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Real‑time factory smoke detection 
based on two‑stage relation‑guided 
algorithm
Zhenyu Wang*, Duokun Yin & Senrong Ji

Recently, air quality analysis based on image sensing devices has attracted much attention. Since 
most smoke images in real scenes have challenging variances, which is difficult for existing object 
detection methods. To keep real-time factory smoke under efficient and universal social supervision, 
this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image 
analysis techniques. We introduce the two-stage smoke detection (TSSD) algorithm based on the 
lightweight detection framework, in which the prior knowledge and contextual information are 
modeled into the relation-guided module to reduce the smoke search space, which can therefore 
significantly improve the performance of the single-stage method. Experimental results show that 
the proposed TSSD algorithm can robustly improve the detection accuracy of the single-stage method 
and the model has good compatibility for image resolution inputs. Compared with various state-of-
the-art detection methods, the accuracy AP

mean
 of our proposed TSSD model reaches 59.24% , even 

surpassing the current detection model Faster RCNN. In addition, the detection speed of our proposed 
model can reach 50 ms (20 FPS), meeting the real-time requirements. This knowledge-based system 
has the advantages of high stability, high accuracy, fast detection speed. It can be widely used in some 
scenes with smoke detection requirements, such as on the mobile terminal carrier, providing great 
potential for practical environmental applications.

Air pollution source monitoring is of great importance in clean production. With the improvement of industriali-
zation, the factory smoke pollution has become an unavoidable problem. Real-timely and accurately monitoring 
factory smoke is of great importance for human health and sustainable development. At present, environmental 
protection departments usually use online continuous emission monitoring system (CEMS)1 to measure the 
concentrations of some gases (such as sulfur dioxide, nitrogen oxides) and solid particles in smoke online, then 
monitor the status of factory smoke pollution emissions. However, such specific monitoring results are not 
accessible to common people. At the same time, CEMS severely relies on physicochemical sensors to analyze 
collected component by some methods, which is not always reliable.

To address above problem and achieve efficient smoke detection, we make use of the computer vision methods 
and propose an efficient algorithm which can locate and identify factory smoke real-timely and accurately by 
pictures taken by mobile phones. Note that the smoke in these pictures may not be all harmful, but the black, 
yellow, red, white smoke with a pungent smell usually causes severe air pollution. Through further fine-grained 
image recognition based on the detected smoke by our algorithm, people should be able to know whether the 
smoke is polluted or not. In this way, it is convenient to report the surrounding factory smoke pollution phe-
nomenon, which has a great social supervision significance. Meanwhile, our image analysis solution can act as a 
supplement to the CEMS monitoring to provide a promising auxiliary means on pollution prevention and control.

For the detection of smoke in image, current research methods are mainly proposed in fire disaster warning 
and military fields. Traditional methods mostly used the hand-crafted features2 to realize image recognition 
through different classifiers. Their designs are complex and the detection accuracy still need to be improved. 
Since AlexNet3 won the first prize in the ImageNet Competition in 2012, deep learning method has been widely 
applied in image and computer vision. The newest smoke detection method based on deep learning4 used the 
effective convolutional neural network to extract image features automatically and achieved better detection 
accuracy. However, few works are proposed for high-accuracy location of smoke in the field of air pollution 
source monitoring, especially in the aspect of factory smoke pollution detection. At the same time, bad weather 
can also affect the performance of model. Some work related to image inpainting may solve the problem. Chen 
et al.5 provides a decent method to implement the image inpainting, which can make detection models suitable 
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for all weather circumstances. Chen et al.6 also gives a useful image inpainting algorithm, using known informa-
tion to restore the noisy images.

Recently, the object detection methods7,8 based on deep learning provide much help for real-time detection of 
smoke in images. The existing lightweight detection frameworks can be used to directly meet the requirements. 
Although they can obtain certain accuracy in most cases, the smoke detection task usually has a large scene, and 
existing methods may cause problems such as missed detection and false detection. In addition, some aspects 
are also not fully considered: (1) The shape of factory smoke is often variable and it’s easily affected by random 
factors such as wind, which brings certain challenges to detection; (2) The existing detection models fail to make 
full use of prior knowledge and ignore the inseparable relations between smoke and other objects, while these 
contextual relations are exactly important; (3) There may be some regions in the background that are similar to 
the smoke shape, which can have a bad influence for robust and accurate detection.

In order to solve the problems above, this paper proposes a two-stage relation-guided smoke detection (TSSD) 
algorithm. It makes full use of the contextual relation between chimney and smoke to minimize reduces of the 
searching space of smoke region, thereby improving the accuracy of smoke detection compared with the baseline 
model under the premise of ensuring real-time performance.

For this paper, the main contributions of this paper are as follows: 

(1)	 Aiming at a much more accessible industrial smoke pollution localization, this paper proposes a two-stage 
relation-guided smoke detection algorithm to reduce smoke searching space and improve detection accu-
racy of the baseline one-stage model. It could make full use of the prior knowledge and contextual relations 
for accurate detection. It uses pictures instead of specific sensors, making the results more accessible to 
people.

(2)	 The proposed method achieves better trade-off between accuracy and speed, which can meet the require-
ments of real-time factory smoke detection. Extensive experimental evaluations show that our method is 
effective and outperforms the compared popular object detection models.

(3)	 This paper designs a specific factory smoke image dataset with 960 high-quality images for analysis and 
evaluations. It provides a mobile-platform-running auxiliary method for the environmental protection, 
having a great social supervision significance.

The remainder of this paper is organized as follows. The related works on factory smoke detection are introduced 
in “Related works”. “Baseline model for smoke detection” describes the baseline model of smoke detection. In the 
following section, the proposed TSSD algorithm is presented in detail. The experiment and the result analysis 
are carried out strictly in “Experiments”. The conclusion is formed in the last section.

Related works
The section introduces the related works in succession, including the visual based smoke detection and some 
object detection methods.

Visual based smoke detection.  The research on smoke detection using image can be divided into two 
categories: traditional methods based on hand-designed features, deep learning methods using neural network 
to extract features.

For traditional methods, hand-designed features were usually as input into some machine learning methods 
such as the Support Vector Machine9,10, the shallow Neural Network11, and AdaBoost12. However, the smoke fea-
tures are complex and burdensome to obtain by cascade steps. Deep learning methods can automatically extract 
these features and effectively achieve higher accuracy. Yin et al.13 proposed the deep normalized convolutional 
neural network, embedding the normalized layer into convolutional network to realize better smoke detection. 
Yin et al.14 applied recurrent neural networks to this task, which effectively captured the contextual information 
of smoke long-range movement. Gu et al.15 developed a deep dual-channel neural network and achieved better 
smoke detection by the concatenation of the sub-network of extracting different-level features. However, these 
methods didn’t aim at the factory smoke detection task and also failed to achieve the high-accuracy location of 
the smoke object. Therefore, we investigated the general mainstream object detection frameworks.

Object detection methods.  The popular object detection frameworks based on deep learning can be 
roughly divided into two categories: proposal-based and proposal-free methods. The proposal-based methods 
first generate proposal regions in the first stage, then regress and classify these regions in the second stage. The 
proposal-free methods directly generate the object classification information and location coordinates without 
proposal regions.

In terms of the two-stage detection, Girshick et al.7 were the earliest to propose the RCNN model for object 
detection. Fast RCNN16 was further proposed to solve some disadvantages of RCNN. To achieve end-to-end 
better detection, Faster RCNN17 was developed to achieve the integration of the feature extraction, the proposal 
region generation, the bounding box regression and classification. About the one-stage detection, Redmon et al.8 
designed YOLO to directly predict the object location and category by once network inference to the original 
input images. SSD18 was developed by referring to YOLO and the different-scale idea. Based on of YOLO-V219, 
Redmon et al.20 further proposed YOLO-V3 to achieve better detection performance. Recently, Bochkovskiy 
et al.21 combined different strategies to develop more complex yet accurate model YOLO-V4. Transformer is also 
promising in object detection field. In recent months, there has been many transformer-based object detection 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1786  | https://doi.org/10.1038/s41598-022-05523-1

www.nature.com/scientificreports/

algorithms. Carion et al.22 used transformer to implement object detection first, significantly outperforming 
competitive baselines; Zhu et al.23 optimized the structure of DETR by using a small set of key sampling points, 
achieving better performance especially on small objects; based on DETR, Meng et al.24 put forward Conditional 
DETR, making training convergence faster. In these mainstream detection frameworks, we choose YOLO-V3 as 
the benchmark model of smoke detection due to its mature application in industry and good trade-off between 
speed and accuracy.

Object detection with contextual relation.  In the above sub-section, those detection frameworks only 
rely on the per-class inherent features and fail to fully introduce the contextual relevance around objects. Some 
works that model the contextual information into detection framework have been gradually carried out. Shrivas-
tava et al.25 integrated contextual segmentation into Faster RCNN. Bell et al.26 embedded ION structure into Fast 
RCNN to capture contextual information of ROI region. Leng et al.27 proposed context learning network into 
Faster RCNN. These methods improved the detection accuracy of respective benchmark networks. In addition, 
some researches on explicitly modeling contextual relation between objects have also been promoted. Hu et al.28 
proposed an object relation module to describe the relative location relation between different objects. Xu et al.29 
used the spatial-aware graph relation network to model important semantic and spatial relation between objects. 
Kim et al.30 developed a spatial relation reasoning framework to encode object features. Chen et al.31 use the 
semantic relation network and spatial relation network to model both global semantic relation and local spatial 
relation respectively. These methods were separately introduced into Faster RCNN and improved its detection 
accuracy. Inspired by them, this paper decides to develop a detection framework merging the smoke surround-
ings and its contextual relation.

Baseline model for smoke detection
This paper selects the widely adopted YOLO-V3 as the baseline model for smoke detection. The default model 
input size is 416× 416 and output has three-scale detections with the binary smoke class. For all the output 
boxes, non-maximum suppression (NMS) is adopted to obtain final detections. Its full procedure is listed in 
Algorithm 1.

Network structure of the baseline.  Network structure of the baseline model is shown in Fig. 1. There is 
a brief introduction to some of parameters and modules in this model:

’Conv2d’ means 2-dimension convolutional network; ’Residual Block’ denotes the residual-connected block 
of Conv2d 1× 1 and Conv2d 3× 3 , as shown in Fig. 2a; ’Detection Block’ is the combined block of Conv2d 1× 1 
and Conv2d 3× 3 , as shown in Fig. 2b.

The feature extraction network Darknet-53 is composed of alternating Conv2d layer and Residual Block, 
with a 53-layer fully convolutional network structure. In Darknet-53, the convolution with step size of 2 is to 
replace down-sampling pooling. And the channel number of the feature map is doubled through per convolution 
calculation to get more abstract feature information; residual connection is introduced to mine deeper network 
information for better image recognition.

Figure 1.   Network structure of the baseline model. It’s based on YOLO-V3 backbone. The network input is the 
416× 416 smoke image and output has three-scale detections with the binary smoke class.
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Algorithm 1 Network Structure of TSSD
Require:

image i with random size of s
1: for i= 1 to n do
2: Resize the image into the size of 416×416;

3: Run YOLO-V3 baseline shown in Figure 1 to get (xi,yi), (wi,hi), pi(c) for three-scale chimney object, and loss function

is shown in formula (1);

4: Execute non-maximum suppression (NMS) to get the biggest iou, described in Section 3.3;

5: Get (xi,yi), (wi,hi), pi(c) of chimney;

6: if number of boxes is 1 then
7: Use relation-guided module shown in Figure 3 to get ROI region;

8: Execute ROI region cropping shown in Figure 3;

9: Run YOLO-V3 baseline shown in Figure 1 to get (xi,yi), (wi,hi), pi(c) for three-scale smoke object, and loss function

is shown in formula (1);

10: Execute non-maximum suppression (NMS) to get the biggest iou;
11: return (xi,yi), (wi,hi), pi(c) of smoke;

12: else {number of boxes more than 1}

13: Use relation-guided module shown in Figure 4 to get ROI region;

14: Execute ROI region cropping shown in Figure 3;

15: Run YOLO-V3 baseline shown in Figure 1 to get (xi,yi), (wi,hi), pi(c) for three-scale smoke object, and loss function

is shown in formula (1);

16: Execute non-maximum suppression (NMS) to get the biggest iou;
17: return (xi,yi), (wi,hi), pi(c) of smoke;

18: end if
19: end for

This model learns from the multi-scale fusion strategy of FPN32 and uses three-scale branches to detect large, 
medium and small objects. And the size of the output feature layer is 52× 52 , 26× 26 and 13× 13 , respectively. 
Detection Block has two outputs after processing these three feature layers. One is followed by Conv2d 1× 1 
to give this-scale prediction results, and the other is up-sampled to concatenate with the previous feature layer 
correspondingly. The neural network can learn deep and shallow feature information to reach better feature 
representation of images.

Objective function.  Objective function of the baseline model is the weighted sum of bounding boxes’ coor-
dinate loss, confidence loss, and classification loss. The whole loss calculation formula is as follows.

Figure 2.   Cascaded-Blocks of Conv2d 1× 1 and Conv2d 3× 3 . (a) Denotes ‘Residual Block‘ to extract relative 
low-level smoke features, where n is 1,2, 8,4, from left to right. (b) Denotes ‘Detection Block‘ to extract relative 
high-level smoke features, where n is 3. Compared with (b), the residual connection of (a) can help to capture 
more feature information.
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where the first item is bounding boxes’ coordinate loss, and giou33 method is introduced to measure the location 
bias between predicted and true boxes. The sum of the third and fourth items is the confidence loss and focal 
loss34 is introduced to measure this bias. The fifth item is the classification loss of bounding boxes containing 
objects.

Here, we give a brief introduction to parameters in the formula:
s denotes the grid size of the final feature map, so here s2 corresponds to 13× 13 , 26× 26 and 52× 52 ; B is 

the number of predicted bounding boxes generated by each cell grid; 1objij  ( 1noobjij  ) indicates the jth bounding box 
in the ith grid is (not) to detect this object; (x, y) denotes center coordinates of the bounding box; (w, h) denotes 
its width and height; C is the number of classification; Cj

i is an indicator of the jth bounding box’s confidence 
score in the ith grid; p is the predicted probability of different categories; α is the balance parameter of positive 
and negative samples; γ is the weight coefficient of samples difficult and easy to classify; α and γ are manually 
empirical values.

Post processing.  To reduce redundant prediction boxes generated by the networks, we adopt post process-
ing of non-maximum suppression (NMS)35. In the detection process, the baseline model will generate multiple 
bounding boxes for the same target. The aim of NMS is to keep one-and-only bounding box with the largest 
confidence as the final detection result of the target. Among all predicted boxes from the baseline model, we first 
sort them by the classification probability and keep the box with the highest score. Then we calculate the IoU 
between it and other boxes to discard those boxes whose IoU is larger than the set threshold value. We repeat this 
process in the remaining boxes and keep the highest-score box as output each time. Finally, these highest-score 
boxes come to be predicted outputs. In NMS, IoU denotes the overlap ratio between ground truth box A and pre-
diction box B. We denote their overlap area as A ∩ B and total combined area as A ∪ B . Its calculation formula is:

Two‑stage smoke detection (TSSD) framework
To improve the detection accuracy of the baseline model, this paper proposes a two-stage smoke detection 
(TSSD) algorithm. The relation-guided module is the core of this algorithm.

Overview of TSSD.  Inspired by the attention mechanism and contextual awareness, this paper proposes to 
detect the stable chimney object firstly then to detect smoke in the region above the chimney location, which can 
improve the accuracy of the neural network regression. This strategy can greatly reduce the influence of disrup-
tive factors such as wind, rain and other weather conditions. In the first stage, a YOLO-V3 based detector pre-
dicts the chimney location in the image. In the second stage, the designed relation-guided module analyzes these 
prediction results to reduce smoke searching region, then the detector locates the smoke object in this region 
and maps the predicted location back to the original image as the final outputs. As a supplement, multi-heads 
predictions exist in the detector and they are concatenated to be processed with non-maximum suppression.

The framework of TSSD algorithm is shown in Fig. 3. It’s of great importance to design an effective relation-
guided module in TSSD algorithm. This module is a bridge to connect two-stage detection, reducing the smoke 
searing range in the second stage.

Relation‑guided module.  The shape and texture of smoke are various and it’s easily affected by weather 
conditions such as wind, rain and fog, while factory chimney is basically cylindrical and its shape is stable. 
Therefore, we decide firstly to detect the object easy to detect (chimney) and then to detect the one hard to detect 
(smoke). What’s more, the smoke is usually located above the factory chimney. This inherent prior knowledge 
and contextual relation provides the theoretical basis of designing relation-guided module.

We denote the input image height as h, width as w, and prediction box generated from first-stage detector 
as [(xmin, ymin), (xmax , ymax)] , where (xmin, ymin) is the upper left coordinate and (xmax , ymax) is the lower right 
one. Due to the influence of the wind direction or shooting angles, the partial smoke may be below the top of 
the chimney so the smoke shouldn’t be directly detected on ymin . Supposing that the increased value is δ times 
of the length of this box, we obtain a relation value yrelation of the height component:

(1)

Loss =

s2∑

i=0

B∑

j=0

1
obj
ij ×(2− wi × hi)× [(1− giou[(xi , yi ,wi , hi), (x̂i , ŷi , ŵi , ĥi)]]

−

s2∑

i=0

B∑

j=0

1
obj
ij × α|1− Ci

j|γ × [Ĉ
j
i log(Ci

j)+ (1− Ĉ
j
i )log(1− Ci

j)]

−

s2∑

i=0

B∑

j=0

1
noobj
ij × (1− α)|0− Ci

j|γ × [Ĉilog(Ci)+ (1− Ĉi)log(1− Ci)]

−

s2∑

i=0

1
obj
ij

∑

c∈class

[p̂i(c)log(pi(c))+ (1− p̂i(c))log(1− pi(c))]

(2)IoU =
A ∩ B

A ∪ B
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According to the location relation in our dataset, this paper sets δ as 0.4 to meet the basic design requirements of 
the relation-guided module. Using the relation value yrelation and the global ROI of the original image, we can get 
the bounding box [(0, 0), (w, yrelation)] and treats it as the ROI region for the second-stage detection. The range 
of smoke detection has transformed from the global ROI to local ROI region. It’s exactly the theoretical core of 
the designed relation-guided module. In this way, searching space of the detector is reduced, which is conducive 
to finer regression of neural network.

However, the above calculation is only suitable to the single prediction box from the first-stage detector. When 
multiple prediction boxes are generated, this paper uses the multi-object relation-guided module to solve this 
task. The function diagram of this module is shown in Fig. 4. For the prediction boxes in the figure, we represent 
their coordinates as [(xi,min, yi,min), (xi,max , yi,max)] (i = 1,2.3), from left to right. If to apply the leftmost prediction 
box to obtain the new detection region based on Eq. (3), the part of the rightmost smoke will miss detection. This 
paper introduces the function max{} to obtain the maximum ymin value as Ybottom to handle.

Supposing that Ybottom = y2,min , the relation-guided module can select the prediction box 
[(x2,min, y2,min), (x2,max , y2,max)] to obtain yrelation based on Eq. (3). Later, the ROI region of the second-stage 
detection can be obtained by the same way as the relation-guided process for single prediction box. Meanwhile, 
although the chimney is easy to detect, it may fail to be detected in very few cases. For this issue, this paper 

(3)yrelation = ymin + δ(ymax − ymin)

(4)Ybottom = max{y1,min, y2,min, y3,min}

Figure 3.   The framework of TSSD algorithm. In the first stage, a YOLO based detector locates chimney in 
the image, which may produce the meta result as none, one or more prediction boxes; in the second stage, the 
relation-guided module is to analyze the previous result and carry out ROI region cropping. Then the detector 
predicts the location of the smoke in the crops, maps this location back to the original image, and eventually 
outputs the prediction bounding box of factory smoke on the full image.

Figure 4.   The function diagram of multi-object relation-guided module. For three prediction boxes from the 
first stage, this module selects Ybottom of the biggest Y value at the top left vertex and finds the corresponding 
box. In combination with the global ROI, it further determines the detected ROI region in the second stage. 
Please refer to “”Relation-guided module” for the process of the detailed calculation.
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directly takes yrelation as h. Then the relation-guided module outputs the bounding box [(0, 0), (w, h)]. In other 
words, the original-size image is directly input into the baseline network.

Experiments
In this section, the image dataset for evaluation is introduced first and then the evaluation metrics are described. 
Extensive comparsion experiments between TSSD algorithm and other methods are carried out in succession. 
In addition, we give the intuitive discussion about the visual detection effect of this algorithm.

Dataset.  In order to verify the effectiveness of the proposed TSSD algorithm, we collect a special dataset of 
960 factory smoke images, including 500 captured by mobile phones and 460 downloaded from the Internet. 
The locations of taking pictures are in different cities, such as Beijing and Zibo, in China. All images contain the 
chimney, the smoke and the background. These similar things also appear in the Internet pictures. The collected 
dataset can be divided into four classes according to the image content: sunny environment, cloudy environ-
ment, smoke tilting, and multiple chimneys. The examples of the factory smoke dataset are shown in Fig. 5.

The transformation is performed by using Python’s imgaug toolkit. This toolkit can be downloaded from 
https://github.com /aleju/imgaug. The transformation details for each image are listed below:

(1) Rotate: take the center point of the picture and rotate it. The angle range is from -30 degrees to 30 degrees. 
According to the affine transformation, each pixel is rotated to the specified position according to the angle; (2) 
Flip: flip horizontally, mirror, and swap pixels at corresponding positions; (3) Brightness transform: multiply the 
value of each pixel by the same number, ranging from 0.5 to 1.5. If it is less than 1, it will become dark; otherwise, 
it will become bright.

This dataset is divided according to the training/testing ratio of 7:3, where 672 images act as the training set 
and the remaining ones as the test. To avoid the over-fitting problem from the few-shot training and learn more 
essential smoke features by neural networks, we adopt data augmentation strategies to expand the training set 
and enlarge the diversity of samples, including small-angle rotation, horizontal flip and brightness transform. 
Using these methods, one factory smoke image can augment to three ones. The details of the dataset distribution 
are shown in Table 1. The effect of data augmentation is shown in Fig. 6.

Figure 5.   Samples of factory smoke dataset. According to image content, they are divided into four classes of 
(a–d). Class (a) refers to smoke images in sunny environment. Class (b) corresponds to the cloudy environment. 
The chimney is inclined in class (c). There are multiple chimneys and smoke zones in class (d).

Table 1.   The detailed distribution of the dataset.

Source Mobile phones Internet Original Augmentation Whole set

Train set 370 302 672 2016 2688

Test set 130 158 288 / 288

Total 500 460 960 2016 2976



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1786  | https://doi.org/10.1038/s41598-022-05523-1

www.nature.com/scientificreports/

Evaluation metrics.  In this paper, the performances of TSSD algorithm and compared methods are evalu-
ated by the following metrics:

Average precision (AP).  We denote the precision rate as P and the recall rate as R. In general, the increase of 
the precision rate is synchronous with the decrease of the recall rate. To balance them better, PR curve is used 
to describe the performance of TSSD algorithm. The area under the curve is AP value. Because it’s necessary to 
locate factory smoke with high accuracy in this research, the AP@IoU=0.65:0.05:0.8 is taken as the reference 
metric. That is marked as AP@65∼AP@80.

Mean of different AP values ( APmean).  To fairly compare TSSD algorithm with mainstream object detection 
methods, we refer to the evaluation metric36 on the COCO dataset37 and mark the mean of AP@50∼AP@95 as 
APmean . It should be noted that this task involves only smoke class.

Inference speed.  Model speed is measured by the inference time and FPS (Frames Per Second). The inference 
time represents the forward time of the neural network detecting one smoke image, while FPS shows the number 
of the network detecting images per second.

Experimental details.  The experimental environment of TSSD algorithm is: in terms of hardware, we 
adopt the Intel (R) Xeon (R) CPU e5-2660 processor and the graphics card of GeForce RTX 2080 Ti. In terms 
of software, we choose the Ubuntu 16.04 operating system, TensorFlow1.12.0 deep learning framework, and 
Python3.6 programming language.

Training details.  TSSD algorithm uses the original images and chimney labels as input into the baseline net-
work to train first, which can get a detection model of the chimney. Then, the designed relation-guided module 
analyses and processes chimney labels to output the reduced smoke detection range. The images of this region 
and smoke labels are input into the baseline network for training, which can get a smoke detection model. Gen-
eral settings are as follows. The size of network input images is resized to 416× 416 . We use a weight decay of 
0.0005 and momentum of 0.9, with the batch size of 6 and total epochs of 60. To realize better training effect, we 

Figure 6.   Examples of data augmentation. It includes three kinds of augmentation strategies. The first column 
is the raw data. The second column is to rotate the image, the third is to flip, and the fourth is to transform 
darkness.
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set the initial learning rate as 1e−4 and the termination value as 1e−6, and adopt the warmup strategy to adjust 
it according to the division of the first 30 epochs and the later epochs.

Testing details.  The testing of TSSD algorithm consists of two stages. In the first stage, we use the trained model 
of chimney detection to output their prediction boxes. In the second stage, we use the designed relation-guided 
module to carry out the ROI region cropping for the predicted boxes from the previous stage. Then the trained 
model of smoke predicts the locations of the smoke in this reduced region. The general setting in the test are as 
follows. The score_threshold of eliminating redundant prediction boxes is 0.6. The size of the network input is 
416× 416 except experiments of image resolutions.

Ablation study of TSSD algorithm.  This section carries out the ablation study of TSSD algorithm to 
prove its superiority over the baseline model. In the training process, there are three values worthy to explore: 
the IoU threshold ε involved in the loss calculation, the balance factor α of positive and negative samples, and the 
hard negative mining coefficient γ . In addition, whether the trained TSSD model can improve the performance 
on different image resolutions η is also the discussed problem.

The training IoU threshold ε.  In order to study the individual effect of the IoU threshold ε on TSSD algorithm, 
we refer to the best performance of focal loss34 on the COCO dataset and fix the parameter α as 0.25 and γ as 2. 
In general, the minimum value of ε is set as 0.5 to avoid the big scale of detection boxes involving the loss calcula-
tion. What’s more, this paper sets the range of ε as 0.5∼0.8, where the step size is 0.1. This aims to compare TSSD 
with the baseline more fully. The experimental results are shown in Fig. 7.

The training balance factor α.  During the training of the baseline network, the proportion of positive and nega-
tive samples is 1:10,646. Therefore, it’s of great significance to introduce the balance factor α to relieve the loss 
gap produced by unbalanced two kinds of samples. To explore the performance of TSSD algorithm with different 

Figure 7.   Comparison of the accuracy between TSSD algorithm and the baseline model at different ε values.
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α values, we fix ε as 0.5 and γ as 2. Referring to the setting of α in focal loss34, we take it as {0.10,0.25,0.50,0.75}. 
Fig. 8 shows the experimental results.

The training coefficient γ.  Introducing the coefficient γ into the training can reduce the loss influence of simple 
samples, which enables the neural network to pay more attention to the difficult samples. To verify the perfor-
mance of TSSD algorithm with different γ values, we fix ε as 0.50 and α as 0.75. In the same way, we refer to the 
focal loss34 and set γ as {1,2,4,5}. The experimental results are shown in Fig. 9.

The inference image resolution η.  Having a good compatibility for different η inputs is meaningful for TSSD 
algorithm. Based on the training parameter set of { ε=0.5,α=0.75,γ=2}, we respectively test the η of 320× 320 , 
352× 352 , and 384× 384 . The experimental results are shown in Fig. 10.

Discussions.  From Figs. 7, 8 and 9, it can be clearly seen that TSSD algorithm can steadily improve the detec-
tion accuracy of the baseline when to change one of { ε , α , γ } parameters. The conclusion is still valid for differ-
ent η sets based on Figure 10. This strongly proves the effectiveness of TSSD algorithm. Especially, from Fig. 7, 
when to set different ε values, AP@65 and AP@80 of TSSD algorithm can obtain the improvement of over 2 % 
and AP@75 over 3 % than the baseline model. In addition, the biggest gain of 4.45% can be got when ε is 0.6 with 
AP@75. According to Fig. 8, when to set α as 0.50 or 0.75, AP@65∼AP@75 of TSSD algorithm can increase over 
3 % . Moreover, the highest increase of 5.09% appears at α as 0.50 with AP@70. On the basis of Fig. 9, for all the 
mentioned γ parameter settings, AP@75 of TSSD algorithm can realize the raise of over 3 % and AP@80 over 2 % . 
Meanwhile, the best raise occurs at γ as 5 with AP@75. In Table 2, when η is 320× 320 or 384× 384 , AP@75 and 
AP@80 of TSSD algorithm can increase over 3 % , and AP@65∼AP@80 gets the gain of over 2 % at η as 352× 352.

TSSD algorithm realizes so outstanding performance on different training parameters and we think there are 
three reasons as follows. (1) The relation-guided module in TSSD algorithm can transform the range of detec-
tion from the global ROI to the local ROI, which undoubtedly reduces the searching space of the needed object. 
This helps the neural network achieve more accurate regression for the object’s bounding boxes, determining 
the finer location of the object. (2) Prior knowledge information is introduced into TSSD algorithm, so that 

Figure 8.   Comparison of accuracy between TSSD algorithm and the baseline model at different α values.
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Figure 9.   Comparison of accuracy between TSSD algorithm and the baseline model at different γ values.

Figure 10.   Comparison of accuracy between TSSD algorithm and the baseline model at different η values.
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the reduced-range images must contain the smoke object, which improves the certainty of object detection. (3) 
The relation-guided module effectively eliminates the interference of the objects similar to smoke outside the 
reduced region.

In addition, by resizing to change η , it only has a certain influence on the clarity of images. That doesn’t dam-
age the inherent location relation between the smoke and the chimney. In other words, the optimization strategy 
of TSSD algorithm stills works and is not affected.

Comparison with the state‑of‑the‑art detection methods.  To verify the comprehensive perfor-
mance of TSSD algorithm, we compared it with various state-of-the-art detection methods, including Faster 
RCNN17, SSD18 and the baseline model. For Faster RCNN, we choose Resnet50 and Resnet10138 as the feature 
extraction networks. For SSD, we use Inception-v239 and MobileNet-v240.

To fairly compare all the models, the size of the network input is set as 416× 416 , and their training is based 
on the pre-trained weight on the COCO. Faster RCNN and SSD are trained until the loss function converges 
with the stable accuracy. The baseline model and TSSD algorithm adopt the same training parameter settings { ε
=0.5,α=0.75,γ=2}. For the fair evaluation between these models, we choose APmean as the accuracy metric. The 
experimental results are shown in Table 2, where the inference speed of TSSD algorithm is the time sum of the 
two stages. The effectiveness of it is intuitively visualized in Fig. 11.

From Table 2, it’s known that the detection accuracy of TSSD model is 59.24% . It reaches the highest accuracy, 
even surpassing the current detection model Faster RCNN101. Although TSSD model is slower than the fastest 
model SSD_Mobilenet-v2, it has the accuracy improvement of 8.42% . Meanwhile, the speed of TSSD model is 
50 ms (20 FPS), meeting the need of real-time detection. All of these show that our proposed TSSD algorithm 
has a bigger advantage than other methods.

We think there are two primary reasons for such superiority. (1) The baseline model of TSSD algorithm is 
suitable for this task. Its detection accuracy is only 1.6% lower than Faster RCNN_Resnet101, but the speed is 
3.25 times faster. Although the speed is slightly slower than SSD_Mobilenet-V2, its accuracy is 6.34% higher. (2) 
The TSSD can robustly improve the accuracy of the baseline model. The specific reasons can be seen in “Ablation 
Study of TSSD algorithm”.

Conclusion
This paper proposes a two-stage relation-guided smoke detection (TSSD) algorithm, which can be used on the 
mobile platform. This algorithm realizes the real-time and high-accuracy smoke location. Compared with the 
baseline model, TSSD algorithm can robustly improve the detection accuracy under different training param-
eters, and it also has a good adaptability to different image resolution inputs. Compared with state-of-the-art 
detection methods, TSSD algorithm achieves the highest accuracy(59.24%), and its speed (20 FPS) can meet the 
real-time requirements. These embody the effectiveness of the proposed TSSD algorithm in this task. It provides 
the environmental protection department with an auxiliary means of monitoring factory smoke pollution, having 
the practical value and a great social supervision significance.

As mentioned above, this paper is mainly aimed at the location and recognition of the factory smoke. It’s still 
a little difficult to classify and identify whether the detected smoke is harmful. In the future work, we will explore 
to jointly predict the smoke location and the pollution degree.

Table 2.   Comparison of TSSD algorithm and various state-of-the-art detection methods. Significant values 
are in bold.

Detection methods Feature networks APmean (%) Time (ms) FPS

Faster RCNN17 Resnet101 58.76 78 13

Faster RCNN17 Resnet50 57.82 72 14

SSD18 Inception-v2 50.54 25 40

SSD18 MobileNet-v2 50.82 22 45

Baseline Darknet53 57.16 24 42

TSSD (ours) Darknet53 59.24 50 20
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