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ABSTRACT: Idiopathic uveitis (IU) and Vogt−Koyanagi−Harada (VKH) syndrome are common types of uveitis. However, the
exact pathological mechanisms of IU and VKH remain unclear. Proteomic analysis of aqueous humor (AH), the most easily
accessible intraocular fluid and a key site of uveitis development, may reveal potential biomarkers and elucidate uveitis pathogenesis.
In this study, 44 AH samples, including 12 IU cases, 16 VKH cases, and 16 controls, were subjected to label-free quantitative
proteomic analysis. We identified 557 proteins from a comprehensive spectral library of 634 proteins across all samples. The AH
proteomic profiles of the IU and VKH groups were different from those of the control group. Differential analysis revealed a shared
pattern of extracellular matrix disruption and downregulation of retinal cellular proteins in the IU and VKH groups. Enrichment
analysis revealed a protein composition indicative of inflammation in the AH of the IU and VKH groups but not in that of the
control group. In the IU and VKH groups, innate immunity played an important role, as indicated by complement cascade activation
and overexpression of innate immune cell markers. Extreme gradient boosting (XGBoost), an efficient and robust machine learning
algorithm, was subsequently used to screen potential biomarkers for classifying the IU, VKH, and control groups. Transferrin and
complement factor B were deemed the most important and represent a promising biomarker panel. These proteins were validated by
high-resolution multiple reaction monitoring (HR-MRM) in an independent validation cohort. A classification decision tree was
subsequently built for the diagnosis. Our findings further the understanding of the underlying molecular mechanisms in IU and VKH
and facilitate the development of potential therapeutic and diagnostic strategies.

1. INTRODUCTION

Uveitis is a sight-threatening disease characterized by intra-
ocular inflammation of the uveal tract and adjacent structures
and accounts for 5−10% of visual impairment worldwide.1

According to the International Uveitis Study Group, the
etiological classification distinguishes three types of uveitis:
infectious uveitis, noninfectious uveitis (NIU), and masquer-
ade.2 Among clinically diagnosed NIU, idiopathic uveitis (IU)
predominates, accounting for 24−55% of cases.3 Vogt−
Koyanagi−Harada (VKH) syndrome is another common
NIU type and is a major vision-threatening disease in Asian
populations.4,5 The pathogenesis of both IU and VKH remains
unclear. Additionally, IU and VKH lack specific laboratory
findings, thus necessitating the identification of diagnostic
biomarkers.

Aqueous humor (AH) is a transparent fluid that bathes the
anterior and posterior chambers of the eye, provides nutrients
to the ocular tissues, and is essential to the overall functioning
of the eye. Furthermore, AH is the direct metabolic region of
ocular tissues and one of the most frequently used fluid ocular
matrices for human biomarker evaluation. The onset and
progression of numerous ocular diseases, including posterior
segment disease,6,7 may influence AH components. Current
evidence suggests the existence of a significant physiological
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flow of AH through the vitreous humor and across the retinal
pigment epithelium, which exits the eye via the choriocapillaris
and vortex veins.8 For humans, in particular, this posteriorly
directed flow is approximately equal to the anteriorly directed
flow. A recently published paper in CELL revealed that 87.0%
(5172) of vitreous proteins could be identified in AH
demonstrating a substantial protein exchange between both
fluid-filled compartments.9 In addition, the authors found that
cell-specific intracellular proteins from the retina could be
detected in AH and that proteins from photoreceptors and
ciliary body cell origins were also strongly enriched in AH.
Therefore, substance exchange among the AH, vitreous humor,
and retina makes proteomic studies of AH valuable for
understanding posterior segment diseases of the eye, including
panuveitis. Given the low invasiveness, renewability, and
intraocular microenvironmental origin of AH, we can identify
AH-derived biomarkers for VKH and IU and explore
intraocular molecular characteristics in affected eyes by
analyzing the AH proteome.
In this study, we performed proteomic analysis of AH from

patients with IU and VKH and investigated the underlying
pathogenic mechanism by using comprehensive bioinformatic
analysis. In addition, we identified a potential diagnostic
biomarker panel and established a classification decision tree
for differentiating IU and VKH, and control groups using a
machine learning method.

2. METHODS
2.1. Subjects and Sample Collection. Forty-four

participants, including patients diagnosed with IU (n = 12),
VKH (n = 16), and cataract, which comprised the control
group (n = 16), were recruited for sequential window
acquisition of all theoretical fragment ions (SWATH) analysis.
Additionally, 24 participants, diagnosed with IU (n = 8), VKH
(n = 8), and cataract (n = 8) were recruited for high-resolution
multiple reaction monitoring (HR-MRM) analysis. For
patients with IU and VKH manifesting as panuveitis, AH
samples were obtained during cataract surgery when ocular
inflammation was inactive and the anterior chamber cell grade
was 0. The control group was composed of patients with age-
related cataracts without any other ocular diseases. All
procedures complied with the Declaration of Helsinki, and
ethical approval was obtained from the Ethics Committee of
Tianjin Medical University Eye Hospital, Tianjin, China
(approval number. 2020KY(L)-56). All of the participants
provided written informed consent.

2.2. Sample Preparation for Mass Spectrometry
Analysis. Approximately 50 μL of AH samples was
resuspended in 200 μL of 8 M urea lysis buffer (8 M urea, 1
mM NaF, 1 mM Na3VO4, 50 mM NH4HCO3, and 1×
complete protease inhibitor mixture), and the protein content
was determined using a bicinchoninic acid assay (Solarbio,
China). Equal amounts of the total protein obtained from each
sample were reduced or alkylated with dithiothreitol or
iodoacetamide, respectively. Subsequently, the samples were
loaded onto a Vivacon 500 centrifugal concentrator (Sartorius,
Germany) and trypsinized (Promega) at a 50:1 protein-to-
enzyme ratio for 12−16 h at 37 °C. The digested peptide
fragments were eluted with 50 mM NH4HCO3 (>99.5%,
Sigma-Aldrich), after which the reaction was quenched with
1% (v/v) formic acid (FA, 98−100%, Merck, Germany).
Peptides were dried using an integrated SpeedVac (Thermo
Scientific) and then resuspended in 1‰ (v/v) FA.

2.3. Spectral Library Construction. A reference spectral
library was constructed for the SWATH acquisition. Small
amounts of each sample were collected and pooled to
construct a cohort-specific spectral library. The pooled sample
was fractionated into nine fractions using a high-pH reversed-
phase microcolumn (Durashell C18, DC930010-L, Agela,
China). The obtained fractions were processed as described in
Section 2.2 and analyzed by liquid chromatography−tandem
mass spectrometry (LC−MS/MS) using a nano-LC 415
(Eksigent Technologies) and a triple time-of-flight (TOF)
6600 mass spectrometer (AB Sciex) in information-dependent
acquisition (IDA) mode. A micro ion source was used for this
analysis. The peptide fragments were loaded onto a custom-
made trap column (10 × 0.3 mm, Durashell C18 5 μm, 120 Å)
and separated using a custom-made analytical column (150 ×
0.3 mm, Durashell C18 3 μm, 120 Å) at flow rates of 10 and 5
μL/min, respectively. The peptides were resolved over a 60
min nano-LC gradient (linear gradient from 5 to 80% LC
buffer B [0.1% FA and 2% water in acetonitrile] over 55 min
and then to 5% buffer B over 5 min). For data acquisition in
IDA mode, TOF−MS spectra were recorded across a 300−
1500 m/z range with an accumulation time of 0.25 s. Ion
selection criteria included a charge state between +2 and +5, a
mass tolerance of 50 ppm, and an intensity above 150 cps. A
maximum number of 60 candidate ions were monitored per
cycle; the time of excluding former target ions was always 15 s
after one occurrence, and a dynamic fragmentation pattern was
chosen. Tandem MS across a 100−1500 m/z range was
performed using dynamic fragmentation with various collision
energies (CEs) and a high-sensitivity scanning mode with an
accumulation time of 0.035 s.

2.4. Quantitative Proteomic Data Acquisition. Forty-
four independent samples were analyzed using SWATH-MS.
For each sample, 1 μg of peptide was injected. For SWATH
experiments, the accumulation time of TOF−MS was 0.25 s,
and the high-sensitivity scanning mode was selected for MS/
MS. Furthermore, based on the SWATH variable window
calculator v1.1, 94 variable windows were developed. An
accumulation time of 34 ms was used for each window. The
scanning mass range was 100−1500 Da. Other parameters
were the same as those used in the IDA mode for spectral
library construction.

2.5. Validation by HR-MRM. Twenty-four samples were
analyzed using HR-MRM. For each sample, 3 μg of peptide
was injected. HR-MRM was performed in standard acquisition
mode with 70 variable windows and a 46 ms accumulation
time per window. TOF−MS scans of individual candidate
peptides were set to their m/z values, followed by MS/MS
product ion scans of 100−1500 Da. CEs were calculated as
CEs = (m/z × 0.049) − 4 for +2 charge peptides and CEs =
(m/z × 0.048) − 3 for +3 charge peptides. The CEs equation
was based on a previously published study10 and optimized to
fit our instrument. Other parameters were the same as those
used in IDA mode for spectral library construction.

2.6. Data Processing. Raw data from IDA mode were
analyzed using ProteinPilot software (v.5.0.1; AB Sciex) with
reference to the UniProt human database (released 2020_03),
which contains 20,368 annotated proteins with a false
discovery rate (FDR) < 1%. SWATH-MS results were
processed using the SWATH Acquisition Micro application
(v.2.0) in PeakView (v.2.2; AB Sciex) software, with reference
to the spectral library. During processing, we selected an
extraction window of 12 min and the following conditions: six
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peptides and six transitions, excluding shared and modified
peptides; an XIC width of 50 ppm; peptide confidence >99%;
and FDR < 1%. The peak areas were exported as quantitative
values. Data obtained from HR-MRM was imported into
Skyline software (v.20.1.0.155; http://proteome.gs.
washington.edu/software/skyline/). Peptide retention time
was calibrated according to the spectral library, and the
peptide quantitative values were then exported. Three peptides
from each protein were chosen for quantification, and the final
protein quantitative values were determined by the sum of the
peptides. The peptide sequences were as follows: TF,
SAGWNIP IGLLYCDLPEPR/MYLGYEYVTA IR/
DYELLCLDGTR; CFB, LEDSVTYHCSR/DLLYIGK/DA-
QYAPGYDK; LYZ, WESGYNTR/STDYGIFQINSR/
QYVQGCGV.
The quantitative data were log 2-transformed and median-

normalized. Differential analysis was performed using the “t
test” function in the “stats” R package. Proteins with a fold-
change (FC) > 1.5 or < −1.5, and p-values <0.05 were
considered differentially expressed proteins (DEPs).

2.7. Bioinformatics Analysis. Principal component
analysis (PCA) score plots and box plots and complexity
parameter (cp) plots were obtained using the “factoextra”,
“ggpubr” R packages, and “plotcp” R function. Abundance
scatter plots, volcano plots, bar graphs, ridge-line plots, and
matrix heatmap were constructed using the online biomedical
visualization software Hiplot (https://hiplot.com.cn), bioin-
formatics (https://bioinformatics.com.cn), and Bioladder
(https://www.bioladder.cn/). Heatmaps were visualized by
using the “pheatmap” R package. The resultant plots were

adjusted using Adobe Illustrator (Adobe). Gene ontology
(GO) enrichment analyses were performed using Metascape
online analysis software (http://metascape.org).11 Gene set
enrichment analysis (GSEA) and gene set variation analysis
(GSVA) were performed using the “clusterProfiler” and
“GSVA” R packages, respectively, and utilized the molecular
signature database (MSigDB, c5.go.bp.v2023.1.Hs.entrez.gmt/
msigdb.v2023.1.Hs.symbols.gmt). Pathway RespOnsive
GENes for activity inference (PROGENy) was performed
using the “progeny” R package. Protein−protein interaction
(PPI) networks were generated using STRING (https://cn.
string-db.org/). Subworks and hub proteins were identified
using the molecular complex detection (MCODE) and
Cytohubba plugins, respectively, for Cytoscape (version
3.9.0), implementing the maximum clique centrality (MCC)
algorithm for CytoHubba.

2.8. Machine Learning. The data sets were randomly split
in a 7:3 ratio to generate the training and testing data sets.
Extreme gradient boosting (XGBoost) was used to screen
potential biomarkers by using the “xgboost” R package.
Fivefold cross-validation was performed using the “xgb.cv” R
function. The xgb.importance” and “pROC,” R packages were
used to generate protein importance rankings and construct
receiver operating characteristic (ROC) curves, respectively. In
addition, a classification decision tree was built and plotted by
using the “rpart” and “rpart.plot” R package, respectively.

2.9. Statistical Analyses. Statistical analyses were
performed using SPSS software (v.24.0; IBM Corp). Data
are presented as mean ± standard deviation. For normal data
with even variance, Student’s t tests were used; otherwise,

Figure 1. Summarized workflow of the aqueous humor proteomic analysis. Aqueous humor samples (n = 44) were subjected to LC−MS/MS
analysis in the SWATH method based on an established cohort-specific spectral library; obtained data were analyzed for differential expression
analysis, pathway analysis, and protein−protein interaction analysis; Biomarker candidates were identified using the XGBoost algorithm and
validated by HR-MRM; Classification decision tree was built.
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Mann−Whitney rank tests were used. Gender comparisons
between the two groups were performed by using the chi-
square test.

3. RESULTS
3.1. Workflow of Aqueous Humor Proteomic Anal-

ysis. The workflow of this study is displayed in Figure 1.

Forty-four AH samples from patients with IU, VKH, and
controls were used for SWATH analysis. Demographic
parameters of the patients are summarized in Table S1. The
obtained quantitative proteomic data were subjected to
differential expression, enrichment, and PPI network analyses.
Potential biomarker candidates were identified using the
XGBoost machine learning algorithm and validated in an

Figure 2. Characterization of the aqueous humor proteome in VKH, IU, and control groups. (A) Score plots of principal component analysis. (B)
Ranked scatter plot showing the relative abundance of proteins identified in the aqueous humor with the top and bottom 10 proteins listed on
yellow and gray backgrounds, respectively. (C) Volcano plot of differentially expressed proteins (DEPs) of VKH and control groups. Red,
upregulated; blue, downregulated. (D) Volcano plot of DEPs of the IU and control groups. Red, upregulated; blue, downregulated. (E) Volcano
plot of DEPs of the VKH and IU groups. Red, upregulated; blue, downregulated. (F) Heatmap showing the expression values of all of the identified
acute phase proteins (APPs) in this study. Red, high expression; blue, low expression.
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independent cohort using HR-MRM. Finally, a classification
decision tree was built. Demographic parameters of the
subjects in the validation cohort are listed in Table S1.

3.2. Differential Proteomic Profiling among IU, VKH,
and Controls. 3.2.1. Characterization of the AH Proteome.
Based on IDA data, we constructed an AH-specific spectral

library containing 634 proteins. Among these, we identified
557 proteins with an FDR < 1% across all samples using
SWATH acquisition. Raw data were median-normalized. Box
plots showing the data distribution before and after normal-
ization are shown in Figure S1A,B, and the processed data are
presented in Table S2. Pearson correlation coefficients

Figure 3. Enrichment analysis of differentially expressed proteins. (A) Bar graph showing the results of biological process GO analysis of DEPs of
any two groups. (B) Bar graph showing the results of GSEA between any two groups. (C) Heatmap showing the results of GSVA in VKH, IU, and
the control group. (D) Ridge-line plots showing the results of PROGENy analysis in VKH, IU, and the control group.
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between the samples were >0.72 (Figure S1C). Collectively,
these results indicate the good quality of our proteomic data,
which encourages further AH proteome analysis.
PCA based on the identified proteins revealed that the

proteomic profiles of the VKH and IU groups differed from
that of the control group, with higher intrasample variation in
the VKH group than in the IU group (Figure 2A). Figure 2B

displays the top 10 proteins with the highest and lowest mean
abundances among the three groups. Across all groups, high
protein abundance was seen for albumin (ALB), transferrin
(TF), hemopexin (HPX), ceruloplasmin (CP), apolipoprotein
A-I (APOA1), and members of the serpin family, whereas low
protein abundance was seen for ras-related nuclear protein
(RAN), glycogen phosphorylase (PYGL), stress-induced

Figure 4. Identification of key subnetworks and hub proteins. (A) PPI network of DEPs of the VKH and control groups; the larger nodes indicate
hub proteins. (B) PPI network of DEPs of the IU and control groups; the larger nodes indicate hub proteins. (C) PPI network of DEPs of the VKH
and IU groups; the larger nodes indicate hub proteins.
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phosphoprotein 1 (STIP1), proteasome subunits, and
interleukins.
To compare the differential proteomic profiles of IU, VKH,

and the control group, we performed differential analysis
(Table S3) and identified 187 (VKH vs control), 241 (IU vs
control), and 82 (VKH vs IU) DEPs with |FC| > 1.5 and p <
0.05. Compared with the control group, the VKH group had
126 upregulated and 61 downregulated DEPs, and the IU
group had 138 upregulated and 103 downregulated DEPs.
Compared with the IU group, the VKH group had 50
upregulated and 32 downregulated DEPs.
These DEPs are displayed in volcano plots (Figure 2C−E),

with red dots representing upregulated proteins and blue dots
representing downregulated proteins. Several inflammation-
related proteins, such as TF, orosomucoid-1 (ORM1), and
complement components, were overexpressed in the IU and
VKH groups compared with the control group. Additionally,
TGFB1 and IL6, with opposite inflammatory regulatory effects,
were both upregulated in the IU group compared to those in
the control group. Notably, several downregulated proteins in
the IU and VKH groups overlapped, including prostaglandin-
H2 D-isomerase (PTGDS), calsyntenin-1 (CLSTN1), folli-
statin-related protein 1 (FSTL1), and retinol-binding protein 3
(RBP3). Over 50% of the DEPs overlapped between the VKH
and IU groups in either the up- or downregulated clusters
(Figure S2A). To elucidate the function of the overlapping
DEPs, we performed biological process GO analysis, which
revealed that the overlapping downregulated DEPs are related
to cell−cell adhesion, cell growth regulation, and eye
morphogenesis, whereas the overlapping upregulated DEPs
were mainly enriched in complement activation, acute
inflammatory responses, and regulation of the humoral
immune response (Figure S2B). Additionally, all of the
identified acute phase proteins (APPs) exhibited greater
expression in both the IU and VKH groups than in the
control group (Figure 2F), and peaked in the IU group.
3.2.2. Enrichment Analysis of DEPs. To understand the

biological processes occurring in AH under different disease

states, we conducted biological process GO analysis (Figure
3A) and found that the DEPs of the VKH and control groups
were enriched in “humoral immune response,” “antimicrobial
humoral response,” “positive regulation of cytokine produc-
tion”, and “cell killing”. For DEPs of the IU and control groups,
“complement activation,” “acute inflammatory response,”
“response to bacterium,” and “regulation of defense response”
were enriched. Additionally, DEPs of the VKH and IU groups
exhibited significant enrichment of terms associated with
“acute-phase response,” “response to oxidative stress,” and
“regulation of interleukin-8 production.”
To comprehensively understand the differential proteomic

profiles of the IU, VKH, and control groups, GSEA, GSVA,
and PROGENy analyses using all identified proteins were
conducted. The results of the GSEA, performed based on
protein expression FC-values generated from the differential
analysis between any two groups, are listed in Figure 3B.
Similar enrichment terms were found in the VKH and IU
groups compared to the control group, including “humoral
immune response,” “defense response,” and “complement
activation,” whereas “acute immune response” was specifically
enriched in the IU group. Subsequent GSEA analysis
comparing the VKH and IU groups also highlighted differential
APPs expression (Figure 2F), which corresponds to the results
of the biological process GO analysis of the DEPs (Figure 3A).
GSVA is a nonparametric, unsupervised algorithm that
calculates enrichment scores for specific gene sets in each
sample without group differentiation. Figure 3C shows the
GSVA scores for 44 samples in immune-related biological
processes and pathways and indicates that “complement
cascade,” “antigen processing and presentation,” “adaptive
immune response,” “innate immune response”, and “B cell
receptor signaling pathway” scored higher for both IU and
VKH than for the control, implying an upregulated state.
PROGENy was used to infer the relative pathway activity from
gene expression under a wide range of conditions using
publicly available perturbation experiment data.12 Figure 3D
shows the relative activity states of 14 pathways inferred using

Figure 5. Generation and visualization of diagnostic classification models. (A) Bar graph showing protein importance scores in the XGBoost model.
(B) Confusion matrix heatmap showing the classification results in the testing set of the XGBoost model. (C) ROC curve and AUC values of the
XGBoost model for two-class and multiclass classification. (D) Classification decision tree showing the node information and threshold value.
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PROGENy, indicating that inflammation-related signaling
pathways, such as TNF-α, JAK-STAT, and NF-κB pathways
scored higher in the IU and VKH groups. Of note, the Wnt
pathway got the highest score in the IU group.

3.3. Identification of Key Subnetworks and Hub
Proteins. PPI networks were generated and used to identify
highly interconnected clusters (dense regions) of DEPs, which
were defined as key subnetworks. Within these key subnet-
works, the most highly correlated DEPs were defined as hub
proteins. Figure 4A−C shows the key subnetworks of DEPs
obtained from any two comparisons among VKH, IU, and the
control group, with hub proteins represented as larger nodes.
GO analysis of the proteins within the key subnetworks
revealed that “complement and coagulation cascades” were the
main enriched biological process in VKH and IU groups
(Figure 4A,B), which highlights the pivotal role of complement
reactions within the AH of uveitis. Enrichment analysis
revealed that the key subnetworks of DEPs of the VKH and
control groups were involved in “inflammatory response,”
“lysosome,” “secretion by cell”, and “cholesterol metabolic
process” (Figure 4A). The key subnetworks of DEPs of the IU
and control groups were “proteasome,” “secretion by cell,”
“cholesterol metabolic process,” “actin cytoskeleton organ-
ization,” “lysosome,” “complement activation of the classical
pathway”, and “negative regulation of Wnt signaling pathway”
(Figure 4B). The key subnetworks of DEPs of the VKH and
IU groups were enriched exclusively in “complement and
coagulation cascades” (Figure 4C).

3.4. Biomarker Screening Using the XGBoost Algo-
rithm. Machine learning algorithms were used to identify
potential diagnostic biomarkers from 557 quantifiable proteins
for distinguishing three groups of 44 samples. XGBoost is an
integrated learning method that builds a strong ensemble
classifier by combining multiple weak learners. Most
importantly, XGBoost can improve the performance of the
model by increasing the number of weak learners, and its
regularization function can prevent overfitting. Since the
number of features was much larger than that of samples,
XGBoost was more suitable for this data set. Forty-four
samples were divided into a training set and testing set to
establish and validate a classification model, with the aim of
screening important proteins from the 557 quantifiable
proteins. To improve robustness, a final XGBoost classification
model was determined after fivefold cross-validation and
parameter optimization (e.g., learning rate and max-depth).
However, a total of 23 proteins were included in the model

and ranked according to their relative importance (Figure 5A).
In this model, the classification accuracy of the testing set
reached 85.71%; other statistics regarding the confusion matrix
are listed in Table 1. The κ index was used to assess the
classification accuracy of the matrix and reached 0.7795,
indicating substantial agreement. The per-class performance of
this model applied to the testing set is shown in the confusion
matrix in Figure 5B. ROC curves for the two-class and
multiclass analyses are presented in Figure 5C, with the area
under the curve (AUC) reaching 0.9333 for multiclass
analyses. We observed that the top three ranked proteins
were TF, complement factor B (CFB), and lysozyme C (LYZ),
which achieved a summed importance score of >67%. Box
plots of their expression values in VKH, IU, and controls
revealed significant differences between the groups (Figure
S3A). To improve clinical applicability, i.e., to achieve more
efficient diagnostic performance with a minimum number of

biomarkers, we subsequently validated the three most
important proteins.

3.5. Constructing a Decision Tree for Diagnostic
Classification. To confirm the reliability of the three
identified biomarker candidates, 24 AH samples from an
independent validation cohort were included for validation
using HR-MRM analysis. HR-MRM is a targeted proteomics
technique typically performed by using high-resolution mass
spectrometry. As shown in Figure S3B, the trends of TF, CFB,
and LYZ expression from HR-MRM analysis (Table S4) were
almost consistent with those in SWATH acquisition. TF and
CFB exhibited the highest expression in the IU group, while
LYZ expression was higher in the VKH group than in the IU
group.
We subsequently constructed a simple classification decision

tree using the quantitative values of the three proteins in the
HR-MRM assays. Figure S3C shows the cp plot for the “rpart”
fit to visualize the cross-validation results. As an appropriate cp
for pruning is often the leftmost value for which the mean lies
below the horizontal line, the cp value was set as 0.08.
Eventually, TF and CFB were chosen for constructing this
classification decision tree, and the thresholds were labeled
(Figure 5D). The accuracies for the training and test sets are
93.75 and 87.50%, respectively.

4. DISCUSSION
Uveitis is a blinding eye disease affecting people worldwide,
with IU and VKH as two common types of uveitis that have
unknown etiology and require available markers for laboratory
diagnosis. In the current study, we demonstrated that innate
immune responses, in particular the complement cascade, exert
important effects in the AH of patients with IU and VKH.
Proteomic profiles of IU and VKH samples showed several
pathological alterations including extracellular matrix (ECM)
disruption, blood−AH barrier breakdown, and retinal cell
damage, among others. Moreover, potential biomarker
candidates were identified using XGBoost, and a classification
decision tree consisting of TF and CFB was constructed after
HR-MRM validation.
AH is a plasma-derived fluid and therefore contains the same

components as plasma, albeit in significantly different relative
amounts. Specifically, AH has more sodium ions, the principal
ion that maintains osmotic pressure; more ascorbic acid and
lactate; and less protein, only 1/200th of that in plasma.13 The
main AH component is ALB, followed by TF, IgA, and IgG.14

Concordantly, we found that ALB and TF were the most
abundant components in VKH, IU, and control groups. We
also noted significantly higher ALB and TF levels in the VKH

Table 1. Statistics of the Confusion Matrix in the Testing
Seta

statistics by three class

overall statistics control VKH IU

accuracy 85.71% sensitivity 1.0000 0.6000 1.0000
95% CI (0.5719,

0.9822)
specificity 0.8750 1.0000 0.9091

p-value 0.00128 PPV 0.8571 1.0000 0.7500
κ 0.7795 NPV 1.0000 0.8182 1.0000

balanced
accuracy

0.9375 0.8000 0.9545

aAbbreviation: CI, confidence interval; PPV, positive predictive value;
NPV, negative predictive value.
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and IU groups than in the control group, which may be
attributed to the breakdown of the blood−AH barrier during
inflammation, causing leakage of plasma ALB and TF into the
AH. PTGDS is the most highly expressed gene in ciliary body
tissue;15 notably, PTGDS ranked second in AH protein
abundance of the control group but was downregulated in both
the VKH and IU groups, possibly owing to anterior chamber
inflammation and ciliary body tissue injury. AH provides a
homeostatic environment for the anterior chamber tissue and
therefore contains various enzymes and enzyme-related
proteins such as the Serpin family. Due to their relatively
low abundances, MS detection of growth factors, cytokines,
and receptors can be poor.16 Consistently, interleukin (IL)-6,
IL-1 receptor accessory protein (IL1RAP), and IL-18-binding
protein (IL18BP) ranked last in protein abundance in this
study. Poor MS detection of low-abundance proteins may also
explain the low ranking of proteasome subunits, such as
proteasome activator complex subunit 2 (PSME2), proteasome
subunit α type-6 (PSMA6), and proteasome subunit α type-5
(PSMA5).
Volcano plots of comparisons between the two groups

revealed several downregulated proteins common to the VKH
and IU groups. Subsequent enrichment analysis indicated that
these proteins had functions related to cell−cell adhesion and
eye morphogenesis, which may explain the cellular inflamma-
tion and subsequent ocular tissue damage seen in IU and
VKH. The most downregulated proteins could be grouped into
two categories. One category included proteins associated with
extracellular matrix organization, such as PTGDS, nesh-
binding protein (ABI3BP), testican-1 (SPOCK1), FSTL1,
and α-II spectrin (SPTAN1), and the downregulation of these
proteins may account for inflammation-induced tissue
destruction. The second category included proteins related
to single-cell-type expression clusters localized to retinal cells,
such as CLSTN1, RBP3, and carboxypeptidase E (CPE),
which are relevant to retinal photoreceptor cells, neuroserpin
(SERPINI1) and amyloid-like protein 2 (APLP2), which are
relevant to bipolar cells, and wnt inhibitory factor 1 (WIF1),
which is relevant to Muller cells (https://www.proteinatlas.
org/).17 AH is involved in the nutrient delivery and removal of
metabolic products from the avascular tissues in the eye.18

Several studies have already indicated that changes in AH
protein levels were found in posterior segment disorders.6,7 In
addition, a recent study identified specific intracellular proteins
from retinal cells in AH.9 Therefore, our results highlighted the
potential application of AH proteomic analysis in investigating
ocular disease biology including that of fundus diseases.
Moreover, transforming growth factor β-1 (TGF-β1) and

IL-6 were more highly expressed in the IU and VKH groups
than in the control group, which is consistent with that of a
previous study of experimental autoimmune uveitis (EAU).19

TGF-β1, a multifunctional cytokine, plays a vital role in
regulating cell proliferation, differentiation, and ECM neo-
genesis. It is mainly present in plasma but may leak into the
AH following disruption of the blood−AH barrier. IL-6 is a
pleiotropic cytokine involved in multiple activities that
promote cell proliferation and differentiation, as well as
accelerated APPs synthesis in hepatocytes. Ohta et al.19,20

reported that at the onset of EAU induction, IL-6 dominates
the immune response by antagonizing TGF-β, resulting in the
loss of the immune-privileged state of AH. In contrast, in
progressively severe EAU, IL-6 is absent, and high expression
of plasma-derived TGF-β1 and ocular-derived TGF-β2 sup-

pressed the progression of inflammation. Therefore, the IL-6/
TGF-β balance appears to be a key determinant of AH
inflammatory status and, consequently, uveitis initiation and
progression. Our findings indicated that the AH proteome in
patients with VKH and IU exhibits continued high expression
of APPs despite the quiescence of intraocular inflammation,
which may also be attributed to IL-6/TGF-β imbalance. A
previous study reported that intraperitoneal injection of TGF-
β1 can inhibit the progression of endotoxin-induced uveitis.21

Similarly, increasing TGF-β levels and reducing IL-6 levels in
AH may be promising therapeutic strategies to treat uveitis.
Interleukin-18-binding protein (IL18BP) suppresses the
downstream signal transduction of IL-18 by competitively
binding to IL-18. Downregulation of IL18BP in the VKH and
IU groups may therefore lead to increased levels of IL-18-
induced IFN-γ production and Th1-type immune responses,
which could then lead to uveitis development.
Enrichment analysis results demonstrated the critical role of

the antimicrobial immune response, innate immune response,
and complement cascade in AH. Despite the antimicrobial
immune response, the importance of complement and
coagulation cascades in the key subnetworks of DEPs led us
to hypothesize that innate immune responses predominate in
the AH environment. Despite many similar alterations in the
biological processes in the AH of the two uveitis groups, there
are still some significant differences. Of note, proteins within
the “inflammatory response” subnetworks of the comparison
between the VKH and control groups were related to innate
immune cells. These proteins included CD16a antigen
(FCGR3A), which triggers natural killer cells to destroy target
tissues and enhance macrophage-mediated phagocytosis;22

CD163 and v-set and immunoglobulin domain-containing
protein 4 (VSIG4), which are markers of macrophage
activation; CD14, which is a monocyte marker;23−25 and
Chitinase-3-like protein 1 (CHI3L1), which is expressed and
secreted by various types of cells, including macrophages.26

Notably, negative regulation of the Wnt pathway was found
in the key subnetworks of the comparison between the IU and
control groups, with downregulation of the Wnt pathway
inhibitors WIF1, dickkopf-related protein 3 (DKK3), and
secreted frizzled-related protein 3 (FRZB) in AH suggesting an
activated state of the Wnt pathway. Sugali et al.27 reported that
canonical Wnt signaling activators can prevent the adverse
effects of glucocorticoids (GCs) in the eye. Specifically, the
authors reported that DKK1, a Wnt pathway inhibitor, is
elevated in the AH and trabecular meshwork (TM) of patients
with glaucoma and enhanced glucocorticoid receptor (GR)
signaling, indicating that GR and Wnt signaling are mutually
inhibited in the TM. Moreover, the absence of endothelial GR
accelerates diabetic renal fibrosis, partly through the
upregulation of Wnt signaling.28 We therefore suggest that
the downregulation of Wnt signaling inhibitors in the AH of
patients with IU leads to Wnt signaling activation and
downregulation of GR signaling, thus leading to GC resistance
and insensitivity to topical treatment. Accordingly, comple-
mentary treatment with Wnt pathway agonists may be an
effective strategy for improving the efficacy of topical GC
treatment.
In recent years, machine learning techniques have been

implemented in disease prediction, classification, and diag-
nosis. The XGBoost algorithm, first released in 2016, is more
complex than traditional machine learning algorithms,29 and
exhibits excellent performance over other machine learning
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algorithms,30,31 preventing overfitting by using the “feature
subsampling” technique and providing efficient and flexible
handling of missing data, as well as allowing faster work
through parallel processing. In this study, a robust model based
on an XGBoost-interpretable machine learning algorithm was
built to screen potential biomarker candidates from the AH
proteome. The expression levels of the top three identified
proteins were validated by HR-MRM. HR-MRM is a high-
throughput method for protein quantification and, therefore, is
suitable for AH research. In the validation cohort, TF and CFB
expressions were centrally distributed within groups, with
nearly 2-fold intergroup differences. Therefore, the decision
tree consisting of TF and CFB achieved good performance in
VKH, IU, and control classification, indicating the substantial
potential of this biomarker panel for future clinical application
in uveitis diagnosis. However, large-scale sample validation is
required. Furthermore, compared with traditional immuno-
assays, we highlighted the superiority of MS-based targeted
protein quantification for the accurate detection of small-
volume samples. To achieve this, the HR-MRM method with
isotope-labeled peptides as internal references to generate
accurate absolute quantitative values for determining the
thresholds of the classification tree is required.32

There were some limitations in this study. Owing to ethical
constraints, the current proteomics profiles cannot fully
represent the characteristics of the disease, as all samples
were obtained during the inactive inflammatory phase. In
addition, the number of samples used in the machine learning
pipeline was relatively small because of the slow collection of
AH samples. Although the model was cross-validated, errors
remained as a result of the small sample size. Therefore,
multistage samples as well as larger sample sizes are necessary
to obtain more robust results.

5. CONCLUSIONS
In conclusion, AH from patients with IU and VKH in the
quiescent phase retained numerous highly expressed inflam-
mation-associated proteins, resulting in a chronic state of low-
level inflammation and rendering the patient prone to flare-
ups. We identified ECM-related and retinal-cell-derived
proteins in the AH, which deserve further investigation. In
addition, the innate immune response was considered
dominant in the AH of patients with VKH and IU, and the
IL-6/TGF-β balance may be the key driver of disease
development. Wnt signaling, as indicated by the AH of
patients with IU, is also a promising treatment target. In
addition, TF and CFB were identified and validated as
promising biomarker panels for distinguishing VKH, IU, and
control groups.
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