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Abstract
Navigating through natural environments requires localizing objects along three distinct spatial axes. Information
about position along the horizontal and vertical axes is available from an object’s position on the retina, while
position along the depth axis must be inferred based on second-order cues such as the disparity between the
images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic
space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model,
in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding
model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human
subjects viewed a stereoscopic random-dot sphere at various positions along the depth (z) and the horizontal (x)
axes, and the stimuli were presented across a wider range of disparities (out to �40 arcmin) compared to previous
neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built
encoding models for depth position and for horizontal position, allowing us to directly compare encoding between
these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex.
Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.
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Significance Statement

Estimating the position of objects in depth is essential for human behaviors such as reaching and navigating
in a three-dimensional (3D) environment. Single neurons in visual cortex appear to support these abilities by
encoding the depth position of stimuli, however, only a few studies have investigated how depth information
is encoded by population-level representations in the human brain. Here, we collected fMRI data and used
two multivariate analysis methods to examine the accuracy of depth encoding in retinotopic visual cortex.
Our results show that depth representations are widespread in retinotopic cortex, with most accurate and
robust encoding in intermediate dorsal region V3A. These findings are in agreement with past work, and
may inform future studies of human 3D spatial perception.
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Introduction
The ability to perceive the location of objects in three-

dimensional (3D) space is an essential component of the
human visual system, and supports complex behaviors
such as navigation through the environment and the guid-
ance of eye and limb movements. However, although
much is known about how 2D (i.e., retinotopic) space is
encoded in the human brain, the encoding of depth rep-
resentations is less well understood.

One of the canonical findings of early neuroimaging
work in humans is the detailed description of large-scale,
topographic maps of 2D space in occipital and parietal
cortex (Fox et al., 1987; Sereno et al., 1995, 2001; DeYoe
et al., 1996; Silver and Kastner, 2009). This detailed
knowledge of spatial representations across cortex has
enabled researchers to build encoding models that can
accurately estimate 2D spatial locations from fMRI data
obtained from a single visual field map (Naselaris et al.,
2009; Sprague and Serences, 2013; Ekman et al., 2017;
Vo et al., 2017). These encoding models estimate the
spatial selectivity of single voxels to stimuli arrayed across
2D space, which amounts to finding a mapping from
stimulus space to fMRI responses. A complete, well-
estimated model combines information from voxels selec-
tive to all portions of space and is able to then invert the
mapping accurately. That is, given a novel set of fMRI
responses, this approach can generate a model-based
representation of the spatial properties of the stimulus
that the subject viewed on that set of trials (Serences and
Saproo, 2012; Naselaris and Kay, 2015; Sprague et al.,
2015).

A recent high-field fMRI study reported that binocular
disparity selectivity is systematically organized in human
cortex in a manner similar to orientation columns (Gon-
calves et al., 2015). This was significant in dorsal V2 and
V3, but especially prominent in V3A and V3B/KO. The
specialization of dorsomedial cortex for depth represen-
tations is consistent with previous human studies sug-
gesting that perceptually relevant depth processing
occurred in these same regions (Backus et al., 2001; Tsao
et al., 2003; Bridge and Parker 2007; Preston et al., 2008).
This systematic spatial organization may underlie the suc-

cess of decoding studies that use multivariate pattern
analysis (MVPA) to distinguish between stimulus positions
in depth (Preston et al., 2008; Ip et al., 2014; Goncalves
et al., 2015; Finlayson et al., 2017; Li et al., 2017). Taken
together, these previous studies suggest that an encoding
model for depth should also be able to accurately predict
locations along the z-axis.

Here, we used both a support vector machine (SVM)
classifier and a spatial encoding model to directly com-
pare the representation of horizontal (x) and depth (z)
information in different retinotopic regions of human visual
cortex. Based on prior studies, we predicted that the SVM
would be able to successfully classify depth information,
especially in dorsomedial regions (Goncalves et al., 2015;
Finlayson et al., 2017). Furthermore, we predicted that
classifier discriminability would increase as the disparity
between the two stimuli increased (Preston et al., 2008).
We presented a wider range of disparities (out to �40
arcmin) than previous neuroimaging studies, which more
fully samples the extent of human perceptual discrim-
inability (Schumer and Julesz, 1984; Backus et al., 2001).
We then used an inverted encoding model (IEM) to esti-
mate the depth position of each presented stimulus. We
predicted that earlier visual regions would be able to
recover the depth position with some degree of precision,
but that dorsomedial regions V3A, V3B, and IPS0 would
show the highest quality depth representations.

Materials and Methods
Participants

Nine participants (seven female) were recruited from the
University of California, San Diego community and com-
pleted the entire study. The number of participants was
determined before data collection began based on the
samples sizes used by fMRI studies with similar method-
ology (Barendregt et al., 2015; Goncalves et al., 2015; Vo
et al., 2017). Participants were monetarily compensated
for their participation and provided written informed con-
sent in accordance with the human participants Institu-
tional Review Board at University of California, San Diego.
Each participant participated in two to four scanning ses-
sions, each lasting 1–2 h. Data were also collected for
three additional participants, but one dropped out of the
study before data collection was complete, another was
unable to fuse the binocular depth stimuli, and another
discontinued the first session. These data were not ana-
lyzed, and are not reported here.

Stimulus presentation equipment
Visual stimuli were presented to subjects using stereo-

scopic, MR-compatible video goggles (NordicNeuroLabs,
VisualSystem) mounted on the head coil and lowered to fit
comfortably in front of the subject’s eyes. Before the
subject entered the scanner, the focus and pupillary dis-
tance of the goggles were adjusted so that the subject
could comfortably fuse the images into a coherent stim-
ulus. Displays were generated with the Psychophysics
Toolbox extensions for MATLAB (Brainard, 1997; Pelli,
1997; Kleiner et al., 2007), using OpenGL software to
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render 3D stimuli. To generate a disparity between the
two images, a different camera position was defined in
OpenGL for each eye (left eye: [x, y, z � –0.4, 0, 10], right
eye: [x, y, z � 0.4, 0, 10]), giving a screen-to-viewer
distance of 10 units and an interpupillary distance of 0.8
units (Fig. 1). Frames were shown at a rate of 60 Hz, but
since each frame was shown to each eye separately, this
resulted in an effective frame rate of 30 Hz. Total screen
size was set to 800 � 600 pixels, with an estimated
vertical field of view (FOV) of 25° (throughout this text, °
refers to degrees visual angle, unless otherwise specified)
and a horizontal FOV of 33° for average viewing parame-
ters. We use these parameters to convert all the stimuli
drawn in OpenGL units to an estimate of degrees of visual
angle.

Stimulus locations
During each run, the sphere stimulus appeared once at

each of 36 different locations in the visual field (Fig. 1). The
stimulus positions formed a staggered, triangular grid that
evenly sampled locations along the horizontal (x) and
depth (z) axes in a physical space rendered by OpenGL
(Fig. 1). The depth positions ranged from 42.8 arcmin to
–48.4 arcmin, and the horizontal positions ranged from
0.9° to 9.8° eccentricity in both directions. Spacing the
stimuli evenly along both the x- and z-axes permitted us to
estimate the encoding of both x position and z position
using a spatial encoding model with the exact same basis
set (see Inverted encoding models for spatial position).
This allowed us to directly compare the spatial encoding
quality across the x- and z-axes.

-4 -2 2 40

Horizontal axis (OpenGL units)

same x position

viewer

-2

0

2

4

6

8

10

D
ep

th
 a

xi
s 

(O
pe

nG
L 

un
its

)

fixation plane

near

far

B
top-down view

C

-10 -5 0 10
Horizontal axis (degrees)

-40

-20

0

20

40

S�
m

ul
us

 D
isp

ar
ity

 (a
rc

m
in

)

5

-10 -5 10

-2

-1

0

1

2
0 5

Horizontal axis (degrees)

De
pt

h 
ax

is 
(O

pe
nG

L u
ni

ts
)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Pr

op
or

�o
n 

Ac
cu

ra
cy

D

A

horizontal axis (X)

depth axis
 (Z

)

fixation point
stimulus center

perspective view

near

far

near

far

Figure 1. A, A perspective view on the grid of stimulus positions, and the stereoscopic sphere composed of colored dots, used to
map position selectivity in retinotopic regions of visual cortex. The black points and the black box outlining the fixation point are for
display purposes only, subjects only saw the sphere and the gray fixation point on a black background in the actual task. B, The same
example grid in OpenGL units. The size of the sphere, shown in red, was scaled with z position to maintain the same apparent size
throughout. C, Comparison of stimulus grid when plotted in units of physical position or disparity. Stimuli in each row of the grid share
a physical z position (top panel), which results in a curved grid with nonlinear spacing when units are converted to disparity (bottom
panel). This also results in a nonlinear spacing of the rows along the disparity axis. D, Subjects performed a demanding contrast
change detection task at fixation throughout all imaging runs; average accuracy on this task is plotted. Individual points indicate single
subjects, error bars indicate mean � SEM. For a plot of task performance broken down by the depth position of the stimulus, see
Extended Data Figure 1-1.
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However, due to the nonlinear relationship between
physical depth and disparity, this experimental design
choice creates uneven spacing when these stimuli are
replotted by binocular disparity (Fig. 1C). Additionally,
because each row of the stimulus grid shares a physical
distance, the rows become curved when plotted in units
of disparity (Fig. 1C). This means that each row of the grid
encompasses a small range of possible disparity values.
Exact values of binocular disparity at each position are
reported in Extended Data Table 1-1. Throughout this
text, we group disparities according to z position, and
refer to them according to the average disparity within
each row (Table 1).

Each stimulus was a sphere with an apparent 3.6°
radius. To ensure that this apparent radius was constant
across depth, stimulus sizes in OpenGL space were
scaled such that the stimuli farthest from the viewer had
an actual physical size larger than stimuli closest to the
viewer (Fig. 1B). Sizes in OpenGL ranged from 0.73 units
(furthest) to 0.55 units (nearest).

Because the grid was triangular, rather than rectangu-
lar, it was not perfectly symmetric about the x-axis. We
chose to use a triangular grid because it more efficiently
samples a plane than a rectangular grid. To maintain
symmetry along the x-axis, grid locations were horizon-
tally flipped on all even numbered runs such that 72 total
grid locations (12 x locations � six z locations) were
sampled between each pair of runs (Fig. 1). When gener-
ating inverted encoding model representations in the x
dimension (see Inverted encoding models for spatial po-
sition), we reflected the data from the even numbered
runs horizontally so that the x positions matched those of
the odd-numbered runs, and averaged within each of the
six remaining x positions.

Task
During all functional scanning runs analyzed in this

report, subjects performed an attentionally-demanding
task at fixation. These “attend fixation” task runs were
interspersed with runs of a separate task that required
attention to the 3D sphere stimulus (“attend target” task).
Data from the attend target task is available online. How-
ever, these data were much noisier, which we believe may
be due to changes in vergence when attempting to simul-
taneously fixate and attend covertly in depth. Several
participants reported difficulty maintaining consistent fu-
sion during the covert attention task. Therefore, these
data are not described here, nor do we plan to include it

in future reports. For completeness, we give a description
of both tasks below.

Both types of runs consisted of 36 trials, and lasted a
total of 5 min (150 TRs). The fixation point was a 0.2°
square continuously present throughout the run, sur-
rounded by an 0.8° aperture in which no dots of the
sphere stimulus were drawn. Each trial began with the
appearance of the sphere stimulus for 3 s, followed by a
jittered intertrial interval (ITI uniformly distributed between
2 and 6 s). Note that trial start times were not synced with
TRs (TR � 2000 ms). To improve our ability to deconvolve
the hemodynamic time courses, we added passive fixa-
tion at the beginning (2 s) and end (10 s) of the run. We
also randomly interleaved 9 “null” trials per block in which
no stimulus appeared for an entire trial and ITI. On attend
fixation runs, the participant reported whether they de-
tected a brief (200 ms) dimming or brightening of the
fixation point with a key press (index finger for dimming,
middle finger for brightening). On attend target runs, the
participant reported the direction of a brief (500 ms) pulse
of coherent motion in the sphere stimulus (clockwise or
counterclockwise, when viewed from above). Both the
fixation contrast event and the stimulus rotation event
occurred on 100% of trials in both task conditions, always
within the window of 1000–2500 ms after stimulus onset.
No events occurred while the stimulus was not visible.

Participants performed between 7 and 21 repetitions of
each task across all functional scanning sessions (mean
� SEM: 13.33 � 1.76). This resulted in around 13 repeti-
tions of each of the 36 stimulus positions, after aligning
the positions between even and odd runs (see, Stimulus
locations). Runs were always presented in pairs, with an
attend target run followed by an attend fixation run. Mean
accuracy on the fixation task was 76.4 � 4.8%, and mean
accuracy on the target task was 73.6 � 12.9%. See
Figure 1 and Extended Data Figure 1-1 for plots of per-
formance on the fixation task.

Sphere stimulus
The sphere stimulus consisted of a set of multicolored,

flickering dots that were randomly positioned on the shell
of a 3D sphere, with radius 3.4°. The color of each dot was
defined by a vector in hue, saturation, value (HSV) color
space, with each component in the range [0,1]. For all
dots, we used fixed values for saturation (0.5) and for
value (0.9). The hue of each dot was a randomly chosen
position along the circular hue axis, resulting in a set of
dots with different hues but the same saturation and
value. These HSV vectors were passed into the MATLAB
function hsv2rgb.m to generate an RGB triplet for each
dot, which was used when rendering the dots through
Psychtoolbox. Each dot had a lifetime of 100 ms and was
redrawn every 100 ms at a random location on the sphere
surface.

To generate a detectable motion signal, which partici-
pants responded to during attend target runs (data not
reported, see Task), a proportion of the dots were rotated
around the y (vertical)-axis to generate either clockwise or
counterclockwise motion. When the stimulus first ap-
peared, 100% of the dots were drawn in a random, flick-

Table 1. Stimuli were presented at six unique z positions

z position (OpenGL) Average disparity (arcmin)
–1.5 38.6
–0.9 25.6
–0.3 11.1
0.3 –5.2
0.9 –23.6
1.5 –44.6

Since disparity within each z position varied slightly with eccentricity (e.g.,
more peripheral positions appear further from the observer), we report the
average value of disparity across each row of the grid shown in Figure 1.
For individual values of disparity, see Extended Data Table 1-1.
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ering pattern with no coherent motion, then, during a 1-s
interval during each trial, a proportion of the dots were
selected to rotate. Rotating dots continued to rotate
through the duration of their lifetime, but were re-drawn
after 100 ms. Dots were rotated about the y-axis by 1.15°
(in polar angle) per frame, with a frame rate of 30 Hz,
resulting in a rotational speed of 34.38° (in polar angle) per
second.

Functional localizer task
To localize voxels that were responsive to the portion of

the visual field in which stimuli were presented, a separate
functional localizer task was used. This task consisted of
20 trials, and lasted a total of 5 min and 10 s (155 TRs).
During each trial, a set of flickering, multicolored dots
(rendered in same way as sphere stimulus, see Sphere
stimulus) was drawn within a rectangular volume span-
ning one quadrant of the 3D visual field (left front, left
back, right front, right back). Each dot field spanned the
same 3D range of space in which spheres appeared
during the main task; for example, the left front dot field
spanned from –13.4° to 0° in x, from –3.6° to 3.6° in y, and
from 0 arcmin to –44.6 arcmin in z. Each quadrant was
stimulated five times per run, in a random order. Dots
were onscreen for 8 s, and during this time a brief (200 ms)
pulse of motion occurred in either the leftward or right-
ward direction. Subjects reported the direction of motion
using either their index or middle finger.

Each subject performed between two and seven runs of
the localizer task, which were interspersed during scan-
ning sessions of the main task. This resulted in between
10 and 35 repetitions of each quadrant. Mean accuracy
on this task was 79.2 � 16.9%. All localizer runs for each
subject were combined into a single generalized linear
model (GLM) for analysis purposes.

MRI acquisition
All participants were scanned using a 3T GE MR750

research-dedicated scanner at University of California,
San Diego. We collected whole-brain functional images
using a gradient EPI pulse sequence using a 32-channel
head coil (Nova Medical) and an axial slice stack (19.2 �
19.2 cm FOV with 64 � 64 matrix, 35 3-mm-thick slices
with 0-mm gap, TR � 2000 ms, TE � 30 ms, flip angle �
90°), which resulted in 3 � 3 � 3 mm3 voxels. For subject
BJ, these data were collected with an eight-channel head
coil (19.2 � 19.2 cm FOV with 96 � 96 matrix, 31 3-mm-
thick slices with 0-mm gap, TR � 2250 ms, TE � 30 ms,
flip angle � 90°) which resulted in 2 � 2 � 3 mm voxels.
In the middle of the scan session, we acquired a B0 field
map to correct for spatial distortions resulting from field
inhomogeneities. During each scan session, we also col-
lected a structural MRI using the same head coil as the
functional data, accelerated by GE ASSET to obtain 1 � 1
� 1 mm3 voxels (25.6 � 25.6 cm FOV with 256 � 256
matrix, 172 1-mm-thick slices with 0-mm gap, TR � 8136
ms, TE � 3172 ms, flip angle � 8°).

MRI preprocessing
The end result of our MRI preprocessing is an estimate

of each voxel’s activation in response to each individual

trial event. Voxels were subdivided into nine retinotopic
regions of interest (ROIs). This process is described in
detail below.

Each session’s structural scan was preprocessed to
maximize the quality of alignment with the functional da-
taset. In BrainVoyager 2.6.1, we removed the head and
skull tissue using automatic built-in algorithms. The im-
ages were then spatially resampled to a 1x1x1 mm3 res-
olution, and manually adjusted to align with the AC-PC
plane. These data were then aligned to the subject’s
higher-resolution structural image from their retinotopy
session to allow for the use of retinotopically-defined
ROIs (see below for more detail).

All functional data were unwarped using a custom
script from the University of California, San Diego Center
for Functional Magnetic Resonance Imaging written for
FSL and AFNI. Each run was aligned to the same-session
structural scan. We then performed slice-time correction,
affine motion correction, and temporal high-pass filtering
to remove slow signal drifts over the course of each
session in BrainVoyager 2.6.1. These data were spatially
transformed into Talairach space. Finally, the BOLD signal
in each voxel was z-transformed within each run (after
preprocessing, the resampled size of each voxel was 3 �
3 � 3 mm). Single-trial activation estimates, which were
used for the SVM and IEM analyses described below,
were obtained by taking an average of the z-scored BOLD
signal at the 3rd and 4th TRs following stimulus presen-
tation.

We followed previously published retinotopic map-
ping protocols to define the ROIs reported here
(Swisher et al., 2007; Wandell et al., 2007; Jerde and
Curtis, 2013; Winawer and Witthoft, 2015). Subjects
viewed rotating wedge (10 cycles, 36 s/cycle), and
bowtie stimuli (eight cycles, 40 s/cycle) presented at a
single disparity through the MR-compatible video gog-
gles (see Stimulus presentation equipment). To in-
crease the quality of data from parietal regions,
subjects performed a covert attention task on the ro-
tating wedge stimulus (Sprague and Serences, 2013).
They detected contrast dimming events in a row of the
checkerboard (mean accuracy � 61.8 � 13.9%). This
stimulus was limited to 25.0° by 25.0° FOV.

After defining each retinotopic ROI, we applied a func-
tional mask defined by voxels with significant BOLD re-
sponse changes to any of the functional localizer stimuli
(FDR corrected q � 0.05). The statistical parametric map
for the localizer was defined by solving a traditional GLM
convolving trial events with a canonical two-� HRF (peak
at 5 s, undershoot peak at 15 s, response undershoot
ratio 6, response dispersion 1, undershoot dispersion 1).
This limited our voxel population to those that were re-
sponsive to some position within the mapped x-z plane. In
all analyses reported here, we used all voxels defined by
the mask and did not equate voxel number across ROIs.
When we repeated the major analyses with a fixed num-
ber of voxels in each region, we found similar results (data
not shown).

The full range of retinotopic regions we examined was
V1–4, V3A, V3B, IPS0-3, and LO1–2. After performing
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some initial analyses on this full list of regions, we found
little evidence for depth representations in IPS1, IPS2, or
IPS3. This may have been due to a limited number of
voxels in each of these regions after thresholding with the
localizer mask. Therefore, we do not include IPS1, IPS2,
and IPS3 in the results reported here.

SVM decoding
To assay information about stimulus position along the

depth (z) axis, we used a linear SVM (libSVM software
package, version 3.1, linear kernel) to classify trials ac-
cording to their z position. We performed decoding be-
tween each individual pair of z positions (collapsing
across x position within each row of the grid). Since our
grid contained six distinct z positions, this gave 15 pos-
sible pairwise comparisons. For each of these compari-
sons, we identified all trials in which the stimulus was at
one of the two positions of interest, and performed clas-
sification on this restricted data set.

To avoid overfitting, we used a leave-one-out cross-
validation scheme, in which the model was trained on
data from all but one imaging run, and tested on the
left-out run. This process was repeated so that each run
served as the test run once. We assessed decoding per-
formance using d prime (d’), calculated using signal de-
tection theory. We report d’ here in preference to classifier
accuracy, because d’ is normally distributed and thus
better suited for use in parametric statistics (Woolgar
et al., 2015).

We measured the significance of decoding perfor-
mance by generating a null distribution of d’. The null
distribution values of d’ were generated by shuffling the
position labels over all trials, and performing classification
on this shuffled data set. This process was repeated over
1000 iterations within each subject and each ROI. We
calculated significance for each ROI at the subject-
averaged level, by calculating the mean d’ across sub-
jects for the real data, as well as the mean d’ across
subjects for each iteration of shuffling. A p value was then
obtained by calculating the proportion of shuffling itera-
tions on which the shuffled d’ exceeded the real d’, and
the proportion on which the real d’ exceeded the shuffled
d’, and taking the minimum value. We then performed
FDR correction on the entire table of 150 p values (10
ROIs � 15 comparisons), at the 0.05 and 0.01 significance
levels (Benjamini and Yekutieli, 2001).

To test whether pairwise z decoding performance dif-
fered significantly across disparity differences or across
ROIs, we performed hierarchical model comparison in R
(version 3.5.3) with the lme4 package. We set up a nested
series of six linear mixed regression models, specified as
follows:

M0: d’ � (1�subject)

M1: d’ � �disp � (1�subject)

M2: d’ � �disp � ROI � (1�subject)

M3: d’ � �disp � ROI � (1�subject) � (1�ROI: subject)

M4: d’ � �disp � ROI � (1�subject) � (1�ROI:subject)

� (1��disp:subject)

M5: d’ � �disp � ROI � (1�subject) � (1�ROI:subject)

� (1��disp:subject).

Here, �disp is a continuous variable that we expect to
have a linear relationship with d’. We used a likelihood
ratio test to obtain a �2 statistic comparing each model to
the one below it in the hierarchy. The effects of disparity
difference, ROI, and the interaction were assessed by
comparing M1 and M0, M2 and M1, and M5 and M4,
respectively. We performed pairwise comparisons be-
tween ROIs using the least squares means method, im-
plemented through the lsmeans package in R. All p values
were corrected using Tukey’s method.

Finally, to more closely examine the interaction be-
tween disparity difference and ROI, we estimated the
slope and intercept of the d’/disparity relationship by
performing resampling across subjects as described
above. On each resampling iteration, we used linear re-
gression to calculate a slope and intercept for the d’/
disparity relationship within each ROI. To determine
whether the slope in each ROI differed significantly from
zero, we performed a two-tailed t test comparing the
distribution of slopes against zero, and performed FDR
correction across all ROIs (q � 0.01).

Inverted encoding models for spatial position
In addition to using the linear SVM to decode depth

information, we also trained a forward encoding model to
get a continuous estimate of depth encoding. This model
makes the assumption that the response of any individual
voxel can be modeled as the sum of the responses of a
set of underlying neural populations, or “channels,” each
of which is sensitive to a particular set of locations in
space (Brouwer and Heeger, 2009, 2011; Sprague and
Serences, 2013). To model these channels, we created a
set of basis functions that evenly tile the stimulus space
(either the x- or the z-axis) and predicted how each basis
function would respond to the stimulus on each trial. We
then regressed the BOLD responses from each voxel onto
these basis function responses, yielding a pattern of basis
function weights for each voxel that describe its spatial
sensitivity. Finally, using a separate set of test data, we
used the estimated weights to predict the response in
each spatial channel on each trial, and used this to gen-
erate a model-based spatial representation of the viewed
stimulus.

First, we defined a general linear model to express the
BOLD response of each voxel on each trial. This model is
defined in Equation 1:

B1 � WX1 (1)

where B1 is a matrix describing the mean activation of
each voxel on each trial (n voxels by t trials), X1 is a design
matrix describing the activation in each spatial channel (b
basis functions by t trials), and W is a weight matrix
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describing the transformation from channel space to
voxel space (n voxels by b basis functions).

The design matrix X1 was determined as follows. First,
we defined a set of 6 basis functions that evenly tiled the
dimension of interest (either the x- or z-axis). Basis func-
tions were centered exponentiated cosine functions as
described in Equation 2. This results in a curve with a
Gaussian-like form, with a baseline of zero outside a fixed
range.

f�r� � �0.5 cos � r�
s � � 0.5�7

for r 	 s ;0 elsewhere (2)

These were combined to yield matrix F (b basis func-
tions by p pixels). To construct a design matrix X1, we
constructed a pixel representation of our stimulus on
every trial (matrix S, p by t trials), and multiplied FS to yield
X1 (b by t). We can then use B1 and X1 to solve for the
basis function weights using the Moore–Penrose pseudo-
inverse:

Ŵ � B1�X1
TX1�
1X1

T (3)

Finally, we inverted the forward model to decode stim-
ulus position. For a matrix of voxel responses recorded
during independent scanning runs, B2 (n voxels by t trials),
we can calculate the response of each channel on each
trial, X2

ˆ , by multiplying by the pseudoinverse of the esti-
mated weight matrix:

X2̂ � (ŴTŴ)
1ŴTB2 (4)

For visualization and fitting purposes, we multiply X2
ˆ T by

F to yield a t trial by p pixel matrix of model-based
representations for each test trial. Training and testing
were performed using a leave-one-run-out cross-
validation scheme, so that each scanning run served as
the test set exactly once.

For each subject, model-based representations of stim-
uli at the same spatial positions were averaged over all
trials to obtain a mean representation of each stimulus
position. In the x dimension, for all odd-numbered runs,
we flipped the x coordinates of each stimulus position
from left to right. This allowed us to average over stimulus
positions that were equally far from fixation (see, Stimulus
locations). In total, this resulted in six representations of x
position and six representations of z position for each
subject and ROI.

Each model-based representation was then fit with an
exponentiated cosine function having parameters of cen-
ter, size, amplitude and baseline (see Fits of IEM-based
representations).

Fits of IEM-based representations
Model-based representations of each stimulus position

along the x- and z-axes were fitted with curves having the
same form as the basis functions (Eq. 2), with additional
parameters for baseline and amplitude:

f�x� � b � a�0.5 cos � �x 
 c��
s � � 0.5�7

for�x 
 c�	s ;0 elsewhere (5)

Fitting was performed using a two-step iterative proce-
dure. First, to obtain an initial estimate of the center c, size
s, amplitude a, and baseline b, we generated a grid over
a subset of possible centers and sizes. Centers ranged
from –2.75 to 2.75 units in OpenGL space (corresponding
to the region of visual stimulation during the task) in steps
of 0.1, and sizes ranged from 1.5 to 15 in steps of 0.1.
Using each combination of center and size, we calculated
the fit amplitude and baseline using linear regression,
restricting amplitudes to lie between 0 and the maximum
height of the representation (max value – min value). The
fit with the lowest root-mean-squared-error (RMSE) was
used as the starting point for an additional fine-tuning
procedure, using a linear optimization algorithm to mini-
mize the RMSE (fmincon from MATLAB’s optimization
toolbox). During this fine-tuning step, center and size of
the fit was each constrained to fall within one grid step
(0.1 units) of its initial value, baseline was constrained
between –5 and 5, and amplitude was again constrained
between 0 and the maximum height of the representation
(max value – min value). If this final step resulted in an
increase in RMSE relative to the initial fit, then the initial fit
was used, otherwise the parameters of the fine-tuned fit
were used.

Although we estimated values for four fit parameters,
we focus here on the estimates of center and amplitude.
Both the center and the amplitude of model-based rep-
resentation fits can be used as informative measures of
representation quality. Baseline and size estimates are
shown in Extended Data Figures 6-1, 6-2.

The accuracy of our model-based representations was
evaluated in several ways. First, we assessed the corre-
spondence between representation fit centers and actual
stimulus centers. To generate estimates of the mean and
95% confidence intervals (CIs) for fit center across our
sample, we used bootstrapping (Efron and Tibshirani,
1993). That is, we resampled with replacement across
subjects 1000 times. This generated an empirical estimate
of the variability of the data. Taking the absolute value of
the difference between the fit center and the actual stim-
ulus center gave us an estimate of the overall represen-
tation error, depicted in Figure 6A and Extended Data
Figure 6-2A. We used the same method to generate
bootstrapped means and 95% CIs for all other fit param-
eters (size, amplitude, and baseline), which are shown in
Figure 6B, Extended Data Figures 6-1, 6-2.

After visualizing the distributions of model-based rep-
resentation error, we formally tested whether this measure
differed significantly across stimulus positions or across
ROIs. Using the estimates of representation error for each
subject (not bootstrapped), we constructed a nested se-
ries of linear mixed regression models and performed a
likelihood ratio test using the lme4 package in R. We set
up a nested series of six linear mixed regression models,
specified as follows:
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M0: error � (1�subject)

M1: error � position � (1�subject)

M2: error � position � �1�position:subject) � (1�subject)

M3: error � position � ROI � (1�subject)

� (1�position:subject)

M4: error � position � ROI � (1�subject)

� (1�position:subject) � (1�ROI:subject)

M5: error � position � ROI � (1�subject)

� �1�position:subject) � (1�ROI:subject).

Here, position is a categorical variable with six different
levels. We compared each model to the one below it in the
hierarchy using a likelihood ratio test. The effects of po-
sition, ROI, and the interaction were assessed by com-
paring M1 and M0, M3 and M2, and M5 and M4,
respectively. We performed pairwise comparisons be-
tween ROIs using the least squares means method, im-
plemented through the lsmeans package in R. All p values
were corrected using Tukey’s method. We repeated the
same procedure to perform an analysis on the fit ampli-
tudes.

Finally, as a second measure of representation accu-
racy, we estimated a slope and intercept for the relation-
ship between representation center and actual stimulus
center. The logic behind this measure is that if the model-
based representations from the IEM perfectly captured
the stimulus positions, the slope would be close to 1. To
estimate the variability of the slopes, we took the boot-
strapped estimates of representation fit centers described
above, and fit a line to every single resampling iteration.
We then used the distribution of resampled slopes to
obtain a p value comparing the slope in each ROI against
zero. The resulting p values were FDR corrected across all
ROIs for both x and z (q � 0.01). Additionally, we used the
resampled slope distributions to perform pairwise com-
parisons between individual ROIs, followed by FDR cor-
rection (q � 0.01). The estimated slopes are plotted in
Figure 6C.

Code accessibility
All code and data required to reproduce the analyses of

this paper is available on the Open Science Framework
(https://osf.io/j7tpf/). Code files can also be downloaded
directly (Extended Data 1). We performed all analyses on
a Linux operating system.

Results
SVM decoding

We first used a linear SVM as a benchmark to compare
our results to previous work. We performed classification
between each possible pairing of z positions (for six loca-
tions in depth, this resulted in 15 pairwise z decoding
schemes). Averaging across these 15 comparisons gave a

single value for six-way decoding, which was numerically
highest in V3A, V3B, and IPS0 (Fig. 2), as has been found
in past work (Preston et al., 2008; Goncalves et al., 2015).
Although average decoding performance differed among
ROIs, d’ was above chance in all regions examined, in-
cluding early visual cortex.

Next, we examined performance on each individual
pairwise discrimination, and plotted classifier perfor-
mance as a function of the difference in disparity between
the two positions of interest. Overall, this analysis
revealed a positive relationship between the disparity dif-
ference between stimuli and associated decoding perfor-
mance (Fig. 3; Extended Data Fig. 3-1). At the largest
disparity difference (83.2 arcmin), seven out of nine ROIs
showed above-chance decoding performance, with V3A
showing the highest performance (accuracy � 60.0 �
4.0%, d’ � 0.54 � 0.22). Performance at the second
largest difference (70.2 arcmin) was comparably strong,
with eight out of nine ROIs showing above-chance de-
coding performance, and the highest performance again
in V3A (accuracy � 61.3 � 3.3%, d’ � 0.61 � 0.20). As the
difference in disparity between the two positions de-
creased, the number of ROIs with above-chance decod-
ing decreased, with no ROIs showing above-chance
discrimination of disparities �16.2 arcmin. Additionally,
plotting pairwise decoding performance in matrix form
(Extended Data Fig. 3-1) revealed that the nearest z po-
sition (–44.6 arcmin) tended to be the most discriminable
from other positions.

To evaluate whether z position decoding performance
differed significantly across disparity differences or
across ROIs, we performed hierarchical model compari-
son between several linear mixed regression models (for
details, see Materials and Methods). This revealed a sig-
nificant effect of disparity difference (�2(1) � 155.76, p �
10�15), a significant effect of ROI (�2(8) � 47.44, p �
10�6), and a significant interaction between disparity dif-
ference and ROI (�2(8) � 37.42, p � 10�5). We further
investigated the main effect of ROI by performing pairwise
comparisons, which revealed several important differ-
ences. Decoding was significantly higher in dorsal area
V3A than in early visual areas V1–V4 (Tukey corrected p �
0.05: V3A-V1 t � 0.15, SE � 0.03, p � 0.0005; V3A-V2 t
� 0.15, SE � 0.03, p � 0.0003; V3A-V3 t � 0.13, SE �
0.03, p � 0.0071; V3A-V4 t � 0.18, SE � 0.03, p � 10�4),
and was also higher in IPS0 than in V1, V2, and V4 (Tukey
corrected p � 0.05: IPS0-V1 t � 0.12, SE � 0.03, p �
0.0208; IPS0-V2 t � 0.12, SE � 0.03, p � 0.0157; IPS0-V4
t � 0.15, SE � 0.03, p � 0.0009). Performance in V3B was
also significantly higher than performance in V4 (t � 0.11,
SE � 0.03, p � 0.0332).

Although decoding performance generally scaled pos-
itively with disparity difference, the strength of this rela-
tionship differed among ROIs. To investigate this
interaction, we used bootstrapping to estimate the slope
of the d’/disparity relationship in each ROI. Estimated
slope was highest in V3, V3A, V3B, and IPS0, and was
significantly higher than zero in all ROIs except for V1 (Fig.
3B).
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Inverted encoding model
In the next analysis, we used a forward encoding model

to explicitly model a single continuous z-axis and tested
how well we could estimate stimulus position from this
model. As a comparison condition, we also modeled a
single continuous x-axis. We built two separate encoding
models: one for x position and one for z position. Each
voxel was modeled as a linear combination of 6 modeled
spatial channels with sensitivity along either the x or z
dimension (see Materials and Methods). Importantly, the
structure of the spatial encoding model was identical
between the two dimensions, and the stimuli were evenly
gridded along both the x- and z-axes (Fig. 1). These
experimental design choices allowed us to directly
compare the quality of x encoding and z encoding for
positions in rendered physical space (i.e., OpenGL coor-
dinates). After estimating the channel weights on a set of
training data, we tested the accuracy of the model by
inverting the weights and applying them to a novel set of
test data. This yields an estimate of the stimulus position
along the x- or z-axis, which we refer to as a model-based
stimulus representation.

We plot the mean model-based representations for six
positions along the x-axis and six positions along the
z-axis in Figure 4. The x representations were our positive
control, and were expected to show high accuracy based
on previous reports (Sprague and Serences, 2013; Vo
et al., 2017) and knowledge about retinotopic organization
in these areas. We find that x representations are much
more accurate than z representations, especially in early
visual areas V1–V4. However, in dorsomedial areas the

estimated depth positions appear to increase in accuracy.
This can be seen by comparing the peaks of the curved
lines in Figure 4 with the locations of the vertical lines in
matching colors.

To quantify the model-based representations, each
subject’s average representation was fit with an exponen-
tiated cosine function to describe its center, size, ampli-
tude, and baseline (Equation 5). We estimated the
variability of each fit parameter by resampling with re-
placement across subjects (see Materials and Methods)
to generate an empirical estimate of the 95% CIs. These
distributions for all parameters are plotted in Figure 6,
Extended Data Figures 6-1, 6-2. We focus here on the fit
centers and amplitudes.

We first plotted the distribution of fit centers against the
actual stimulus positions, allowing us to visualize the
overall accuracy of the representations (Fig. 5). We also
used the distribution of fit centers to estimate the absolute
error of representations in each ROI averaged over posi-
tions, shown in Figure 6A. From these plots, it can be seen
that in the x dimension, the representation centers gen-
erally track the stimulus location at all positions and ROIs.
However, a few x representations deviated slightly from
the true stimulus center in a statistically significant fash-
ion. For example, the two leftmost positions were slightly
misestimated by area V3B (signed error between fit and
true positions 0.39 [0.18, 0.66]; –0.33 [–0.73, –0.05]),
suggesting that some level of noise should be expected in
the z representations as well. By comparison with the x
data, the z representations were both less accurate (larger
absolute error) and less consistent (larger CIs). IEMs
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Figure 2. Average six-way decoding performance in the z dimension. Performance (d’) values were averaged across subjects and
error bars indicate SEM. Filled circles over individual bars indicate above chance decoding after FDR correction at q � 0.01. Asterisks
indicate significant differences at the 0.05 (�), 0.01 (��), and 0.001 (���) significance levels, respectively. Pairwise comparisons were
corrected using Tukey’s method; for details, see Materials and Methods.
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based on data from dorsomedial regions V3A and IPS0
represented stimulus depth with the lowest error (Figs. 5,
6A). To test whether the position representation error was
significantly different between stimulus positions or be-

tween ROIs, we used hierarchical model comparison of a
nested set of linear mixed regression models (see Mate-
rials and Methods). This analysis revealed a significant
main effect of position (�2(5) � 36.55, p � 10�6), but no
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Figure 3. SVM classifier performance (d’) depends on difference in stimulus disparity between the positions of interest. A, Each unique
pair of the six stimuli in depth is plotted on the abscissa, with small disparity differences indicating that the stimuli were close together
in the z dimension. Blue lines depict the fit to the mean bootstrapped across subjects, and asterisks (�) indicate a significantly positive
slope (FDR q � 0.01). Filled and open circles above individual error bars indicate significance after FDR correction at q � 0.01 and
q � 0.05, respectively. For the same data plotted as a dissimilarity matrix, see Extended Data Figure 3-1. B, Bootstrapped distribution
of slopes for the relationship between classifier d’ and the disparity difference between the positions of interest. Filled gray circles
indicate slopes significantly above 0 (FDR q � 0.01).
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effect of ROI (�2(8) � 10.75, p � 0.22), and no interaction
between the two (�2(40) � 35.09, p � 0.69). We further
investigated the effect of z position by performing pair-
wise comparisons between all z positions, which showed
that error was generally lower at depth positions closer to
the fixation plane. For a plot of fit error versus z position
showing all significant pairwise comparisons, see Ex-
tended Data Figure 6-2.

We next examined the amplitude of fits in each ROI, as
an overall measure of representation robustness, or
signal-to-noise ratio (Fig. 6B). In the x dimension, repre-
sentation amplitude was similar in all areas, with the
highest mean amplitude in V1 (mean [95% CI], 0.62 [0.61,
0.63]), and lowest amplitude in IPS0 (0.57 [0.56, 0.59]). In
contrast, z representation amplitude was more variable
across areas, with the highest amplitude in V3A (0.72
[0.63, 0.83]), followed by LO2 (0.69 [0.61, 0.80]), and the
lowest amplitude in V3 (0.55 [0.50, 0.61]). We submitted
the z representation amplitudes to a mixed effects analy-
sis as previously described, which revealed a significant
effect of ROI (�2(8) � 40.89, p � 10�5), a significant effect
of position (�2(5) � 29.46, p � 10�4), but no interaction

(�2(40) � 41.43, p � 0.41). Pairwise comparisons revealed
that amplitude was significantly higher in dorsal area V3A
than in early visual areas V1, V2, V3, and V4 (Tukey
corrected p � 0.05: V3A-V1 t � 0.14, SE � 0.04, p �
0.0040; V3A-V2 t � 0.17, SE � 0.04, p � 0.0002; V3A-V3
t � 0.17, SE � 0.04, p � 0.0001; V3A-V4 t � 0.14, SE �
0.04, p � 0.0073), and that amplitude was significantly
higher in LO2 than in V2 and V3 (Tukey corrected p �
0.05: LO2-V2 t � 0.14, SE � 0.04, p � 0.0048; LO2-V3 t
� 0.14, SE � 0.04, p � 0.0036). Across all ROIs, pairwise
comparisons showed that amplitude was lowest at the
furthest position (38.6 arcmin or –1.5 OpenGL units).
For a plot of amplitude by z position showing all signif-
icant pairwise comparisons, see Extended Data Figure
6-2.

Finally, to provide a complementary measure of how
well the model-based representations tracked the stimu-
lus positions, we fit a line to the fit centers as plotted in
Figure 5. This analysis is distinct from the SVM slope
analysis shown in Figure 3 because the IEM allows us to
test the accuracy of x or z encoding in various ROIs. A
slope of 1 indicates perfect accuracy, while a slope of 0
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Figure 4. Average model-based representation of stimuli at each position along the x (blue-green) and z (purple) dimensions. Vertical
lines indicate where the stimuli were presented along the x- or z-axis. The curved lines in matching colors indicate representations
of the corresponding positions.
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would indicate that the spatial encoding model captured
no information about stimulus depth at all. We found a
significantly positive slope in the x centers of the model-
based representations in every ROI examined, with many
close to a slope of 1 (Fig. 6C, left panel). In the z centers
of the model-based representations, we also found a
significantly positive slope in all regions (Fig. 6C, right
panel). While the z slope was highest in V3A and IPS0,
statistical comparisons with other regions did not survive
FDR correction (p � 0.05 uncorrected: IPS0-V1 0.29
[0.06, 0.53], p � 0.014; IPS0-V2 0.19 [0.02, 0.39], p �
0.022; V3A-V3 0.23 [0.02, 0.45], p � 0.028; IPS0-V3 0.26
[0.08, 0.43], p � 0.010).

Discussion
The goal of this study was to examine how retinotopic

regions of visual cortex encode the position-in-depth of a
viewed stimulus. We presented subjects with stereo-
scopic, spherical stimuli at evenly gridded locations along
both a horizontal (x) axis and a depth (z) axis that subten-
ded a larger range of binocular disparities than sampled in
most previous studies. We then used both decoding and
encoding analysis approaches to assess how depth po-
sition is represented, using the horizontal positions as a
reference point. Our decoding analyses revealed above
chance decoding of z position in all retinotopic regions we
examined, including V1–4, V3A, V3B, IPS0, and LO1–2.
However, z decoding performance was highest in V3A,

V3B, and IPS0, in agreement with the results of past
studies (Goncalves et al., 2015; Finlayson et al., 2017). We
also confirmed and extended past findings that decoding
performance increased as two stimuli grew farther apart in
disparity (Fig. 3; Preston et al., 2008). Most importantly,
using an inverted encoding model, we were able to gen-
erate model-based representations of stimulus position
along both the horizontal and depth axes. In both dimen-
sions, the centers of the representations tracked the cen-
ters of viewed stimuli with reasonable accuracy, although
z position representations were both less accurate and
more variable than x position representations (Figs. 4–6).
Comparing the amplitude of representations between
ROIs provided evidence that the robustness of depth
representations is higher in V3A than in early visual areas
V1–V4. Taken together, these results support a model of
spatial processing in which information about stimulus
depth position emerges most prominently at an interme-
diate stage of the visual hierarchy (Backus et al., 2001;
Tsao et al., 2003; Neri, 2004; Welchman et al., 2005;
Preston et al., 2008; Durand et al., 2009; Georgieva et al.,
2009; Minini et al., 2010; Goncalves et al., 2015; Welch-
man, 2016; Finlayson et al., 2017; Li et al., 2017).

Although our SVM and IEM analyses both suggested a
key role for V3A in processing depth, they yielded slightly
different conclusions about the strength of depth repre-
sentations in other regions. Our SVM analysis (Fig. 2)
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Figure 5. Best fit centers of model-based representations at each stimulus position versus actual displayed stimulus center (thin gray
line). Average fit center across participants shown in black solid lines, with 95% CIs computed by bootstrapping. Individual
participants are shown in colored circles. Mean linear regression solution is shown with a dotted black line, where high accuracy
representations have a dotted line that overlaps with the gray line.
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indicated that V3B and IPS0 showed significantly higher
discriminability of different depth positions than early vi-
sual areas, while the IEM analysis (Fig. 6) showed that
model-based representation fit amplitudes were not sig-
nificantly different between V1-V4 and either V3B or IPS0,
although they were significantly different between LO2
and early visual areas V2 and V3. At the same time,
although there were no significant differences in represen-
tation error across ROIs, IPS0 showed one of the lowest
values of error, numerically more similar to V3A than to

V1–V4. One interpretation of these results is that IEM error
and decoding performance both measure the discrim-
inability of depth representations, while representation
amplitude measures the robustness, or signal-to-noise
ratio, of depth representations. Based on this interpreta-
tion, the results may suggest that V3B and IPS0 represent
depth with a high discriminability between different posi-
tions, while LO2 may have less discriminable but more
robust representations. In any case, these analyses all
suggest that representations in V3A are both more dis-
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Figure 6. Quality of model-based representations assessed three ways. A, Absolute error between the true stimulus position and the
estimated position for both x (left) and z (right). B, Best-fit amplitude of representations, averaged across position. In both A, B, open
black circles and solid black lines indicate mean and 95% CIs computed by bootstrapping. Individual participants are shown in
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FDR correction. For plots of representation fit size and baseline, see Extended Data Figures 6-1, 6-2.
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criminable and more robust than representations in early
visual cortex.

Although V3A was shown to represent depth the most
strongly, both our decoding and encoding-model results
show that the depth position of a stimulus is represented
within a range of early (V1–V3), intermediate ventral (V4,
LO1/2), and intermediate dorsal regions (V3A/B, IPS0) of
visual cortex. This finding of widespread depth selectivity
is in line with previous evidence from primate electrophys-
iology (Poggio et al., 1988; Hinkle and Connor, 2001;
Tanabe, 2004; Trotter et al., 2004; Anzai et al., 2011;
Hubel et al., 2015; Van Dromme et al., 2015), and univar-
iate human fMRI analyses (Backus et al., 2001; Neri, 2004;
Welchman et al., 2005; Bridge and Parker, 2007; Durand
et al., 2009; Georgieva et al., 2009; Ip et al., 2014; Gon-
calves et al., 2015; Li et al., 2017). Further supporting the
role of early visual areas in processing depth, human fMRI
work shows that retinotopic visual responses in V1 are
modulated by the perceived depth of objects (Murray
et al., 2006). However, we also note that past work sug-
gests disparity signals in the earliest regions of cortex (V1,
V2) do not exhibit selectivity for correlated over anticor-
related disparity, which is a common test for whether
disparity selectivity corresponds to perceived depth
(Backus et al., 2001; Bridge and Parker, 2007; Preston
et al., 2008; Ip et al., 2014; Goncalves et al., 2015).
Therefore, we do not make a strong claim that all the
regions we analyzed are directly associated with the per-
ception of depth, and we interpret our results as confirm-
ing previous findings that selectivity for absolute binocular
disparity is widespread in both dorsal and ventral visual
areas.

In our study, we chose to evenly space the stimuli in
rendered physical space to enable a direct comparison
between the x and z IEM representations using identically
structured encoding models and identically spaced stim-
uli. However, this necessarily meant that the stimuli were
nonlinearly spaced by binocular disparity (Fig. 1). We
speculate that mapping the z-axis by evenly spacing the
stimuli by binocular disparity might yield more accurate
representations of stimuli in depth. This could more effec-
tively exploit any underlying structure in binocular dispar-
ity selectivity across cortex (Goncalves et al., 2015),
although this remains a question for further empirical
research.

An additional limitation of our design is that while we
varied stimulus x position in addition to z position, we only
had enough data to perform the SVM and IEM analyses
separately for each axis. This means that the depth de-
coding and encoding analyses would rely heavily on vox-
els whose depth selectivity profile was tolerant to
changes in horizontal position. This type of tolerance has
been shown to increase along the posterior-anterior axis
of the brain (Finlayson et al., 2017), so this could have
resulted in an appearance of better depth representations
in intermediate regions than early regions. Building a joint
encoding model for x and z position, akin to a 2D encod-
ing model for x and y position (Sprague and Serences,
2013; Ekman et al., 2017; Vo et al., 2017) would be one

way for future studies to account for the interaction be-
tween x and z position encoding.

Finally, another limitation of the current study is that our
stimulus presentation system did not allow for eye track-
ing in the scanner. Although subjects performed a de-
manding task at fixation, we cannot rule out the possibility
of small changes in the vergence of the eyes toward the
depth plane of the stimulus. One effect of these vergence
movements would be to decrease the discriminability
between depth positions, shifting representations of the
furthest and nearest positions closer to the fixation plane.
This may be one reason why our estimates of the slope
between representation center and stimulus center in the
z dimension are shallower than in the x dimension (Figs. 5,
6). This is also consistent with our finding that represen-
tation error in the z dimension was lowest at positions
closest to the fixation plane (Extended Data Fig. 6-2).

Overall, these results provide evidence for tuned repre-
sentations of disparity in multiple regions of retinotopic
visual cortex, with strongest encoding in dorsal area V3A.
Our decoding analysis demonstrated that the discrim-
inability of stimuli scaled positively with disparity differ-
ence; this relationship was present widely throughout
retinotopic cortex. In addition to confirming the findings of
past work (Preston et al., 2008), we demonstrated that
this scaling of decoding performance with disparity was
present for extreme values of disparity up to 	38 and –44
arcmin, as well as more moderate disparity values. Fur-
thermore, our encoding model analysis allowed us to
explicitly model a continuous depth axis. By constructing
identical encoding models for both x and z position, we
were able to compare the accuracy and robustness of
depth position and horizontal position encoding. Although
depth position was represented with overall lower accu-
racy and higher variability than horizontal position, we
demonstrated that this technique can be used to recover
representations of positions in depth. Our method is fur-
ther validated by the fact that it recovered a similar pattern
of performance across ROIs as a well-established decod-
ing method. In future work, this technique may be used for
other purposes such as characterizing the effects of spa-
tial attention on 3D stimulus representations.
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