.5. Biostatistical Analyses

Publicly available transcriptome data for prostate adenocarcinoma and related clinical
features were obtained from the cBioPortal database (www.cbioportal.org, accessed on
2 April 2013) [25]. We selected “Prostate Adenocarcinoma (MSKCC, Cancer Cell 2010)”,
which was reported by Taylor et al. [26], and analyzed alterations in the ASCT2 gene.

2.6. Statistical Analysis

All values are presented as the mean ± SD. The Student’s t-test was used for the
statistical comparisons of the results. Western blot analyses were performed at least twice,
and all other in vitro experiments were repeated at least in triplicate.

3. Results
3.1. Association between ASCT2 Expression and Biochemical Recurrence-Free Survival in PCa
Patients with a High Gleason Score

To assess the effect of ASCT2 expression levels on the oncological outcomes of PCa pa-
tients who underwent prostatectomy, we used the cBioPortal database. Of the 108 patients,
the median ASCT2 expression level was 9.39 (8.61–10.28). Next, we evaluated the relation-
ship between ASCT2 expression levels and Gleason score (GS). The median expression level
of ASCT2 was 9.40 in the GS 6 group (n = 68) and 9.36 in the GS ≥ 7 group (n = 39), with no
significant difference (p = 0.701) (Figure 1A). To assess whether ASCT2 expression affected
biochemical recurrence (BCR)-free survival after prostatectomy, 108 patients were divided
into two groups according to the median level of ASCT2 expression. Of the patients in
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the GS 6 category, no obvious difference was observed in BCR-free survival between the
ASCT2-low (n = 33) and ASCT2-high groups (n = 35) (p = 0.863) (Figure 1B), although there
was a significant difference between patients in the ASCT2-low (n = 20) and ASCT2-high
groups (n = 19) in the GS ≥ 7 category (p = 0.033) (Figure 1C). Considering the results
obtained from clinical data, we focused on ASCT2 and investigated its function in PCa cells
in vitro.
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Figure 1. ASCT2 expression levels according to the cBioPortal database. (A) ASCT2 expression in
the GS 6 group (n = 68) and GS ≥ 7 group (n = 39); (B) Kaplan–Meier curves for BCR-free survival
according to ASCT2 expression level in the GS 6 group; (C) Kaplan–Meier curves for BCR-free
survival according to ASCT2 expression level in the GS ≥ 7 group.

3.2. ASCT2 Knockdown by siRNA in LNCaP and 22Rv1 Cells

In order to investigate the biological role of ASCT2, chemically synthesized ASCT2
siRNA was transfected into LNCaP and 22Rv1 cells. Then, Western blotting was performed
to examine the specificity and potency of ASCT2 siRNA in those cells. LNCaP cells in
FBS medium and 22Rv1 cells in FBS or CSS medium were treated with ASCT2 siRNA or
negative control siRNA at 1, 10, and 50 nM. The expression level of ASCT2 was suppressed
in ASCT2 siRNA-transfected LNCaP cells in a dose-dependent manner compared to that in
the negative control (Figure 2A). In 22Rv1 cells, the expression level of ASCT2 was stably
suppressed at ASCT2 siRNA concentrations of 10 nM and 50 nM compared to that in the
negative control cells in both FBS and CSS medium (Figure 2B).

3.3. Effects of ASCT2 Inhibition on LNCaP Cells

Next, since ASCT2 expression was suppressed in ASCT2 siRNA-transfected LNCaP
cells in a dose-dependent manner, we examined the effect of ASCT2 inhibition on LNCaP
cells in FBS-containing medium. The expression levels of AR and ASCT2 were examined
using Western blot analysis on day 3. Following inhibition of ASCT2 in LNCaP cells using
10 nM siRNA, ASCT2 expression stably decreased compared to that in cells treated with
negative control siRNA, whereas AR expression was not affected after ASCT2 inhibition.
Next, the growth ratio of LNCaP cells in FBS medium on day 4 after treatment with ASCT2
siRNA was compared to that of cells transfected with negative control siRNA. The growth
of ASCT2 siRNA transfected LNCaP cells was significantly reduced compared to that of
cells transfected with negative control siRNA, at both 10 nM and 50 nM (Figure 3A). These
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results indicated that ASCT2 inhibition alone might suppress the growth of LNCaP cells,
partially via mechanisms independent of the AR signaling axis.
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Figure 3. Effect of ASCT2 transfection and enzalutamide treatment in LNCaP cells. (A) Representative
images of Western blot analyses of LNCaP cells after transfection of ASCT2 siRNA (10 nM) or negative
control siRNA (10 nM). The proliferation of LNCaP cells transfected with ASCT2 siRNA (1, 10, 50 nM)
or negative control siRNA (1, 10, 50 nM) or Lipofectamine alone was assessed on day 4 using the cell
counting kit-8. The percentage of cells is expressed as proliferation activity relative to Lipofectamine alone.
Histograms represent the mean± SD (** p < 0.01). (B) Representative images of Western blot analyses of
LNCaP cells after enzalutamide treatment (20 µM). AR, androgen receptor; FBS, fetal bovine serum. The
proliferation of LNCaP cells after enzalutamide treatment (20 µM) or control (no treatment) was assessed
on day 3 using the cell counting kit-8. The percentage of cells is expressed as proliferation activity relative
to control. Histograms represent the mean± SD (** p < 0.01). (C) Representative images of Western blot
analyses of LNCaP cells after combination therapy with ASCT2 siRNA (20 nM) or negative control siRNA
(20 nM) and enzalutamide treatment (20 µM).
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3.4. Effects of Enzalutamide on LNCaP Cells

Next, we evaluated the effect of enzalutamide on LNCaP cells in a medium containing
FBS. The expression levels of AR and ASCT2 were examined using Western blot analysis
on day 3. After treatment of LNCaP cells with enzalutamide (20 µM), the AR expression
levels were stably suppressed, whereas the ASCT2 expression levels were not affected
(Supplemental Figure S1). The LNCaP cell growth ratio in FBS medium on day 3 after the
treatment with enzalutamide was then compared with that of untreated cells. The growth
of LNCaP cells after enzalutamide treatment at concentrations of 20 µM was significantly
reduced compared to untreated cells (p < 0.01) (Figure 3B).

3.5. Effect of Combination Therapy with ASCT2 siRNA and Enzalutamide on LNCaP Cells

We evaluated the effect of combination therapy with ASCT2 siRNA and enzalutamide
on LNCaP cells in a medium containing FBS. One day after the treatment with ASCT2
siRNA or negative control siRNA, 20 µM enzalutamide was added to medium containing
10% FBS. Western blotting and cell growth assays were performed on days 3 and 4, respec-
tively. As expected, the expression levels of AR and ASCT2 were stably suppressed by
enzalutamide and ASCT2 siRNA, respectively. Moreover, ASCT2 expression levels were not
affected after treatment with enzalutamide 20 µM (Supplemental Figure S1). Importantly,
the AR expression level was significantly decreased compared to that after combination
therapy with ASCT2 siRNA and enzalutamide. Cell growth on day 4 was significantly
reduced after combination therapy with control RNA and enzalutamide or ASCT2 siRNA
transfection alone as compared with control RNA transfection alone (both p < 0.01). The
growth of LNCaP cells on day 4 following combination therapy with ASCT2 siRNA and
enzalutamide treatment in FBS medium was significantly reduced compared to that fol-
lowing treatment with enzalutamide alone or ASCT2 siRNA transfection alone (p < 0.01,
0.01, respectively) (Figure 3C). These results suggested that the growth of LNCaP cells in
FBS medium might be inhibited, partially because of a synergistic effect between ASCT2
inhibition and enzalutamide treatment.

The proliferation of LNCaP cells after combination therapy with ASCT2 siRNA (20 nM)
or negative control siRNA (20 nM) and enzalutamide treatment (20 µM) or control (no
treatment) was assessed on day 4 using the cell counting kit-8. The percentage of cells is
expressed as proliferation activity relative to control. Histograms represent the mean ± SD
(** p < 0.01).

3.6. Effects of ASCT2 Inhibition on 22Rv1 Cells

Since the expression levels of ASCT2 were stably suppressed at ASCT2 siRNA concen-
trations of 10 nM and 50 nM compared to cells transfected with a negative control siRNA
in both FBS and CSS medium, we examined the effect of ASCT2 inhibition on 22Rv1 cells
in both media, to investigate the relationship between ASCT2 and ARV7. The expression
levels of ARV7, AR, and ASCT2 were examined on day 3 using Western blot analysis. After
inhibition of ASCT2 in 22Rv1 cells using 10 nM siRNA, the expression level of ASCT2 stably
decreased compared to that following transfection with negative control siRNA in both
FBS and CSS medium. In both media, ARV7 expression levels were significantly decreased
after treatment with ASCT2 siRNA, whereas the expression levels of AR were not affected
in response to ASCT2 inhibition (Figure 4A) (Supplemental Figure S1). Next, the 22Rv1 cell
growth ratio in FBS and CSS medium on day 4 following treatment with ASCT2 siRNA
was compared with that of cells transfected with negative control siRNA. In both media,
the growth of 22Rv1 cells was reduced in a dose-dependent manner following treatment
with ASCT2 siRNA. Moreover, following inhibition of ASCT2 by siRNA transfection, the
growth of 22Rv1 cells was significantly suppressed compared cells transfected with nega-
tive control siRNA at a concentration of 50 nM, in both the FBS and CSS media (Figure 4B).
These results indicate that ASCT2 inhibition suppressed cell growth not only in CSPC cells
but also in ARV7-positive CRPC cells.
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(10 nM); (B) The proliferation of 22Rv1 cells transfected with ASCT2 siRNA (1, 10, 50 nM) or negative
control siRNA (1, 10, 50 nM) or Lipofectamine alone was assessed on day 4 using the cell counting
kit-8. The percentage of cells is expressed as proliferation activity relative to Lipofectamine alone.
Histograms represent the mean ± SD (** p < 0.01).

4. Discussion

In this study, we initially used the cBioPortal database to assess the effect of ASCT2
expression levels on the oncological outcomes of patients with PCa who underwent prosta-
tectomy. Our analyses revealed a significant difference in BCR-free survival between
patients in the ASCT2-low and ASCT2-high groups with GS ≥ 7. These results suggest that
ASCT2 may affect PCa carcinogenesis, at least in the high GS category.

Next, we focused on ASCT2 expression and investigated its function in PCa cells
in vitro. To investigate the biological role of ASCT2 in the CSPC stage, LNCaP cells were
transfected with chemically synthesized ASCT2 siRNA and treated with enzalutamide. The
present study demonstrated that ASCT2 inhibition suppresses the growth of CSPC cells.
In LNCaP cells, growth after combination therapy with ASCT2 siRNA and enzalutamide
was significantly reduced compared to that after treatment with enzalutamide alone or
ASCT2 siRNA transfection alone. However, combination therapy with ASCT2 siRNA and
enzalutamide might reduce LNCaP cell growth by approximately 50%. Considering this
reduction in LNCaP cell growth, further studies, both in vitro and in vivo clinical studies,
are required to evaluate this treatment.

Western blot analysis of LNCaP cells revealed that AR expression was not affected by
ASCT2 inhibition and that ASCT2 inhibition alone might suppress the growth of LNCaP
cells via mechanisms that are partially independent of the AR axis. Interestingly, however,
the expression levels of AR were the lowest compared to the levels of the other proteins
following combination therapy with ASCT2 siRNA and enzalutamide. Further experiments
should be conducted to elucidate the exact relationship among ASCT2, AR, and AR antag-
onists; however, our present results suggest that the maximum reduction in the growth
of LNCaP cell was obtained in response to the combination therapy with ASCT2 siRNA



J. Clin. Med. 2022, 11, 5466 8 of 10

and enzalutamide, partially because of a synergistic effect between ASCT2 inhibition and
enzalutamide treatment.

According to several recent reports, aerobic glycolysis, lipid metabolism, and other
anabolic processes were stimulated by AR signaling [27–29]. Moreover, other reports
demonstrated AR was working as a critical metabolic regulator by integrating metabolic
profiling with genomic studies using LNCaP cells in order to identify transcriptional
networks [28,30,31]. Massie et al. clarified a coordinated network of transcriptional changes
conducted by AR, and it involved the upregulation of glucose, lipid, nucleotide, and amino
acid metabolism, as well as cell cycle regulators [27]. Our present results demonstrating a
possible synergistic effect between ASCT2 inhibition and enzalutamide treatment in LNCaP
cells are consistent with these previous findings.

To investigate the biological role of ASCT2 in the CRPC stage, transfection of chem-
ically synthesized ASCT2 siRNA was also performed in 22Rv1 cells, which are ARV7-
positive. The present study demonstrated that ASCT2 inhibition suppressed the growth of
22Rv1 cells as well as LNCaP cells. Considering the results of our Western blot analyses
that showed ARV7 expression levels to be significantly decreased after treatment with
ASCT2 siRNA, suppressed growth of 22Rv1 cells may be induced by the reduction of ARV7
expression. Regarding the effect of ARV7 on 22Rv1 cells, we previously demonstrated
that, after the combination therapy of AMACR inhibition and docetaxel treatment, the
cell growth of 22Rv1 was significantly inhibited with decreased levels of ARV7 expression
under androgen deprivation medium [32].

In the context of the contributions of AR and ARV7 to metabolism in PCa cells, our
Western blot analysis showed that the expression levels of ARV7 significantly decreased
after treatment with ASCT2 siRNA, whereas AR expression levels were not affected. Shafi
et al. first showed their unique metabolic profiles and functions of AR and ARV7 [19].
They found that ARV7 and AR similarly stimulated not only growth and migration but
glycolysis by measuring the extracellular acidification rate. However, increased dependence
on glutaminolysis and reductive carboxylation to produce TCA metabolites were shown
in ARV7 as compared with AR by their flux assays. Furthermore, decreased steady state
citrate levels, despite an enhanced rate of its synthesis from glucose and glutamine, implies
an increase in the utilization of this key TCA intermediate for generating biochemical
components required for CRPC progression. Taking this into consideration, our result
indicating that ASCT2 inhibition influenced expression levels of ARV7 but not AR in 22Rv1
cells could be reasonable. However, similarly to LNCaP cells, further research is needed in
order to elucidate the relationship among ASCT2, AR, and ARV7, in 22Rv1 cells.

The present study is associated with several limitations that should be acknowledged.
First, many confounding factors which may influence BCR should be appropriately con-
trolled, in order to precisely assess the correlation between ASCT2 expression and clinical
parameters. Second, the use of ASCT2 siRNA or enzalutamide were not evaluated enough,
including their optimal concentration or infusion timings. Third, the relationship between
ASCT2 and the AR axis or other AR-related signaling pathways in PCa cells has not been
fully elucidated. Thus, further in vitro and in vivo studies are required to confirm the
findings of this study.

5. Conclusions

In conclusion, our in vitro experiments demonstrated that ASCT2 inhibition signifi-
cantly reduced the proliferation of both CSPC and CRPC cells. Furthermore, combination
therapy with ASCT2 inhibition and enzalutamide treatment induced the maximum reduc-
tion in CSPC cell growth. Although further studies are needed, ASCT2 could be a useful
target for both CSPC and CRPC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11185466/s1, Figure S1: Western blot quantification.
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