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Platelets, small anucleate cells circulating in the blood, are critical mediators in

haemostasis and thrombosis. Interestingly, recent studies demonstrated that platelets

contain both pro-inflammatory and anti-inflammatory molecules, equipping platelets

with immunoregulatory function in both innate and adaptive immunity. In the context of

infectious diseases, platelets are involved in early detection of invading microorganisms

and are actively recruited to sites of infection. Platelets exert their effects on microbial

pathogens either by direct binding to eliminate or restrict dissemination, or by

shaping the subsequent host immune response. Reciprocally, many invading microbial

pathogens can directly or indirectly target host platelets, altering platelet count or/and

function. In addition, microbial pathogens can impact the host auto- and alloimmune

responses to platelet antigens in several immune-mediated diseases, such as immune

thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. In this review,

we discuss the mechanisms that contribute to the bidirectional interactions between

platelets and various microbial pathogens, and how these interactions hold relevant

implications in the pathogenesis of many infectious diseases. The knowledge obtained

from “well-studied” microbes may also help us understand the pathogenesis of emerging

microbes, such as SARS-CoV-2 coronavirus.
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INTRODUCTION

Platelets are the second most abundant cells in human blood circulation (1, 2). Anucleate
platelets are found only in mammals; in lower vertebrates, cells involved in hemostasis
and blood coagulation are nucleated and termed thrombocytes (3, 4). Under physiological
conditions, thrombopoietin (TPO) predominantly produced by the liver, via binding to the
TPO receptor c-Mpl on megakaryocytes, is the major regulator of megakaryocyte differentiation
and megakaryopoesis (5–7). Historically it is known that platelets are produced from their
precursor megakaryocytes in the bone marrow of mammals (3, 8, 9). However, recent research
surprisingly uncovered that platelets could also be generated by megakaryocytes in the lung of
mice (10), although further validation is required in both murine and human studies. Additionally,
the relative contribution of lung-generated platelets to total circulating platelets and whether
they possess different function is still unclear (11). In extension to their traditional roles in
haemostasis and thrombosis (12–15), recent studies suggest that platelets are also involved in
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many other physiological and pathophysiological processes, such
as innate and adaptive immunity, angiogenesis, atherosclerosis,
and tumor progression (2, 3, 16–22). We have previously
compiled a comprehensive overview of the importance of
platelets in modulating immune responses (23). In this review
article, we mainly focus on the bidirectional interplay between
platelets and microbial pathogens and the significant impact it
has on the host responses.

Infectious diseases are unresolved challenges to human
health, and remain as one of leading causes of morbidity and
mortality worldwide, especially in resources-limited countries
(https://www.who.int/news-room/fact-sheets/detail/the-top-
10-causes-of-death). Microorganisms encounter platelets
when they enter the mammalian blood circulation. Platelets
can directly bind to many pathogens (e.g., bacteria, viruses,
and parasites), or pathogen-IgG immune complexes via Fc
receptors expressed on platelets (24–26). This platelet-pathogen
interaction has functional consequences on both platelets and
pathogens (Figure 1). Reduced levels of circulating platelets
are commonly observed in patients with infectious diseases,
and the underlying mechanisms vary depending on specific
pathogens (18, 19, 25, 26). In addition, it has been demonstrated
that reduced platelet counts in patients or mice are associated
with increased susceptibility of the host to infections (27–30).
Sepsis is a life-threatening inflammatory syndrome caused
by a dysregulated host response to infection (31), and it has
been demonstrated that sepsis altered the transcriptional and
translational profiles of platelets in both humans and mice (32).
Although the evolutionary pressure to drive the pathogens
to develop various strategies to target platelets is not well-
understood, one possibility is that platelets may protect the host
from certain invading pathogens.

VERSATILE ROLES OF PLATELETS IN
PHYSIOLOGY AND PATHOBIOLOGY

Role of Platelets in Haemostasis and
Thrombosis
Platelet adhesion, activation and aggregation at the damaged
vessel endothelium are critical for bleeding arrest (12–15).
Platelet surface glycoprotein receptor, GPIbα, via interacting
with von Willebrand factor (VWF; anchored on collagen in the
injured vessel wall), initiates platelet adhesion, particularly under
the high shear conditions (14, 15, 33, 34). The GPIbα-VWF
interaction is also critical for endovascular growth of occlusive
thrombi at sites of arterial stenosis where blood flows with wall
shear rates that may exceed 40,000 s−1, corresponding to shear
stresses exceeding 1,600 Pa (35). The glycoprotein GPIIbIIIa
(αIIbβ3 integrin), can also contribute to platelet adhesion under
the lower shear conditions. This abundant platelet integrin
is essential for both fibrinogen-dependent and fibrinogen-
independent platelet aggregation (34, 36–39). Interestingly, in
addition to the platelet accumulation (platelet adhesion and
aggregation, the first wave of haemostasis), we recently found that
the plasma fibronectin can rapidly deposit onto the injured vessel
wall and mediate a “protein wave of hemostasis,” which occurs

even earlier than the first wave of haemostasis (40, 41). Platelets
may release their plasma fibronectin content from α granules
and contribute to this protein wave of hemostasis, which is
likely a compensatory mechanism for heamostasis in fibrinogen-
deficient mice and humans since their platelet fibronectin levels
increase 3–5-fold (34, 42, 43). Notably, activated platelets can
promote the cell-based generation of thrombin that markedly
enhances the blood coagulation (the second wave of haemostasis)
leading to the generation of polymerized fibrin (2, 14, 44). Thus,
platelets contribute to all three waves of haemostasis, which may
directly or indirectly affect the dissemination of micropathogens
in vivo.

It has been well-understood that deficiencies in platelet
adhesion/aggregation or the coagulation system are linked with
various bleeding disorders (2, 36, 45). However, inappropriate
formation of platelet plug may lead to thrombosis, and
thrombosis in the cerebral or coronary arteries is the major cause
of morbidity and mortality worldwide (46–48). Moreover, it has
been recognized that thrombus formation in the placenta can
lead to fetal loss during pregnancy in several disease conditions
(49), such as antiphospholipid syndrome (50, 51).

Role of Platelets in Innate and Adaptive
Immunity
As platelets contain both pro-inflammatory and anti-
inflammatory molecules, platelets can interact with many
immune cells (e.g., dendritic cells, neutrophils, and lymphocytes),
which can shape both innate and adaptive immunity
(3, 16, 17, 21, 23). In addition, platelets are involved in
the development of lymphatic vessels, the critical network
facilitating immune cell trafficking and surveillance (52, 53).
Platelets achieve this via the binding of platelet C-type lectin-like
receptor 2 to podoplanin on lymphatic endothelial cells, leading
to the separation of lymphatic vessels from blood vessels during
embryonic development (54–56).

Platelets contribute to the host innate immunity in various
ways. Platelets express the functional pathogen recognition
receptors, such as Toll-like receptors (TLRs) (TLRs 1-10 in
human platelets and TLRs 1-8 in murine platelets), and Nod-
like receptor 2 (19, 25, 57, 58). Platelets contain many pro-
inflammatory molecules (e.g., CD40 and serotonin), cytokines
(e.g., IL-1) and chemokines (e.g., CCL3, CXCL4, and CCL5),
and antimicrobial factors (e.g., kinocidins and defensins) in
their granules (3, 19). In addition, platelets express several
functional chemokine receptors, such as CCR3, CCR4, and
CXCR4 (59). Platelets can also shed microparticles that are
capable of transporting inflammatorymolecules (e.g., CD40L and
IL-1) to inflammatory cells (16, 60). Interestingly, platelets also
contain multiple anti-inflammatory molecules and cytokines,
such as transforming growth factor-β (TGF-β) (3). It has been
shown that platelet-derived TGF-β diminishes the anti-tumor
activity of natural killer (NK) cells (20, 61).

Platelets also modulate adaptive immune response of the
host. Activated platelets express CD40L on their surface, which
plays a key role in supporting antibody isotype switching (e.g.,
from IgM to IgG) and enhancing CD8+ T cell function (62, 63).
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FIGURE 1 | Bidirectional interaction between platelets and microbial pathogens. Microbes encounter platelets when they enter the mammalian blood circulation.

Platelets exert their direct effects on microbial pathogens by either binding them and sequestering them thereby limiting their systemic dissemination or by directly

eliminating them, and indirect effects by shaping the subsequent host immune response to these invaders. Reciprocally, many invading microbes can alter platelet

count or/and function, and impact the host auto- and alloimmune response to platelet antigens in several immune-mediated diseases.

Upon platelet activation, P-selectin is translocated from the
α-granule to the platelet surface (64). P-selectin, via interacting
with peripheral node addressin on high endothelial venules and
P-selectin glycoprotein ligand-1 on lymphocytes, mediates the
rolling and recruitment of lymphocytes to peripheral lymph
nodes (65). And platelet-derived TGF-β was shown to inhibit the
cytotoxic T cell response in the tumor microenvironment
(66), and might improve function of regulatory T
cells (67).

TGF-β is a key factor in IgA isotype switching (68). Since
IgA plays an important role in controlling the homeostasis
of gut microbiota (68), and preventing pathogen invasion at
mucosal sites (69), it remains to be investigated whether platelet
TGF-β contributes to the production of intestinal IgA. In
addition, TGF-β is critical for the differentiation of regulatory
T cells under non-inflammatory conditions, in both mice and
humans (70–72).

EFFECTS OF PLATELETS ON MICROBIAL
PATHOGENS

Since platelets contain many pro-inflammatory molecules, and
reduced platelet counts in patients or mice are linked with the
host’s susceptibility to infections (3, 23, 27, 28, 30), it suggests
that platelets may protect the host from certain microbial
infections. Platelets are involved in the early detection of
invading microorganisms and are actively recruited to sites of
infection (18, 19, 25). Review of recent literatures shows that
platelets exert their direct effects on microbial pathogens by
either binding them and sequestering them thereby limiting
their systemic dissemination or by directly eliminating them

(Figure 2). Platelets also have indirect effects on microbial
pathogens by shaping the subsequent innate and adaptive
immunity of the host to these invaders (Figure 2).

Direct Effects of Platelets on Pathogens
In the context of Staphylococcus aureus (S. aureus) infection,
platelets bind S. aureus and use the pseudopods to encapsulate
the bacteria (73). This ability of platelets to collect and bundle
bacteria [e.g., S. aureus, Escherichia coli (E. coli) and Listeria
monocytogenes (L. monocytogenes)] may trap these bacteria,
limit their dissemination within the bloodstream and present
them to phagocytes (74, 75). Moreover, α-toxin derived from
S. aureus stimulated human platelets to release β -defensins,
which significantly retarded the growth of two strains of S. aureus
isolated from patients with sepsis (73).

In addition to pathogen trapping, platelets can kill certain
pathogens. Plasmodium. falciparum is the most common species
that cause malaria in humans. In the infected host, Plasmodium
invades red blood cells in the bloodstream and replicate until
erythrocytes burst. It has been demonstrated platelets can bind
Plasmodium-infected erythrocytes and directly kill Plasmodium
inside red blood cells both in vitro and in vivo (28, 76).
Subsequent studies revealed that the chemokine platelet factor
4 (also known as CXCL4) released from platelets plays a key
role in this platelet-mediated parasite destruction (77, 78).
In addition, platelets can secrete many antimicrobial factors
including defensins to inhibit the growth of bacteria and
viruses (19). Notably, human platelets and megakaryocytes
express the antiviral immune effector molecule: interferon-
induced transmembrane 3 (IFITM3) (79). It has been recently
demonstrated that viral infections (e.g., influenza and dengue
viruses) upregulated the expression of IFITM3 on platelets and
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FIGURE 2 | Effects of platelets on microbial pathogens. The direct effects of platelets on microbial pathogens include pathogen encapsulation and elimination.

Platelets also exert the indirect effects on microbial pathogens by shaping the innate and adaptive immune responses of the host against these invaders.

megakaryoctyes, eliciting rapid antiviral immunity, and that
megakaryocytes were capable of limiting viral infections in both
megakaryocytes and hematopoietic stem cells via secretion of
type I interferons (79).

However, it is important to note that some viruses [e.g.,
Dengue virus, human immunodeficiency virus (HIV), and
hepatitis C virus (HCV)], which can be actively engulfed by
platelets and induce platelet activation through TLR signaling,
may also utilize platelets to disseminate through the entire body
of host (80–83). Therefore, the protective role of platelets against
viruses may be context-dependent.

Indirect Effects of Platelets on Pathogens
In addition to the direct effects on pathogens, platelets can
shape the host immune responses to invading pathogens and the
involved mechanisms are summarized as follows (Figure 2):

Recruiting Leukocyte to Sites of Vascular Invasion
Platelets can utilize the functional pattern recognition receptors
expressed on their surface to sense the intravascular pathogens,
and release various chemokines (e.g., CCL3, CXCL4, and CCL5)

to recruit leukocytes to sites of vascular invasion (18). In addition,
activated platelets use CD40L to trigger the inflammatory
reaction on CD40-expressing vascular endothelial cells, leading
to increased expression of the adhesion molecules (e.g., vascular
cell adhesion molecule 1 and intercellular adhesion molecule
1) and secretion of proinflammatory cytokines (e.g., CCL2) by
endothelial cells (84). This phenotypic alteration of vascular
endothelial cells may further promote the recruitment of
leukocytes at sites of infection (85, 86).

Activated platelets can also directly interact with leukocytes,

forming platelet-leukocyte conjugates, and this interaction is

largely mediated by P-selectin on activated platelets and P-
selectin glycoprotein ligand 1 on leukocytes (47). The platelet-

leukocyte triggers the activation of leukocytes and their increased
expression of β1 and β2 integrin, leading to enhanced adhesion of
leukocytes to vascular endothelial cells (87). In addition, activated
platelets already deposited at sites of infection can act as docking
platforms for leukocyte recruitment (47). More importantly,
activated platelets deposit chemokines CXCL4 and CCL5 on the
surface of vascular endothelial cells, instructing the extravasation
of leukocytes at sites of infection (88, 89).
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Increasing Pathogen Elimination by Macrophages
In the liver, the tissue-resident macrophages, Kupffer cells, play
a key role in the innate defense against blood-borne pathogens.
Wong et al. showed that Kupffer cells act as docking platforms for
both bacteria and platelets. Platelets formed aggregates around
the bacteria that are bound to Kupffer cells, and promoted
Kupffer cell-mediated phagocytosis of these bacteria (90).

Enhancing Formation of Neutrophil Extracellular

Traps (NETs)
During Gram-negative bacterial infections, platelets actively
contribute to NETs formation (29, 91). Platelet TLR4 is capable
of detecting intravascular TLR4 ligands [e.g., lipopolysaccharide
(LPS)], inducing platelet binding to neutrophils. This TLR4-
dependent platelet-neutrophil interaction results in robust
neutrophil activation and production of NETs, which are
DNA-based structures capable of capturing and eliminating
microbes from the bloodstream (29, 77). Platelet depletion
in vivo significantly impairs NETs formation and bacterial
clearance (29, 92).

Promoting Adaptive Immune Response to Pathogens
Antigen acquisition by dendritic cells is critical for generation
of the cytotoxic CD8+ T cell response against intracellular
pathogens (93). Verschoor et al. found that platelets could
actively bind L. monocytogenes in the circulation and shuttle
this subset of gram-positive bacteria to splenic CD8α+ dendritic
cells, enhancing anti-bacterial CD8+ T cell expansion (94).
In addition to affecting antigen presentation, platelets have
been shown to promote the polarization of Th1 and Th17
cells, and modulate the balance of regulatory and non-
regulatory T cells (95, 96). Furthermore, platelet-derived CD40L
alone is sufficient to induce IgG isotype switching against
adenovirus (62), but it remains to be investigated whether
platelet CD40L also promotes antibody class switching to other
immunologobulin isotypes (e.g., IgA), since antibody class
switching to different isotypes involves distinct DNA repair
pathways (97).

Conversely, platelet antimicrobial responses may be
detrimental to the host if they are dysregulated. For example,
it has been reported that NETs formation contributed by
platelets that were activated by microbial derived products
could cause the injury to blood endothelial cells due to
the many proteases contained within NETs (29), which
can directly act as a scaffold and stimulus for thrombus
formation (98).

EFFECTS OF MICROBIAL PATHOGENS ON
PLATELETS

As mentioned above, reduced platelet count is a common
feature with some infectious diseases, and the underlying
mechanisms vary depending on specific pathogens (18, 25,
26). Considering the important role of platelets in the
regulation of host immunity, it is not surprising that various
pathogens target platelets in the course of infections. Many
invading pathogens can directly or indirectly target platelets

in the host, altering platelet function or/and count (Figure 3);
in addition to these alterations, it has been shown that
viral infections (e.g., dengue and influenza viruses) and
sepsis can markedly alter the platelet transcriptome (32, 79).
Furthermore, microbial pathogens impact the host autoimmune
and alloimmune response to platelet antigens in several immune-
mediated diseases, such as immune thrombocytopenia, and
fetal and neonatal alloimmune thrombocytopenia (99–101)
(Figure 3).

Impact of Microbial Pathogens on Platelet
Function
The interaction between microbial pathogens and platelets
can lead to alteration of platelet function (i.e., platelet
activation and apoptosis) (Figure 3). Activated platelets can
trigger the coagulation system, leading to excessive clotting
(102, 103), which may exacerbate the symptoms caused
by microbial infections and thus may be detrimental to
the host.

Altering Platelet Activation
The capacity to trigger platelet activation is a well-known feature
for many pathogens. For example, LPS purified from Gram-
negative bacterium E. coli, via interacting with TLR4, induces
platelet activation both in vitro and in vivo (58, 104), and direct
interaction between E. coli and platelets has also been observed
in vivo (75). Dengue virus, which causes hemorrhagic fever in
around 10% infected patients, directly bind platelets via multiple
receptors (e.g., DC-SIGN, heparin sulfate proteoglycan receptors
and TLR-4), and activate platelets, triggering the conformational
activation of platelet αIIbβ3 integrin, the translocation of P-
selectin to platelet surface and the release of pro-inflammatory
molecules (e.g., IL-1β) (25, 105, 106). In addition, microbial
infections cause the release of inflammatory cytokines in the
host (31, 107), and these cytokines (e.g., TNF-α) were shown
to enhance platelet activation in vivo (108). And for some
pathogens (e.g., influenza virus), anti-microbial antibodies form
the immune complexes with pathogens and activate platelets via
Fc receptors (18, 109).

It has been shown that the secreted products by S. aureus,
such as α-toxin and Staphylococcal superantigen-like 5, can
directly activate platelets (110, 111). Interestingly, the lipoteichoic
acid secreted by S. aureus can inhibit platelet activation and
aggregation (112). Thus, the effects of microbial pathogens on
platelet function is dependent on microbial strain or/and the
microbial products.

Inducing Platelet Apoptosis
Once activated, platelets undergo apoptosis (25). In addition,
some pathogens (e.g., pathogenic E. coli and S. aureus) are
found to directly induce platelet apoptosis through degradation
of anti-apoptotic Bcl-xL protein (113). Platelet apoptosis induced
by microbial pathogens (e.g., dengue virus) not only reduces
mitochondrial potential, but also increases the surface exposure
of phosphatidylserine that potentially triggers the activation of
coagulation system (106, 114).
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FIGURE 3 | Effects of microbial pathogens on platelets. Many invading microbes can alter platelet function, leading to platelet activation or/and apoptosis. Reduced

platelet count is a common feature with some infectious diseases, and the underlying mechanisms include accelerated platelet clearance and impaired platelet

production. In addition, microbial pathogens impact the host autoimmune (e.g., in ITP) and alloimmune (e.g., in FNAIT) response to platelet antigens. VZV, varicella

zoster virus.

Impact of Microbial Pathogens on Platelet
Count
Reduced platelets in the context of infectious diseases can be due
to enhanced platelet clearance or/and altered platelet production
(Figure 3).

Enhancing Platelet Clearance
As mentioned above, some microbial pathogens can activate
the platelet and coagulation system, leading to thrombosis (18).
Exaggerated thrombus formation, especially within the setting
of sepsis-associated disseminated intravascular coagulation, may
excessively consume platelets, resulting in reduced circulating
levels (31, 115, 116). Secondly, platelet clearance may be
enhanced through collateral stimulation of the immune system
by some microbial pathogens [e.g., varicella zoster virus, HIV,
HCV, and Helicobacter pylori (H. pylori)] (117–121). For
example, thrombocytopenia in children following varicella zoster
virus infection first described antigenic mimicry for some

microbial pathogens that encompass host generation of cross-
reactive antibodies to certain glycoproteins (e.g., GPIIIa) on
the platelet surface, resulting in accelerated platelet clearance
(117). Third, direct platelet-bound microbial products (e.g., LPS)
or inflammatory byproducts (e.g., C-reactive protein) could
enhance antibody mediated phagocytic responses (122–124).

Microbial induced platelet clearance can also occur via

removal of terminal sialic residues of the abundantly expressed
platelet surface glycans. Scavenging of host sialic residues by

microbial pathogens increases immune evasion and assists
in survival and dissemination (125, 126). Direct cleavage of

platelet sialic residues by pathogen-derived neuraminidase
has been reported in bacterial, and parasitic infections (127).
Indirectly, pathogens could induce platelet desialylation
mediated by platelet-derived neuraminidase, as was reported
with dengue virus infection (128). By either mechanism, loss
of terminal sialic residues not only leads to rapid platelet
clearance via lectin receptors predominantly in the liver (129),
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but also potentiates platelets to hyperactivity contributing
to pathological disseminated intravascular coagulopathy and
thrombotic complications of sepsis (130–132). Although,
animal models and preliminary human studies demonstrate
sialidase inhibitors or hepatic lectin receptor Ashwell-Morell
inhibitors can ameliorate coagulopathies and thrombocytopenia
in microbial infections (133, 134), other lectin receptors such
as the recently identified Kupffer macrophage galactose lectin
receptor may also contribute (135). Likely there are multiple and
redundant receptor/ligand interactions that mediate clearance of
desialylated or desialylation activated platelets.

Altering Platelet Production
Depending on the specific pathogens, there are several means
by which invading microbes can negatively impact the platelet
production bymegakaryocytes in the bone marrow. For example,
HCV can interfere with TPO production by damaging the liver
tissue (136). Some pathogens (e.g., dengue virus and HIV) can
directly infect megakaryocytes or their precursors, or alter the
bone marrowmicroenvironment, leading to the defective platelet
production in bone marrow (137–140).

However, it is important to note that inflammatory cytokines
(e.g., TNF-α and IL-6) induced by certain microbial infections
are capable of enhancing platelet production by triggering acute
emergency megakaryopoiesis (18, 141). Thus, the impact of
microbial infections on platelet production is context-dependent.

In addition to the effects on platelet count and function,
microbial pathogens impact the host auto- and alloimmune
response to platelet antigens in several immune-mediated
diseases, such as immune thrombocytopenia (ITP), and fetal
and neonatal alloimmune thrombocytopenia (FNAIT) (99–101)
(Figure 3).

Role of Infections in ITP
ITP is an autoimmune disorder in which an abnormal immune
response develops against one’s own platelets, leading to
autoantibody-induced platelet/megakaryocyte destruction and
suppressed platelet production, and an increased risk of bleeding
(3, 99, 142–145). In adult ITP patients, detectable antibody
reactivity against GPIIbIIIa and GPIb/IX predominate (60–
70%) (99, 142, 146). However, it is uncommon for patients to
possess single antibody specificities, other glycoprotein targets
including GPV, GPIV, and GPIa/IIa are often detected (147–149).
Moreover, extensiveness of anti-glycoprotein antibody repertoire
has been correlated with more severe disease (147). The anti-
platelet antibodies not only accelerate platelet clearance mediated
by splenic macrophages and hepatic Kupffer cells (135, 150, 151),
but also inhibit the development of bonemarrowmegakaryocytes
and promote their apoptosis, thus inhibiting platelet production
(3, 99, 129, 142, 152). In addition to anti-platelet autoantibodies,
cytotoxic CD8+ T cells, and regulatory CD8+ T cells might
also contribute to the pathogenesis of ITP (99, 142, 153–158).
Cytotoxic CD8+ T cells were shown to directly lyse platelets,
induce the apoptosis of platelets, and inhibit platelet production
by megakaryocytes (153, 159, 160). It has been reported that
the frequency or/and function of regulatory CD4+ T cells were
defective in the circulation of ITP patients (161–169), and
interestingly, the TGF-β level was also reduced in these patients

(161, 170, 171). It has been reported that peripheral deficiency
of regulatory CD4+ T cells might be caused by their retention in
the thymus in murine model of ITP (172), although it remains
to be investigated whether this mechanism is also present in
ITP patients. The therapies (e.g., steroids and B cell depletion)
that improve platelet counts also restored the frequency or/and
function of regulatory CD4+ T cells in the periphery (67, 163,
166, 169, 173), and the level of circulating TGF-β in ITP patients
(170, 171), although it remains to be investigated whether the
improvement of regulatory T cells is due to changes in circulating
TGF-β (3).

Chronic infections (e.g., HIV, HCV, and H. pylori) can cause
secondary ITP, in which antimicrobial antibodies cross-react with
platelets, leading to platelet destruction (174). Acute infections
have long been suspected as triggers that initiate the pathogenesis
of primary ITP, but in most acute ITP cases, the specific pathogen
could not be identified (175). Retrospective studies suggested that
infectious events (e.g., viral and fungal infections) precede the
development of primary ITP in around 20% ITP patients (176),
but future definitive studies are required to confirm the causal
relationship between the specific pathogen(s) and initiation of
primary ITP, and to identify the underlying mechanisms (151,
152). Furthermore, it has been demonstrated that infections
during ITP worsened the pathogenesis of primary ITP and the
therapeutic response to platelet transfusions, but the underlying
reasons were unclear (30).

Since inflammation induced hemorrhage in
thrombocytopenic mice (177), it is possible that inflammation
associated with microbial infections may aggravate the bleeding
risk in thrombocytopenic patients (e.g., ITP). C-reactive
protein is markedly upregulated during acute infections and
inflammation (178), and it has been shown that C-reactive
protein, via binding to platelet phosphorylcholine residues,
enhanced the IgG-mediated phagocytic responses against
platelets and thereby thrombocytopenia, which has implications
in the pathogenesis of both ITP and FNAIT (123, 124). In
addition to ITP, infections also play an important role in the
pathogenesis of heparin-induced thrombocytopenia, in which
pathogenic antibodies to the complexes of platelet factor 4 (PF4)
and heparin develop post-heparin exposure, leading to life-
threatening complications of thrombocytopenia and thrombosis
(179, 180). It has been demonstrated that PF4 bound to various
bacteria, induces the generation of antibodies that could cross-
react with the major antigen in PF4/heparin complex, resulting
in heparin-induced thrombocytopenia (181, 182).

Role of Infections in Alloimmune Thrombocytopenia
FNAIT results from the development of maternal alloantibodies
targeting paternally derived antigens on fetal platelets during
pregnancy, and these maternal antibodies cross the placenta and
destroy fetal or neonatal platelets, leading to bleeding disorders
(183–189). Similar to ITP, most of the reported FNAIT cases
are characterized by maternal alloantibodies to platelet GPIIbIIIa
(183–185, 190). In contrast, there are very few reported cases of
FNAIT with anti-GPIbα complex antibodies (191–195), which
is different from the 20 to 40% prevalence of anti-GPIbα
antibodies in ITP patients (99, 142). To gain new insights into
the pathogenesis of FNAIT, our laboratory established animal

Frontiers in Immunology | www.frontiersin.org 7 August 2020 | Volume 11 | Article 1962

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Li et al. Platelet-Microbes Interactions

models of FNAIT using β3−/− and GPIbα−/− mice, respectively
(187, 188, 196, 197). We observed neonatal thrombocytopenia
and severe bleeding disorders (e.g., intracranial hemorrhage)
in the heterozygous pups from wild-type (WT) platelet
immunized β3−/− dams, which recapitulated FNAIT in humans
(187, 196). In contrast, miscarriage unexpectedly occurred
in most of the anti-GPIbα-mediated FNAIT, which is far
more frequent than that mediated by anti-β3 antibodies (49).
Besides miscarriage, maternal immune response against fetal
platelet antigens caused intrauterine growth restriction to
fetuses due to placental abnormalities in animal models of
FNAIT (197).

The roles of bacterial/viral infections in the pathogenesis
of FNAIT were unclear. To test whether bacterial infection
contributed to FNAIT, we utilized LPS to mimic Gram-negative
bacterial infection, and co-administered it with low-dose WT
platelet antigens to GPIbα−/− and β3−/− mice (100). We found
that LPS co-administration significantly boosted the production
of anti-GPIbα and anti-β3 antibodies, and miscarriage occurred
in most of these co-stimulated GPIbα−/− and β3−/− mice,
while miscarriage infrequently occurred in the dams immunized
with low-dose WT platelets alone. Furthermore, we utilized
Poly I:C to mimic viral infections, and observed that co-
injection of Poly I:C and WT platelets also enhanced production
of anti-GPIbα antibodies in GPIbα−/− mice and the severity
of FNAIT (100). However, it remains to be investigated
whether live bacterial or viral infections indeed exacerbate the
pathogenesis of FNAIT. Overall, our data suggested that both
bacterial and viral infections were likely to be involved in
the pathogenesis of FNAIT in animal models, but it warrants
further studies to test whether this is also the case for human
FNAIT patients.

The effects of microbial infections in the pathogenesis
of FNAIT may be also translatable to another alloimmune
thrombocytopenia: post-transfusion purpura, in which anti-
platelet alloantibodies develop against transfused platelets from
genetically distinct donors (3).

FUTURE PERSPECTIVES

Our understanding of platelet functions beyond haemostasis
and thrombosis has dramatically expanded in the past years.
Accumulating evidence indicates that platelets play an important
role in the host immunity against microbial infections, and
future discoveries will undoubtedly uncover more versatile
features of platelets. The interaction between platelets and
microbial pathogens are bidirectional, as this interaction
causes the biological consequences on both platelets and
microbes (Figure 1). The knowledge we obtained from these
“well-studied” microbes may also help us understand the
pathogenesis of emerging microbes, such as severe acute

respiratory syndrome coronavirus (SARS-CoV-2). The SARS-
CoV-2 infection causes the pandemic coronavirus disease 2019
(COVID-19) in humans, but the pathogenesis of COVID-19
is still largely unclear (198, 199). Thrombocytopenia has been
observed in around 5–36% of COVID-19 patients (198, 200),
and two recent meta-analysis studies with COVID-19 patients
revealed that severe reduction in platelet counts might be a poor
prognostic marker for this life-threatening disease (201, 202).
Importantly severely ill COVID-19 patients exhibit profound
hypercoagulable states (203, 204), and excessive clotting has
been observed in severely ill COVID-19 patients (205–207). Is
the thrombocytopenia in severe COVID-19 cases caused by the
platelet hyperactivities and consumption during micro-thrombi
formation? Do the hypercoagulable states synergize with platelet
activation, which provide phosphatidylserine, propel the cell-
based thrombin generation (44), and lead to thrombosis? Do
platelets release/synthesize their cytokines and contribute to the
cytokine storm in COVID-19 patients? Do platelets contribute to
the immune response against SARS-CoV-2? Finally, are platelets
friends or foes or able to switch their roles during SARS-CoV-
2 infection? All these questions are important and warrant
further investigations.

Overall, we believe that understanding the interactions
between platelets and microbial pathogens will shed
light on the pathogenesis of infectious diseases and that
modulation of platelet-pathogen interactions could provide new
therapeutic avenues.
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