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Abstract: Staphylococcal enterotoxin A (SEA), the toxin protein secreted by Staphylococcus aureus,
can cause staphylococcal food poisoning outbreaks and seriously threaten global public health.
However, little is known about the pathogenesis of SEA in staphylococcal foodborne diseases. In
this study, the effect of SEA on intestinal barrier injury and NLRP3 inflammasome activation was
investigated by exposing BALB/c mice to SEA with increasing doses and a potential toxic mechanism
was elucidated. Our findings suggested that SEA exposure provoked villi injury and suppressed
the expression of ZO-1 and occludin proteins, thereby inducing intestinal barrier dysfunction and
small intestinal injury in mice. Concurrently, SEA significantly up-regulated the expression of NLRP3
inflammasome-associated proteins and triggered the mitogen-activated protein kinase (MAPK) and
nuclear factor kappa-B (NF-κB) signaling pathways in jejunum tissues. Notably, selective inhibitors
of MAPKs and NF-κB p65 ameliorated the activation of NLRP3 inflammasome stimulated by SEA,
which further indicated that SEA could activate NLRP3 inflammasome through NF-κB/MAPK
pathways. In summary, SEA was first confirmed to induce intestinal barrier dysfunction and activate
NLRP3 inflammasome via NF-κB/MAPK signaling pathways. These findings will contribute to a
more comprehensive understanding of the pathogenesis of SEA and related drug-screening for the
treatment and prevention of bacteriotoxin-caused foodborne diseases via targeting specific pathways.

Keywords: staphylococcal enterotoxin A; intestinal barrier dysfunction; NLRP3 inflammasome;
NF-κB; MAPK

Key Contribution: Our study demonstrated for the first time that SEA exposure could cause villi
injury and inhibit the expression of TJ proteins, thereby inducing intestinal barrier dysfunction and
small intestinal injury. Meanwhile, SEA was first confirmed to activate NLRP3 inflammasome via the
NF-κB/MAPK signaling pathways.

1. Introduction

Bacterial toxins are considered to be one of the most common causes of foodborne
disease outbreaks worldwide [1]. Staphylococcus aureus (S. aureus), a common foodborne
pathogen, causes foodborne poisoning and toxic shock syndrome by secreting bacterial
superantigen toxins (staphylococcal enterotoxins, SEs) [2]. Staphylococcal food poisoning
(SFP) caused by the ingestion of pre-formed SE contaminated food is one of the most
prevalent bacterial foodborne diseases, and can cause severe food safety, public health and
economic problems [3]. The corresponding symptoms mainly include nausea, vomiting,
abdominal cramping and diarrhea. Remarkably, SEs are widely distributed in food process-
ing environments, workers’ skin, food production animals, and frequently contaminate
raw milk and dairy products, raw meat and meat products, ready-to-eat food, etc. [4,5].
Notably, SEs toxin protein is highly resistant to harsh-sterilization environments during
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food processing (freezing, drying, heat treatment, acid, alkali), and are even resistant to
proteolytic enzymes (including pepsin, trypsin, renin and papain) [4,6]. Besides, previous
studies have also found that strong fluorescence intensity (using an anti-SEA antibody)
was observed in the jejunum and ileum after oral intake of the SEA protein [2]. Therefore,
it can be clearly inferred that the SEA protein can tolerate protease digestion and still
maintain biological activity in the intestine after oral intake, further leading to foodborne
diseases. At present, more than 20 SEs have been identified [7]. Among them, SEA is the
most common enterotoxin involved in global SFP outbreaks, for example, 77.8%, 69.7% and
56.9% of all outbreaks in the United States, France and United Kingdom, respectively [8].
Accordingly, SEA could induce mast cell degranulation and histamine release by binding to
the submucosal mast cells in the intestinal tract. The stimulation was transmitted from the
gut to the brain through nerves, triggering emetic reaction [9]. Moreover, SEA also exerts
strong superantigen activity, which can activate diverse T cells and lead to an inflammatory
response even at an extremely low dose [10,11]. As a consequence of its pathogenicity and
stability, SEA is considered a serious threat to global public health. However, there are few
reports illustrating whether SEA can cause histopathological damage and an inflammatory
response in the intestine.

The intestine is not only the main place for nutrient digestion and absorption, but also
the first immune barrier against harmful substances, such as pathogenic microorganisms
and microbial toxins [12,13]. Therefore, maintaining the function and integrity of the
intestinal barrier is essential for human health. The intestinal epithelial barrier is composed
of epithelial cells, a mucus layer and intercellular tight junction (TJ) proteins [14]. Tight
junctions are a complex of transmembrane proteins, including zonula occludens (Zos),
occludin and claudins, and can prevent the translocation of bacterial toxins in the intestinal
cavity via linking to the actin cytoskeleton, which is of great significance for maintaining
cell bypass and the intestinal barrier [15,16]. Once TJ proteins and the intestinal barrier
are damaged, bacterial toxins penetrate the intestinal wall and promote the secretion of
pro-inflammatory cytokines, thereby provoking the occurrence of numerous intestinal
diseases [14,17].

Furthermore, intestinal epithelial barrier dysfunction is related to the progression of
intestinal inflammation. Increasing evidence has indicated that the activation of NLRP3
inflammasome was essential for the pathogenesis of intestinal inflammation and intestinal
epithelial barrier dysfunction [18,19]. The NLRP3 inflammasome is a vital part of the innate
immune system and is composed of NLRP3, caspase-1 and apoptosis-associated speck-like
protein containing CARD (ASC). Following recognition of PAMPs or DAMPs, the activation
of NLRP3 inflammasome induces the maturation and release of proinflammatory cytokines,
thereby triggering the progression of intestinal inflammation [19,20]. It is well known that
the activation of NLRP3 inflammasome is often regulated by multiple intracellular signaling
pathways, including nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase
(MAPK) complexes [21]. As the key signaling pathways of various inflammatory diseases,
the activation of NF-κB and MAPK promotes the secretion of proinflammatory cytokines,
resulting in an inflammatory response [22]. Moreover, as the important signal transduction
and transcription factors, NF-κB and MAPK pathways were confirmed to regulate the
expression of TJ proteins, which was vital to the actin contraction and to mucosal barrier
damage [23,24]. Therefore, NF-κB/MAPK mediated activation of NLRP3 inflammasome is
an important mechanism of intestinal barrier dysfunction and inflammatory response.

At present, the clear mechanism of staphylococcal foodborne diseases caused by SEs
has not been deeply studied. Previous studies have shown that staphylococcal enterotoxin
M (SEM) and staphylococcal enterotoxin B (SEB) contribute to intestinal injury during
gastrointestinal infection [25,26]. Further, the researchers found that SEA could translocate
across the intestinal mucosal barrier with the help of absorptive epithelial cells through
endocytosis [2]. However, as far as we know, the role of SEA on intestinal injury and the
underlying toxic mechanism remains unclear. Therefore, the purpose of this study was to
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investigate the effect of SEA on intestinal barrier dysfunction and NLRP3 inflammasome
activation, and to clarify the potential molecular mechanism.

2. Results
2.1. Preparation of SEA Protein

To prepare SEA toxin protein, the full-length SEA toxin coding gene was inserted
into the pET-28a expression vector (Figure 1A). As shown in Figure 1B, the sea gene was
amplified by PCR to obtain a 700 bp amplicon, which was then cloned into a pET-28a
plasmid. The recombinant plasmid was transferred into E. coli DH5α. Subsequently, the
positive clones were screened by PCR and double digestion (Figure 1C,D). These results
indicated that the sea gene was successfully inserted into the pET-28a vector. Finally, the
pET-28a-SEA recombinant plasmid was sequenced, and the nucleotide sequence of the
recombinant SEA protein was 99% similar to that reported in GenBank (GenBank accession
numbers: M18970, https://www.ncbi.nlm.nih.gov/nuccore/M18970.1/, accessed on 17
October 2021).
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Figure 1. Expression and purification of SEA protein. (A) Schematic diagram of constructing pET-
28a-SEA expression vector. (B) PCR amplification products of sea gene. (C) Dentification of pET-
28a-SEA expression vector by PCR assay (lanes 1–4). (D) pET-28a-SEA plasmid was verified by dou-
ble enzyme digestion using BamH I and Sal I (lanes 1–4). (E) Sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) analysis of SEA protein expression induced by isopropyl β-D-thio-
galactopyranoside (IPTG). Lanes 1–3: Lysates, supernatants and precipitates of uninduced E. coli 
BL21(DE3) cells. Lanes 4–6: Lysates, supernatants and precipitates of E. coli BL21(DE3) cells induced 
with 0.5 mM IPTG. (F–G) SDS-PAGE analysis of SEA protein purification by gradient concentration 
imidazole elution in Ni-NTA affinity chromatography. (H) Western blot analysis of purified SEA 
protein with anti-SEA antibody. 

Furthermore, the existing form of SEA protein in the expression host E. coli BL21 
(DE3) strain was analyzed by SDS-PAGE after induction with IPTG. As shown in Figure 
1E, compared with the uninduced control group, IPTG (0.5 mM) induced significant ex-
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expression vector by PCR assay (lanes 1–4). (D) pET-28a-SEA plasmid was verified by double
enzyme digestion using BamH I and Sal I (lanes 1–4). (E) Sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) analysis of SEA protein expression induced by isopropyl β-D-
thiogalactopyranoside (IPTG). Lanes 1–3: Lysates, supernatants and precipitates of uninduced E. coli
BL21(DE3) cells. Lanes 4–6: Lysates, supernatants and precipitates of E. coli BL21(DE3) cells induced
with 0.5 mM IPTG. (F–G) SDS-PAGE analysis of SEA protein purification by gradient concentration
imidazole elution in Ni-NTA affinity chromatography. (H) Western blot analysis of purified SEA
protein with anti-SEA antibody.

Furthermore, the existing form of SEA protein in the expression host E. coli BL21
(DE3) strain was analyzed by SDS-PAGE after induction with IPTG. As shown in Figure 1E,
compared with the uninduced control group, IPTG (0.5 mM) induced significant expression
at 28 ◦C for 4 h. The expressed SEA protein was identical to the reported protein with
molecular weight of about 30 kDa, and the recombinant SEA protein was demonstrated to
be soluble expression. The purified SEA toxin protein was obtained by Ni-NTA affinity
chromatography and imidazole elution with gradient concentration, and the purity was
determined to be greater than 95% (Figure 1F,G). The purified protein was further confirmed
as SEA protein by Western blot analysis using an anti-SEA antibody (Figure 1H).

2.2. SEA Induced Histological Injury in the Small Intestine of Mice

The inflammation and injury of small intestine tissues induced by SEA were evaluated
by histopathological analysis using hematoxylin and eosin (HE) staining. As shown in
Figure 2A, the small intestine tissues in the control group exhibited normal morphology and
well-arranged epithelial cells with normal intestinal villi. In contrast, the small intestines
of SEA-treated mice were severely damaged accompanying destruction of the intestinal
epithelium, loss of goblet cells, sporadic loss of nuclei staining, obvious inflammatory
cell infiltration, villous blunting, distortion of the crypt and overall tissue architecture.
Additionally, the injury levels of duodenum, jejunum and ileum tissues were quantified
by measuring the ratio of villus height to crypt depth (Figure 2B–D). Compared with the
control group, administration of SEA markedly reduced the ratio of villus/crypt (V/C) of
duodenum, jejunum and ileum to 43.1%, 30.9% and 36.4%, respectively.

2.3. SEA Suppressed the Expression of Tight Junction Proteins of Small Intestine in Mice

The intestinal barrier is responsible for regulating the stable intestinal environment
and relieving intestinal inflammation [27]. Intestinal barrier integrity is maintained by
tight junction (TJ) proteins. ZO-1 and occludin are essential intestinal epithelial TJ proteins.
To determine whether the SEA-mediated damage affected the intestinal barrier function,
Western blot and immunohistochemical (IHC) analysis were employed to analyze the
expression of ZO-1 and occludin in jejunum tissues. In the IHC experimental results
(Figure 3A), brown and light brown sections were considered to be positive expressions.
Results showed that there were well-organized and abundant ZO-1 and occludin proteins in
the jejunal epithelial cells of the control group. However, SEA stimulation greatly reduced
the positive area of ZO-1 and occludin proteins (p < 0.05, Figure 3A–C). Similarly, in the
results of Western blot, SEA treatment dramatically downregulated the expression of ZO-1
and occludin proteins in a dose-dependent manner (p < 0.05, Figure 3D,E, the results of
duodenum and ileum were shown in Figures S1 and S2), which showed that the TJ structure
was disrupted. Collectively, these results suggested that SEA destroyed the function of
the intestinal epithelium and mucosal barrier by reducing the level of TJ proteins, thereby
resulting in intestinal injury in mice.
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Figure 2. Intestinal injury induced by SEA exposure in mice. (A) Representative HE-stained images
of the duodenum, jejunum and ileum tissues (100×, scale bar: 100 µm). (B) The ratio of villus height
to crypt depth (V/C) of duodenum tissues. (C) V/C ratio of jejunum tissues. (D) V/C ratio of ileum
tissues. All data were expressed as mean ± SD (n = 6). Different lowercase letters showed significant
differences between different groups, p < 0.05.

2.4. SEA Activated NLRP3 Inflammasome in Jejunum Tissues

Based on the key role of NLRP3 inflammasome in TJ disruption and intestinal injury,
Western blot and IHC experiments were performed to determine the effect of SEA toxin
protein on the expression of NLRP3 inflammasome related proteins in the jejunum tissues
of mice. As shown in the IHC results (Figure 4), the positive expression areas of NLRP3,
caspase-1 and ASC in mouse jejunum tissues were gradually elevated with the increase of
SEA concentration (p < 0.05). Similarly, results of the Western blot analysis also showed
that SEA exposure dose-dependently enhanced the expression of NLRP3 inflammasome
associated proteins (p < 0.05, Figure 5A–D; the results of duodenum and ileum were shown
in Figures S1 and S2). Additionally, compared with the control group, SEA exposure
substantially increased the levels of pro-inflammatory factors IL-18 and IL-1β in serum
(p < 0.05, Figure 6). To summarise, these results revealed that SEA toxin protein triggered
the activation of NLRP3 inflammasome in mouse jejunum tissues.
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Figure 3. SEA downregulated the expression of tight junction proteins in the jejunum of mice. (A) The
representative immunohistochemical images of ZO-1 and occludin in the jejunum tissues after SEA
administration. (B–C) The quantitative analysis of IHC results of ZO-1 and occludin. (D–E) Western
blot analysis of ZO-1 and occludin proteins expression in jejunum tissues of SEA-challenged mice. All
data were expressed as mean ± SD (n = 6). Different lowercase letters showed significant differences
between different groups, p < 0.05.

2.5. SEA Induced the Phosphorylation of NF-κB p65 and Activation of the MAPK Pathway in
Jejunum Tissues

To further explore the molecular mechanism of NLRP3 inflammasome activation and
intestinal barrier destruction, the changes of key proteins in the NF-κB signaling pathway
in jejunum tissues of SEA challenged mice were evaluated. The results showed that
SEA administration markedly increased the phosphorylation level of NF-κB p65 protein
compared with the normal group (Figure 7D, p < 0.05). The phosphorylation of NF-κB p65
(Ser311) suggested that SEA stimulation could trigger the NF-κB signaling pathway.



Toxins 2022, 14, 29 7 of 17

Toxins 2022, 13, x FOR PEER REVIEW 8 of 20 
 

 

< 0.05, Figure 6). To summarise, these results revealed that SEA toxin protein triggered 
the activation of NLRP3 inflammasome in mouse jejunum tissues. 

 
Figure 4. SEA up-regulated the expression of NLRP3 inflammasome related proteins in jejunum 
tissues of mice. (A) The representative immunohistochemical images of NLRP3, caspase-1 and ASC 
in the jejunum tissues of mice treated by SEA. (B–D) The quantitative analysis of IHC results of 
NLRP3, caspase-1 and ASC. All data were expressed as mean ± SD (n = 6). Different lowercase letters 
showed significant differences between different groups, p < 0.05. 

 

Figure 5. SEA increased the expression levels of NLRP3 inflammasome related proteins in jejunum 
tissues. (A–D) Relative protein expression of NLRP3, caspase-1 and ASC in jejunum tissues of SEA-
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tissues of mice. (A) The representative immunohistochemical images of NLRP3, caspase-1 and ASC
in the jejunum tissues of mice treated by SEA. (B–D) The quantitative analysis of IHC results of
NLRP3, caspase-1 and ASC. All data were expressed as mean ± SD (n = 6). Different lowercase letters
showed significant differences between different groups, p < 0.05.
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Figure 5. SEA increased the expression levels of NLRP3 inflammasome related proteins in jejunum
tissues. (A–D) Relative protein expression of NLRP3, caspase-1 and ASC in jejunum tissues of
SEA-exposed mice. All data were expressed as mean ± SD (n = 6). Different lowercase letters showed
significant differences between different groups, p < 0.05.
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significant differences between different groups, p < 0.05.
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± SD (n = 6). Different lowercase letters showed significant differences between different groups,
p < 0.05.

It is well known that the MAPK pathway is also vital for the activation of NLRP3
inflammasome and the occurrence of enteritis. In this study, the changes of key proteins of
the MAPK signaling pathway in jejunum tissues stimulated by SEA were measured. Results
of the Western blot analysis showed that SEA profoundly promoted the phosphorylation
levels of p38 (Thr180/Tyr182), ERK (Thr202/Tyr204) and JNK (Thr183/Tyr185) in the
MAPK pathway, and the changes of phosphorylation were dose-dependent (Figure 7A–C,
p < 0.05). Hence, SEA could activate the MAPK pathway. Combined with the above
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analysis, SEA might induce the activation of NLRP3 inflammasome and the destruction of
the intestinal barrier by regulating NF-κB p65 and MAPK signaling pathways.

2.6. SEA Activated NLRP3 Inflammasome via the NF-κB/MAPK Signaling Pathways

As a well-established model to study the mechanism of inflammation, human mono-
cyte cell line THP-1 cells are often used to explore the relationship between signaling
pathways [28]. In this study, THP-1 cells were employed to further explore the relationship
between NLRP3 inflammasome activation and the NF-κB or MAPK signaling pathways.
Consistent with the animal experiments, SEA stimulation activated NLRP3 inflammasome,
MAPK and NF-κB p65 signaling pathways in THP-1 cells (Figures 8 and 9A–D). Addition-
ally, SEA toxin protein dose-dependently promoted the translocation of the p65 subunit
from the cytoplasm to the nucleus (Figure 9E,F), which further explained the activation of
NF-κB pathway by SEA.

To confirm whether the NF-κB p65 and MAPK signaling pathways participated in
the activation of NLRP3 inflammasome triggered by SEA, pretreatment with SB203580
(10 mM), SP600125 (10 mM), PD98059 (10 mM) and BAY11-7082 (10 mM) was performed
to inhibit the protein expression levels of p-p38, p-JNK, p-ERK and p-p65, respectively.
THP-1 cells were pretreated with inhibitors for 2 h before exposure to SEA, and then the
expression levels of NLRP3 inflammasome associated proteins were detected. As shown
in Figure 10, inhibitor pretreatment significantly suppressed the expression of NLRP3,
caspase-1 and ASC protein up-regulated by SEA in THP-1 cells (p < 0.01). Therefore, these
analyses demonstrated that SEA could activate NLRP3 inflammasome, at least partially by
triggering the NF-κB and MAPK signaling pathways.
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Figure 10. SEA up-regulated the expression of NLRP3 inflammasome related proteins by triggering
the NF-κB and MAPK signaling pathways in THP-1 cells. After pretreatment with SB203580 (p38
inhibitor), SP600125 (JNK inhibitor), PD98059 (ERK inhibitor) and BAY11-7082 (NF-κB p65 inhibitor)
for 2 h, THP-1 cells were treated with SEA (0.01, 0.1, 1.0 and 2.0 µg/mL) for 24 h. (A) Representative
immunoblots of the indicated proteins were shown. (B–E) Relative protein expression of NLRP3,
caspase-1, ASC and IL-1β. Data are presented as the mean ± SD. ** p < 0.01.

3. Discussion

As a consequence of pathogenicity and stability, the health risks associated with
enterotoxin exposure have become a global public health concern. However, the clear
mechanism of SEA-caused staphylococcal foodborne diseases and the harm of SEA to the
intestine has not been fully reported or elucidated. Here, we investigated the effects of SEA
on intestinal barrier dysfunction and NLRP3 inflammasome activation and clarified the
underlying molecular mechanisms (Figure 11).
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In the current study, histopathological analysis showed significant damage to the
intestinal tissue architecture with obvious inflammatory cell infiltration, villous blunting,
distortion of the crypt and destruction of the intestinal epithelium in SEA-challenged mice.
Notably, the height of intestinal villi can not only increase the absorption and utilization of
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nutrients, but also protect the body from the infection of pathogens and affect the intestinal
barrier and immune function [29]. Previous studies have observed strong fluorescence
intensity in the jejunum and ileum of the gastrointestinal tract of SEA gavage monkeys by
using an anti-SEA antibody [2,9]. In our study, the consistent injury of jejunum tissues by
SEA gavage was the most serious, followed by ileum and duodenum tissues. Therefore,
SEA caused significant damage to mouse small intestine, especially jejunum tissues, which
might affect the intestinal barrier and immune function.

Accumulated evidence has indicated that the intestinal barrier could prevent intestinal
mucosal injury by blocking exogenous substances, and has played an essential role in
maintaining intestinal health and host immune regulation [30,31]. Tight junction (TJ)
proteins, the key part of the intestinal barrier, form a physical barrier to strengthen the
protective function of the intestine and play an indispensable role in maintaining intestinal
barrier function [32]. The changes of TJ proteins (e.g., ZO-1 and occludin) are able to cause
intestinal barrier dysfunction and affect intestinal health [33]. In this study, Western blot
and IHC results showed that SEA dose-dependently downregulated the expression of
ZO-1 and occludin proteins in mouse jejunum tissues. These results indicated that SEA
exposure induced intestinal-barrier dysfunction in mice, which might lead to harmful
substances entering the immune system and trigger an inflammatory response. Therefore,
the development of compounds to restore intestinal barrier function may be a promising
strategy for the prevention and treatment of SEA-caused foodborne diseases [16,24,29].

As a member of the innate immune receptor and NOD-like receptor (NLR) family,
NLRP3 inflammasome participates in the cellular inflammatory response and various
inflammatory diseases, and exerts a significant impact on intestinal barrier function and
infectious enteritis [34–36]. NLRP3 recruits ASC and caspase-1 to promote the activation of
caspase-1, thus resulting in the maturation and secretion of proinflammatory cytokines and
triggering the inflammatory response [32,37]. Previous studies have found that staphylo-
coccal toxins (e.g., α-hemolysin and toxic shock syndrome toxin), could activate NLRP3
inflammasome and cause bacterial toxin infectious diseases, such as pneumonia [38,39].
Similarly, our Western blot and IHC results found that the expression of NLRP3, caspase-1
and ASC proteins was increased in SEA stimulated mouse jejunum tissues. Addition-
ally, SEA also increased the secretion of pro-inflammatory cytokines (IL-18 and IL-1β) in
mouse serum. The results strongly supported the idea that SEA toxin protein activated
NLRP3 inflammasome in jejunum tissues, which induced an inflammatory response and
intestinal injury.

The NF-κB and MAPK signaling pathways are well known to be involved in inflam-
mation and immune regulation [40]. NF-κB is a nuclear transcription factor in cells and
regulates the inflammatory response by modulating the transcription of inflammatory
genes [18]. In an inflammatory environment, NF-κB p65 is phosphorylated and translo-
cated into the nucleus, thereby promoting the transcription of inflammatory markers and
inducing irreversible inflammatory injury, which is the important mechanism for regulat-
ing inflammatory diseases [31,32,41]. Additionally, the NF-κB pathway is also a crucial
factor responsible for the disruption of the intestinal barrier and activation of NLRP3
inflammasome [36]. In addition to NF-κB, MAPK signaling is also reported to regulate
the production of inflammatory factors. MAPK is a family of threonine/serine protein
kinases. The activation of the MAPK pathway involves the phosphorylation of JNK, ERK
and p38, which regulates the expression of inflammatory genes [31,42]. Importantly, the
MAPK signaling pathway has been proved to regulate intestinal TJ proteins [24]. Increasing
evidence has indicated that the NF-κB and MAPK signaling pathways have played a crucial
role in the pathogenesis of intestinal inflammation and NLRP3 inflammasome activation.
Furthermore, it was reported that SEA could activate the NF-κB pathway in human PBMC
cells to induce fever and induced MUC5B expression in human airway epithelial cells
through phosphorylation of ERK and p38 [43,44]. Therefore, the effect of SEA on the
activation of the NF-κB and MAPK pathways was investigated to further explore the molec-
ular mechanism of SEA-induced intestinal barrier dysfunction and NLRP3 inflammasome
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activation. Our results showed that SEA dramatically enhanced the phosphorylation of
p38 (Thr180/Tyr182), JNK (Thr183/Tyr185), ERK (Thr202/Tyr204), and NF-κB p65 (Ser311)
in jejunum tissues and THP-1 cells, and induced the nuclear translocation of NF-κB p65 in
THP-1 cells. Hence, we speculated that the activation of the MAPK and NF-κB signaling
pathways may be involved in the SEA-induced inflammatory response and the activation
of NLRP3 inflammasome.

Moreover, to further clarify whether SEA activated NLRP3 inflammasome by trig-
gering the NF-κB and MAPK signaling pathways, THP-1 cells were pretreated with the
selective inhibitors of the NF-κB and MAPK pathways before SEA stimulation. As ex-
pected, the expression of NLRP3 inflammasome associated proteins up-regulated by SEA
stimulation was dramatically attenuated by the selective inhibitors of the NF-κB and MAPK
pathways in THP-1 cells. Therefore, it could be clearly revealed that SEA toxin protein
induced the activation of NLRP3 inflammasome via the NF-κB and MAPK signaling path-
ways. More importantly, NF-κB/MAPK-mediated activation of NLRP3 inflammasome
may be a target for adjuvant treatment of SEA toxin protein infection in the future.

4. Conclusions

In conclusion, our study demonstrated that SEA exposure could cause villi injury and
inhibit the expression of TJ proteins, thereby inducing intestinal barrier dysfunction and
small intestinal injury in mice. Meanwhile, SEA was first confirmed to activate the NLRP3
inflammasome in the small intestine via the NF-κB/MAPK signaling pathways. Taken
together, this study contributes to a more comprehensive understanding of SEA-induced
pathogenesis by targeting intestinal barrier dysfunction and the immune inflammatory
response, and provides novel insights into the screening of natural bioactive compounds
for the treatment and prevention of bacteriotoxin-caused foodborne diseases via targeting
specific pathways.

5. Materials and Methods
5.1. Materials

T4 DNA ligase and BamH I and Sal I restriction endonuclease were obtained from New
England Biolabs Co., LTD. (Beijing, China). Isopropyl β-D-thiogalactopyranoside (IPTG)
and Ni-NTA affinity chromatography resin (His-tag purification resin) were bought from
Beyotime (Shanghai, China). Inhibitors of c-Jun N-terminal kinase (JNK) (SP600125), p38
(SB203580), extracellular signal-regulated kinases (ERK) (PD98059) and p65 (BAY11-7082)
were purchased from MCE (Shanghai, China).

5.2. Expression and Purification of SEA

Preparation of SEA toxin protein was completed by Escherichia coli expression system
and Ni-NTA affinity chromatography [45,46]. In short, the sea gene was amplified by poly-
merase chain reaction (PCR) from S. aureus. The primer sequence was: 5-CTCGGATCC
AGCGAGAAAAGCGAAGA-3 (Forward) and 5-CGCGTCGACCTAACTTGTATATAAAT
AT-3 (Reverse) (inserting BamH I and Sal I restriction sites). PCR product and pET-28a
plasmid were digested with BamH I and Sal I, and ligated using T4 DNA ligase at 4 ◦C
overnight. The cloned vector was named pET-28a-SEA and was transferred into E. coli
DH5α competent cells. The pET-28a-SEA vector was validated by PCR and double diges-
tion. The nucleotide sequence of sea gene was also confirmed by Sangon Biotech (Shanghai,
China).

Subsequently, the pET-28a-SEA recombinant vector was transferred into E. coli BL21
(DE3) cells. And the E. coli BL21 (DE3) strain with the pET-28a-SEA vector was induced
by IPTG (0.5 mM) for 4 h at 28 ◦C. The bacteria were resuspended in non-denatured
lysate, and the supernatant was collected after ultrasonic breaking. And then, the super-
natant containing the recombinant SEA protein was further purified with Ni-NTA affinity
chromatography resin, where the SEA protein was eluted with gradient concentration of
imidazole (three times per concentration). The purified SEA protein was confirmed by
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SDS-PAGE and Western blot analysis. Ultimately, SEA protein was dialyzed into 1 mM
phosphate buffer (PBS, pH7.4) at 4 ◦C and then lyophilized in a freeze dryer.

5.3. Animals and Experimental Design

Twenty-four male BALB/c mice (6–8 weeks old, 18–20 g) were obtained from the
Laboratory Animal Center of Jilin University (Changchun, China). All mice were housed in
an air-conditioned room with 12 h light/dark cycle and constant temperature of 24 ± 1 ◦C,
and provided water and food ad libitum for 7 days to adapt to the environment prior to
experiment. All animal experiments were conducted in accordance with the guidelines of
the Animal Care and Use Committee of Jilin University (Approval Number: SY202106013).

After 7 days of acclimatization, the mice were randomly divided into 4 groups
(n = 6/group): Control group (0 µg/kg SEA), low dose SEA group (100 µg/kg), medium
dose SEA group (250 µg/kg), high dose SEA group (500 µg/kg). Mice of the experimental
group were fed with different concentrations of SEA in PBS by oral administration. Mice
of the control group were administrated with PBS. After 24 h, all mice were euthanized.
Then, the serum as well as duodenum, jejunum and ileum tissues were collected for further
analysis.

5.4. Histopathological Analysis

Histological evaluation of the small intestine was performed according to a previous
study [47]. Briefly, small intestinal samples of mice were fixed with 10% neutral formalin
and embedded in paraffin. Subsequently, paraffin sections of 4 µm thick were stained
with hematoxylin eosin (HE) (Beyotime, Shanghai, China) and were observed under a
light microscope (BDS400, OPTEC, Chongqing, China). Villus height and crypt depth of
each tissue section were measured by Image J 1.8.0 software (National Institutes of Health,
Bethesda, MD, USA). Then, the ratio of villus height to crypt depth (V/C) was calculated
to evaluate intestinal injury.

5.5. Immunohistochemical (IHC) Analysis

Immunohistochemistry was completed according to the manufacturer’s protocol
(Boster, Wuhan, China). Briefly, paraffin sections of jejunum tissues were deparaffinized
and rehydrated. Subsequently, the sections were incubated for 10 min with 3% H2O2,
blocked with 5% bovine serum albumin (BSA) for 1 h, and then incubated at 4 ◦C overnight
with primary antibodies against ZO-1 (1:100, Affinity), occludin (1:200, Proteintech), NLRP3
(1:50, Affinity), caspase-1 (1:200, Proteintech) and ASC (1:50, Santa). After that, the tissue
sections were incubated with HRP-conjugated secondary antibodies. Finally, signals were
developed with diaminobenzidine as a chromogen, counterstained with hematoxylin and
then detected by the light microscope (BDS400, OPTEC, Chongqing, China). Integrated
optical density (IOD) values were quantified by Image-Pro Plus 6.0 (Media Cybernetics,
Bethesda, MD, USA).

5.6. Western Blot Analysis

The total proteins of the intestinal tissues and cells were extracted with a RIPA lysis
buffer, while the nuclear and cytoplasmic proteins were separated with a Nuclear and
Cytosol Protein Extraction Kit (Beyotime, Shanghai, China). Subsequently, the protein
concentration was quantitated by BCA Protein Assay Kit (Beyotime). The equal amounts of
protein samples were separated by 10% SDS-PAGE gels, and then transferred onto PVDF
membranes (Millipore, Bedford, MA, USA). After being blocked with 5% skimmed milk
at room temperature for 2 h, PVDF membranes were incubated overnight at 4 ◦C with
primary antibodies (Supplementary Table S1), followed by incubation with secondary
antibodies. The protein blots were detected by enhanced chemiluminescence (ECL). The
relative protein expressions were normalized to the expressions of GAPDH (cytoplasmic
protein and total protein) and Lamin B1 (nuclear protein).
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5.7. ELISA Assay

The content of IL-18 and IL-1β in the collected serum was detected using the cor-
responding ELISA kits, following the manufacturer’s protocol (Jianglai Biotech, Shang-
hai, China).

5.8. Cell Culture

Human monocyte cell line THP-1 is a widely used model to study inflammatory
mechanisms, cellular signal pathways and monocytes/macrophage functions [28]. THP-1
cells were obtained from the Chinese Academy of Sciences (Shanghai, China) and cultured
in RPMI 1640 (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) supplemented
with 10% FBS (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) at 37 ◦C with
5% CO2. To induce THP-1 cells to differentiate into macrophages (THP-Ms), the cells
were seeded in six-well plates (1 × 106 cells/well) and treated with 100 ng/mL Phorbol-12-
myristate-13-acetate (PMA) for 48 h. After that, THP-M cells were stimulated with gradually
increasing concentrations of SEA toxin protein (0, 0.01, 0.1, 1.0, 2.0 µg/mL) for 24 h in the
presence or absence of pretreatment of SB203580 (p38 inhibitor), SP600125 (JNK inhibitor),
PD98059 (ERK inhibitor) and BAY11-7082 (NF-κB p65 inhibitor) for 2 h. Subsequently,
cell proteins were extracted to explore the changes of related protein expression through
Western blot analysis.

5.9. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0 (GraphPad Software,
San Diego, CA, USA). The significant differences between groups were analyzed by a
one-way ANOVA test followed by Tukey’s post-hoc test, and differences with p < 0.05
were considered to be statistically significant. Data were presented as the mean ± standard
deviation (SD).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins14010029/s1, Table S1. The primary antibodies used in this study; Figure S1. Western
blot results of duodenum tissues of SEA-exposed mice. (A) Relative protein expression of ZO-1 and
occludin. (B) Relative protein expression of NLRP3, caspase-1 and ASC. All data were expressed
as mean ± SD (n = 3). Different lowercase letters showed significant differences between different
groups, p < 0.05; Figure S2. Western blot results of ileum tissues of SEA-exposed mice. (A) Relative
protein expression of ZO-1 and Occludin. (B) Relative protein expression of NLRP3, Caspase-1 and
ASC. All data were expressed as mean ± SD (n = 6). Different lowercase letters showed significant
difference between different groups, p < 0.05.
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