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A B S T R A C T   

Cognate target identification for T-cell receptors (TCRs) is a significant barrier in T-cell therapy development, 
which may be overcome by accurately predicting TCR interaction with peptide-bound major histocompatibility 
complex (pMHC). In this study, we have employed peptide embeddings learned from a large protein language 
model- Evolutionary Scale Modeling (ESM), to predict TCR-pMHC binding. The TCR-ESM model presented 
outperforms existing predictors. The complementarity-determining region 3 (CDR3) of the hypervariable TCR is 
located at the center of the paratope and plays a crucial role in peptide recognition. TCR-ESM trained on paired 
TCR data with both CDR3α and CDR3β chain information performs significantly better than those trained on data 
with only CDR3β, suggesting that both TCR chains contribute to specificity, the relative importance however 
depends on the specific peptide-MHC targeted. The study illuminates the importance of MHC information in 
TCR-peptide binding which remained inconclusive so far and was thought dependent on the dataset charac
teristics. TCR-ESM outperforms existing approaches on external datasets, suggesting generalizability. Overall, the 
potential of deep learning for predicting TCR-pMHC interactions and improving the understanding of factors 
driving TCR specificity are highlighted. The prediction model is available at http://tcresm.dhanjal-lab.iiitd.edu. 
in/ as an online tool.   

1. Introduction 

The surveillance against pathogens and pathological cells of the body 
is carried out by the adaptive immune system. A cornerstone of the 
adaptive immune response system is the presentation of peptides by 
major histocompatibility complexes (MHC) class I or class II, expressed 
on the cell surfaces. The human MHCs are also called Human Leukocyte 
Antigens (HLAs) and are classified in three gene classes based on 
structure and function of the gene products. Class I gene products, 
encoded by three distinct genomic loci, HLA-A, HLA-B and HLA-C pre
sent endogenous peptides to CD8+ T-cells. The letters “A”, “B” or “C” are 
assigned based on the antigens defined by serology. The peptide-MHC 
complex presented to T-cells enables recognition of the antigen via the 
T-cell receptors (TCR). Upon activation, the T cells undergo clonal 
expansion [1]. A fraction of this clonally expanded repertoire is retained 
as long-living memory against the antigen [2]. The affinity of the TCR 
for any peptide is governed by the heterodimeric TCRs consisting of the 

α and β subunits. Both chains have been reported to affect the binding of 
the TCR to the peptide-MHC complex (TCR-pMHC), however, prediction 
of TCR-pMHC binding has been carried out with high accuracy with only 
the β chain [3]. 

Within the β chain of the TCR, the three complementarity deter
mining regions (CDRs) make primary contacts with the MHC (CDR1 and 
CDR2), and the peptide (CDR3), recent studies suggest contributions of 
the alpha chain and other CDRs as well [4]. In both the α and β chains, 
the CD3 loops represent the region of the highest sequence diversity and 
hence, are the regions that determine receptor binding specificity [5,6]. 
The CDR3 diversity is defined by multiple genomic recombination 
events in the ‘Variable’ (V), ‘Diversity’ (D) and ‘Joining’ (J) TCR-related 
genes. The V- and J- recombinations make up the α-chain while the 
β-chain is a result of the V-, D- and J genes generating a broader di
versity. Hence, most of the previous studies have focused only on the 
β-chain. 

The Immune Epitope database, VDJDB and McPAS-TCR primarily 

* Corresponding author. 
E-mail address: jaspreet@iiitd.ac.in (J.K. Dhanjal).   

1 Equal contribution 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2023.11.037 
Received 10 September 2023; Received in revised form 19 November 2023; Accepted 20 November 2023   

mailto:jaspreet@iiitd.ac.in
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.11.037
https://doi.org/10.1016/j.csbj.2023.11.037
https://doi.org/10.1016/j.csbj.2023.11.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.11.037&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 165–173

166

contains information on CDR3β and houses a large fraction of the pub
licly available TCR-pMHC binding data [7–9]. Recent studies illuminate 
the importance of CDR3 of both α- and β-chains in driving specificity of 
the TCR [10,11]. While single-cell based high-throughput techniques for 
assessing TCR-pMHC binding are available, determining the role of in
dividual components remains a time- and resource-intensive pursuit 
[12,13]. 

Various studies have reported TCR-pMHC data modeling and pre
diction techniques, mostly based on the data from VDJDB, IEDB and 
McPAS-TCR, using either or both CDR3 α- and β-sequences. These pre
vious studies have employed Gaussian processes, position-specific 
scoring matrices, deep learning methods [14–17] as well as advanced 
methods employing Natural Language Processing (NLP) [3]. The per
formance of current methods is limited by the paucity of available data. 
The applicability in terms of generalizability of the predictors is also 
hindered by the redundancy in epitope specific TCR sequences. 
Extracting relevant information from sequence data, labeled and unla
beled, has been demonstrated by NLP-based self-supervised learning 
algorithms. One such algorithm, Bidirectional Encoder Representations 
from Transformers (BERT), has been reported to reliably capture bio
logical properties of proteins [18]. Large protein language models such 
as ESM (Evolutionary Scale Model) [19] and its variants have been used 
to predict biological structure and function of proteins. Also, the em
beddings learned by the model have been fine-tuned for downstream 
tasks such as protein-drug interactions prediction [20], protein variant 
effect prediction [21] and gene ontology annotation [22]. 

Here, we present TCR-ESM, a deep learning-based model to predict 
TCR-peptide-MHC binding. TCR-ESM is a feedforward neural network 
trained on embeddings extracted from ESM, a protein language model 
[23]. ESM1v - a variant in the ESM family of protein language models 
has been used to generate sequence length-independent embeddings for 
the three protein moieties involved in the binding. The encoded protein 
sequence information is fed into a feedforward neural network to predict 
possibility of interaction. The positive data class consists of experi
mentally validated pairs of class 1 and class 2 MHC-peptide which bind 
to the TCRs. The negative data is generated by mismatching the positive 
dataset and ensuring the new combinations are absent in the positive 
class. Ablation analysis has also been carried out to qualitatively 

determine the importance of the TCRα, TCRβ and MHC components in 
the classifier’s predictions. The study has been benchmarked against 
current TCR-pMHC prediction models such as pEptide tcR matchinG 
predictiOn (ERGO II) [4] and netTCR2.0 [24] using the netTCR2.0, 
McPAS and VDJDB datasets [3,9,24,25]. Our model, TCR-ESM has also 
been tested on the external dataset MIRA, as reported in the netTCR2.0 
study as well as an additional independent external test set pMTnet [24, 
26]. We report improved prediction capacity based on the Matthews 
correlation coefficient (MCC) score, which has been established as a 
more reliable performance metrics in binary classification on imbal
anced data rather than precision, recall and ROC AUC [27,28]. The MCC 
score ranges from 0, indicating poor model predictive performance, to 1, 
signifying ideal model performance. However, we additionally report 
model performance on precision-recall, ROC AUC as well as the F1 score. 
We also observe that fine tuning the embeddings extracted from large 
protein language models can preserve both local and global information 
towards specific objectives. 

2. Results 

The TCR-ESM prediction model was trained on the peptide, TCR and 
MHC embeddings as detailed in Fig. 1. The peptide, TCR and MHC 
sequence information was fed into the neural network after embeddings 
were generated from the penultimate layer of the ESM1v model 
(Fig. 1a). The feedforward neural network was trained to predict TCR- 
peptide binding pairs as 1, and non-interacting pairs as 0. Perfor
mance was evaluated over MCC scores, area under the receiver oper
ating characteristic (AUC-ROC), area under the Precision-Recall curve 
(AU-PR) and F1 scores. The choice of model architecture was governed 
by the feature set in consideration. For instance, for predicting CDR3α- 
CDR3β-peptide binding the model illustrated in Fig. 1b was used. 
Similarly, Fig. 1c illustrates the model used for CDR3α-CDR3β-peptide- 
MHC binding. For CDR3α-peptide, CDR3β-peptide, CDR3α-peptide- 
MHC, CDR3β-peptide-MHC binding prediction, the model architectures 
are illustrated in Supplementary Figure 1a, 1b, 1c and 1d, respectively. 

Fig. 1. : Schematic of the method followed. (a) The ESM1v protein language model was employed to extract the sequence information in the form of 1280-dimen
sional embeddings for each of the three components- TCR, peptide and MHC. (b) Architecture of the neural network employed for the TCR(CDR3α+CDR3β)-peptide 
binding classification task. (c) The neural network architecture employed for the TCR(CDR3α+CDR3β)-peptide-MHC binding prediction task. 
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2.1. Model performance evaluation on CDR3β data 

The probability of the TCR-peptide binding predicted by TCR-ESM 
on the netTCR2.0 CDR3β dataset was evaluated. A side-by-side com
parison of TCR-ESM with the 1D CNN-based netTCR2.0 was carried out. 
The data was prepared and partitioned the same as the netTCR2.0 study 
[24]. The netTCR2.0, ERGO-AE, ERGO-LSTM and the classifier pre
sented in this study- TCR-ESM were trained, and cross-validation was 
carried out on the CDR3β data. Same as netTCR2.0, five different MIRA 
datasets were obtained by imposing a separation from the training set of 
90 %, 92 %, 94 %, 99 %, and 100 % similarity. That is, MIRA 94 % TCRs 
do not share more than 94% Levenshtein similarity to any of the TCRs in 
the training set. These datasets were used as independent test sets. Our 
model outperformed netTCR2.0 on all similarity-based partition 
thresholds (Fig. 2a, Supplementary Table S1a, Supplementary Figs. S2, 
S3 and S4. 

We then compared the peptide-specific outperformance for the two 
most abundant peptides, GILGFVFTL (GIL) from Influenza A virus and 
GLCTLVAML (GLC) from Human herpesvirus 4 (Epstein–Barr virus) for 
all partitioning thresholds (Figs. 2b, 2c, Supplementary Table S1a). 

2.2. Model performance evaluation and ablation analysis on paired 
CDR3α and β 

In addition to the CDR3β information, to check whether CDR3α in
formation or paired CDR3αβ information is beneficial for the prediction 
of peptide binding by the TCR, the TCR-ESM model was cross-validated 
and benchmarked against netTCR2.0. Fig. 2d shows the TCR-ESM and 
netTCR2.0 models evaluated with 5-fold cross-validation run 10 times 
independently on the sequence similarity-based partitioned datasets as 
is from the netTCR2.0 study with the CDR3 α-chain, CDR3 β-chain, and 
both α- and β-chains of CDR3. The TCR-ESM model significantly 

Fig. 2. : Model performance benchmarking. (a) Comparison of TCR-ESM with netTCR2.0 on the external MIRA dataset as test set for different partitioning 
thresholds. (b) Comparison of TCR-ESM with netTCR2.0 on the MIRA dataset as test set specific to the most common peptide in the dataset, ‘GILGFVFTL’. (c) 
Comparison of TCR-ESM with netTCR2.0 on the MIRA dataset as test set specific to the second most common peptide ‘GLCTLVAML’. 5-fold cross validation is run 
independently 10 times to compare the model performance and the distribution is represented by the box-whisker plots to compare the performance of TCR-ESM with 
netTCR2.0 at (d) 90% partitioning threshold and (e) 95% partitioning threshold for different prediction tasks such as TCR(CDR3α)+peptide, TCR(CDR3β)+peptide, 
and TCR(CDR3α+CDR3β)+peptide. All statistical comparisons were done using Mann-Whitney U test with Benjamini-Hochberg correction (ns: p > 5.00e-02, *: 
1.00e-02 < p < = 5.00e-02, **: 1.00e-03 < p < = 1.00e-02, ***: 1.00e-04 < p < = 1.00e-03, ****: p < = 1.00e-04). 
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outperforms (p-value <= 0.05) the netTCR2.0 model on all three 
datasets (CDR3α only, CDR3β only, and paired). We also obtained 
similar outperformance for the 95% partitioned dataset (Fig. 2e, Sup
plementary Table S1b). We validated this observation by comparing 
netTCR2.0 model performance on the three datasets (CDR3α only, 
CDR3β only, and paired) and found that models trained on paired chain 
information outperformed models trained only on single CDR3 chains. 
(Supplementary Fig. S5). 

To further validate the performance of the TCR-ESM model, we 
compared our model with the ERGO II model. The ERGO II model is 
available in two types, namely ERGO II-Autoencoder (ERGO II-AE) and 
ERGO II-Long Short-Term Memory (ERGO II-LSTM). Since ERGO II-AE 
and ERGO II-LSTM were originally benchmarked on the McPAS and 
VDJDB data, we utilized these datasets with exactly the same train-test 
splits as provided. We observed that our model outperforms netTCR2.0, 
ERGO II-AE and ERGO II-LSTM model for both McPAS and VDJDB 
paired chain datasets (10-fold cross validation, p-value<=0.05, p-value 
correction with Benjamini-Hochberg method) (Fig. 3a, Supplementary 
Tables S2, Supplementary Figs. S6, S7, S8. Both McPAS and VDJDB 
subsets 1 lack MHC information while subsets 2 include MHC informa
tion. We cross-validated these models on the McPAS data subset-1. We 
also observed a similar trend on test-set MCC where our model per
formed better when compared to the other three models (Fig. 3b). We 
observe a similar trend of TCR-ESM outperforming in the VDJDB data 
subset-1 on both cross validation and test setting as illustrated in Fig. 3c 

and Fig. 3d. 
Further supporting analysis on whether CDR3 paired chain infor

mation can predict the TCR-peptide binding better than single chains 
was carried out. We performed 10-fold cross-validation for all the four 
models (netTCR2.0, ERGO II-AE, ERGO II-LSTM and our TCR-ESM) on 
paired CDR3 in the McPAS data subset-1 as well single chains, and 
observed that paired CDR3 information improves the MCC significantly 
(t-test p-value<=0.05, p-value correction with Benjamini-Hochberg 
method) when compared to the model trained only on CDR3α and 
CDR3β (Supplementary Figs. S9, S10). We observe a similar trend of 
model outperformance with paired CDR3 information on the VDJDB 
data subset-1 (Supplementary Figs. S6, S7, S8). 

2.3. Model performance evaluation on paired CDR3 with MHC 
information and ablation analysis 

The contribution of different features was further illustrated by 
performing ablation analysis on McPAS data subset-2 and VDJDB data 
subset-2, which contains MHC information. Since there are three com
ponents, CDR3α, CDR3β, and MHC, six feature sets were constructed- 
CDR3α only, CDR3β only, paired CDR3α-CDR3β, CDR3α-MHC, CDR3β- 
MHC and combined CDR3α-CDR3β-MHC. The TCR-ESM-MHC model 
was compared with ERGO II-AE and ERGO II-LSTM models on McPAS 
data subset-2 (containing MHC information) for each of the six feature 
sets. TCR-ESM-MHC is shown to outperform the ERGO-AE model on all 

Fig. 3. : Feature importance as determined by ablation. The box-whisker plots show model performance distribution on 10-fold cross-validation using the TCR-ESM 
predictor, netTCR2.0, ERGO II-AE and ERGO II-LSTM for different prediction tasks- TCR(CDR3α)+peptide, TCR(CDR3β)+peptide, and TCR(CDR3α+CDR3β)+
peptide on (a) McPAS data subset-1, (c) VDJDB data subset-1. Similarly, hold-out testing set comparison of TCR-ESM model with netTCR2.0, ERGO II-AE and ERGO 
II-LSTM model for the three different prediction tasks on (b) McPAS data subset-1, and (d) VDJDB data subset-1. 10-fold cross validated comparison of TCR-ESM 
model with netTCR2.0, ERGO II-AE and ERGO II-LSTM model for different prediction tasks such as TCR(CDR3α)+peptide, TCR(CDR3β)+peptide, TCR(CDR3α +
CDR3β) + peptide, TCR(CDR3α)+peptide+MHC, TCR(CDR3β)+peptide+MHC and TCR(CDR3α + CDR3β) + peptide+MHC on (e) McPAS data subset-2 and (g) 
VDJDB data subset-2. Similarly, hold-out testing set comparison of TCR-ESM model with netTCR2.0, ERGO II-AE and ERGO II-LSTM model was performed for the 
different prediction tasks on (f) McPAS data subset-2 and (h) VDJDB data subset-2. All statistical comparisons were done using Mann-Whitney U test with Bejamini- 
Hochberg correction (ns: p > 5.00e-02, *: 1.00e-02 < p < = 5.00e-02, **: 1.00e-03 < p < = 1.00e-02, ***: 1.00e-04 < p < = 1.00e-03, ****: p < = 1.00e-04). 
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six feature sets during cross-validation and on the test set, while also 
outperforming ERGO-LSTM on four of the six sets during cross- 
validation and on the test set (Figs. 3e, 3f). TCR-ESM-MHC also out
performed on the VDJDB data subset-2 (VDJDB with MHC information) 
as compared to both ERGO II-AE and ERGO II-LSTM model on 10-fold 
cross validation and test set (Fig. 3g, Fig. 3h). For the ablation experi
ment, the ERGO II-AE, ERGO II-LSTM and TCR-ESM-MHC models were 
trained individually on the six feature sets. The feature importance of 
the MHC based on increase in MCC scores is dataset- and method- 
dependant. For the McPAS data subset- 2, when analysed with ERGO 
II-AE, addition of the MHC features significantly improved model per
formance indicating high feature importance. However, when the 
McPAS data subset-2 was analysed with ERGO II-LSTM and the TCR- 
ESM-MHC models, inclusion of the MHC information did not signifi
cantly improve performance reflecting low feature importance (Sup
plementary Figs. S8, S9, S10). Contrarily, for the VDJDB data subset-2, 
there was a statistically significant improvement in performance upon 
inclusion of the MHC features for all the models trained- ERGO II-AE, 
ERGO II-LSTM and TCR-ESM-MHC. The observed increase in MCC 
scores indicated that the MHC sequence information plays an important 
role in driving model output and therefore is an important feature 
(Supplementary Figs. S8, S9, S10). 

2.4. Analysis of embeddings learned by the TCR-ESM model 

The outputs from different layers of the TCR-ESM-MHC model were 
extracted to understand how the output of the model is driven, t-SNE 
was used to reduce the layer output to two dimensions. t-SNE enables 
capturing local relationships while also capturing non-linear relation
ships in the data. This is significant to determine if the embeddings can 
be repurposed for related tasks. We compared the embeddings of bind
ing TCR to non-binding TCR in the input layer, concatenation layer and 

penultimate dense layer. For the McPAS dataset, the most common 
peptide ‘GILGFVFTL’ was selected from the test set. As one progresses 
through the layers of our model, the outputs generated become more 
abstract and less directly tied to specific features in the input data. Later 
layers then use these abstractions to construct more sophisticated fea
tures that are better suited for specific tasks. This can lead to the outputs 
of the later layers being more separable, or easier to distinguish from one 
another, compared to the outputs of the earlier layers. The results 
showed that the learned embeddings became more distinct as the model 
was trained, with positive TCR interactions and negative TCR in
teractions in the independent dataset for specific peptides being mixed 
at the input layer (Figs. 4a, 4b). The subsequent neural network layers 
learn the embeddings of the multiple inputs jointly, following the input 
layer where the information is supplied separately. Gradually the 
learned embeddings can be distinguished at the concatenation and 
penultimate dense layers which also capture the information of binding 
and non-binding CDR3α and CDR3β sequences (Figs. 4c, 4d). Similarly, 
for the VDJDB dataset, we picked the most common ‘NLVPMVATV’ 
peptide and performed a similar analysis of the input, concatenation and 
penultimate dense layer embeddings of binding and non-binding CDRα 
and CDR3β sequences, as illustrated in Supplementary Fig. S11. A 
similar analysis was performed for two other randomly selected pep
tides, also demonstrating separability as shown in Supplementary 
Fig. S12. A layer-wise analysis of the separation obtained is studied by 
employing a random forest classifier at each layer and evaluating the 
MCC scores (Supplementary Fig. S13). We observed that the model 
learns a joint embedding for CDR3α and CDR3β and shows separation 
between positive and negative TCR samples for specific peptides. 

2.5. External testing analysis 

The level of dissimilarity between CDR3β and peptide sequences in 

Fig. 4. : (a) Predictive capacity of the different layers of the TCR-ESM classifier for randomly selected peptides ‘GILGFVFTL’, ‘SSYRRPVGI’ and ‘SSLENFRAYV’. 
Comparison of two-dimensional t-SNE embeddings for positive and negative (b) TCR(CDR3α) and (c) TCR(CDR3β) for the most common peptide ‘GILGFVFTL’ from 
the Input Layer of model (TCR(CDR3α + CDR3β) + peptide) trained on McPAS dataset. Comparison of jointly learned two-dimensional T-SNE embeddings for 
positive and negative TCR(CDR3α + CDR3β) for the most common peptide ‘GILGFVFTL’ from the (d) Concatenation Layer and (e) Penultimate Dense Layer of model 
(TCR(CDR3α + CDR3β) + peptide) trained on McPAS dataset. 
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the pMTnet dataset with the McPAS and VDJDB dataset was determined. 
For CDR3β sequences, pMTnet had only one (1 in 272; 0.4% identical) 
CDR3β sequence which was common with CDR3β in McPAS dataset. 
Similarly, for the VDJDB dataset, we found that the pMTnet dataset has 
39 (39 in 272; 14.7% identical) common CDR3β sequences. Comparing 
peptides, pMTnet data has 21 (21 in 224; 9.38% identical) common 
peptides with McPAS data and 42 (42 in 224; 19.6% identical) common 
peptides with VDJDB data. 

Separate models were trained on the McPAS and VDJDB dataset and 
tested on the pMTnet dataset to evaluate how the models perform in an 

external setting (Fig. 5a). Since there were some common peptides be
tween models trained on McPAS and VDJDB with the external pMTNet 
test set, the models were evaluated after removing the common peptides 
as well (Fig. 5b). Further stringent testing was carried out by removing 
peptides with 90% and 80% sequence similarity to any peptide in train 
sets (Fig. 5c, d). The TCR-ESM model was shown to perform signifi
cantly better than the netTCR2.0, ERGO II-AE and ERGO II-LSTM 
models on both McPAS and VDJDB datasets. TCR-ESM also showed a 
higher performance on the test sets when trained on VDJDB as compared 
to McPAS, even after filtering similar sequences (Fig. 5, Supplementary 

Fig. 5. : Comparison on external test set performance for netTCR2.0, ERGO II-AE, ERGO II-LSTM and TCR-ESM models. Models were trained on McPAS and VDJDB 
datasets and tested on PMTNet dataset (a), after removing peptides from the test set that are common to the training sets (b), after removing peptides that share 90% 
similarity with any peptide in the train sets (c) and after filtering 80% similar peptides (d). (e) Two-dimensional t-SNE embeddings for positive and negative peptides 
for an external dataset TCR(CDR3β) ‘CASPGLAGEYEQYF’ from the Penultimate Dense Layer of model (TCR(CDR3β) + peptide). Two-dimensional t-SNE of ESM- 
generated embeddings of (f) test set peptides which bind to different MHC-I types (HLA-A vs HLA-B), and (g) different MHC-I subtypes (HLA-A, HLA-B, and 
HLA-C). All statistical comparisons were done using Mann-Whitney U test using Benjamini-Hochberg correction (ns: p < = 1.00e+00, *: 1.00e-02 < p < = 5.00e-02, 
**: 1.00e-03 < p < = 1.00e-02, ***: 1.00e-04 < p < = 1.00e-03, ****: p < = 1.00e-04). 
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Fig. S14). Overall, the TCR-ESM-MHC model showed improved perfor
mance on an external dataset, indicating that the approach has prom
ising generalization capabilities. The results are encouraging because it 
suggests that the model is not simply memorizing the training data, but 
rather learning more generalizable features that can be applied to 
different types of data. Further testing on a variety of external datasets 
will be necessary to confirm the robustness of this approach, neverthe
less, the initial results seem promising. 

Next, the embeddings learned by the model in this external set case 
were evaluated. One particular case was identified where the model 
generalizes for the CDR3β sequence ‘CASPGLAGEYEQYF’ which is not 
present in the training set. The embeddings learned by the penultimate 
layer of the TCR-ESM-MHC model were able to reliably differentiate 
between positive and negative peptides which can bind to ‘CASPGLA
GEYEQYF’ (Fig. 5e). 

The embeddings learned by the model were observed to help 
differentiate between peptides which bind to HLA-A versus peptides 
which bind to HLA-B (Fig. 5f). The embeddings were able to capture this 
information and encode it in a way that allows the model to accurately 
predict the binding status of a given peptide. It suggests that models 
trained on embeddings learned by large protein language models can 
also be used to predict the immunogenicity of different peptides and 
other related tasks. The nature of the HLA subtype with which a peptide 
is presented to T cells determines the immunogenicity, the Fig. 5 shows 
that the embeddings can learn the differences in these HLA subtypes. 
While it is true that the immunogenicity of a peptide cannot be predicted 
directly by the embeddings of the HLA, extracting meaningful features is 
a key step in building powerful prediction models. Also, the embeddings 
could distinguish between the HLA types for the positive peptides pre
sent in the test data (Fig. 5g). 

3. Discussion 

One major obstacle in the creation of T-cell therapies is the difficulty 
of identifying the specific targets, known as cognate targets, that are 
recognized by T-cell receptors (TCRs). This is a crucial step in the 
development of these therapies because the TCRs are responsible for 
recognizing and binding to these targets in order to initiate an immune 
response. Without the ability to identify and target these cognate tar
gets, it is difficult to effectively design and implement T-cell therapies. 
By creating models that can anticipate TCR-pMHC interactions based on 
the amino acid sequences of the peptide and CDR3 region of the TCR 
chains, we present a study that aims to address this bottleneck using 
learned representations of peptides extracted using large protein lan
guage models. There were several model designs examined, ranging 
from single chain CDR3α-peptide binding prediction to paired CDR3α- 
CDR3β-peptide-MHC binding. The models were built utilizing rigorous 
data-redundancy reduction guidelines, trained using cross-validation, 
and verified using independent assessment data. 

Models that used data from paired TCR category, included both 
CDR3α and CDR3β information, performed significantly better when 
compared to models trained on data with only CDR3β information. The 
results from the proposed study support the idea that both TCR chains 
contribute to TCR specificity, and that their relative importance varies 
depending on the specific pMHC being targeted. Considering that the 
datasets of McPAS and VDJDB are vastly different, the results comparing 
model performance on the two sets should be taken with a pinch of salt. 
However, on the same dataset, for example, McPAS, the TCR-ESM model 
does not show significant improvement in performance as opposed to 
ERGO II, which shows significant improvement upon inclusion of MHC 
data. This could be attributed to the nature of the prediction model itself. 
TCR-ESM is able to learn the distinguishing properties between the two 
classes completely based on the CDR3 sequence information. The 
McPAS dataset has more variable MHC chain information and the MCC 
score of TCR-ESM is lesser than that for the MCC on the VDJDB set, with 
less variable MHC information. This could be a case of the model being 

overfit on the limited data. 
Furthermore, the inclusion of MHC information in the prediction 

task of TCR-peptide binding may improve the performance of the model. 
The impact of MHC on TCR-peptide binding is highly dataset specific 
and can vary depending on the characteristics of the dataset being used. 
The role of MHC in TCR recognition is highly complex and context- 
dependent, influenced by factors such as MHC polymorphism, peptide 
binding motifs, and peptide-MHC interactions. These factors can intro
duce variability in TCR-peptide binding across different datasets. 
Although the dataset specificity of MHC influence presents a challenge, 
our proposed method aims to capture and model the general principles 
underlying TCR-peptide binding, while acknowledging the dataset- 
specific nuances. By incorporating a diverse range of training data 
that covers various MHC alleles and peptide sequences, the model 
developed captures the common features and patterns of TCR-peptide 
binding. Furthermore, during the development and evaluation of the 
method, steps have been taken to address dataset specificity. It is 
ensured that the training dataset comprises a broad representation of 
MHC alleles to account for the variability in MHC-specific effects. This 
allows the model to learn generalizable features that are not overly 
biased towards any specific MHC allele. 

Another limitation of the study being that it is important to carefully 
evaluate the impact of MHC on model performance for each specific 
dataset in order to determine the most effective approach for modeling 
TCR-peptide binding. This may be attributed to multiple peptides being 
generally presented by the same MHC allotypes and also multiple MHC 
allotypes presenting similar peptides, depending on the peptide pro
cessing and presentation pathway of the host organism. 

Both negative and positive samples are essential to train a binary 
classifier. In the absence of negative instances derived experimentally, 
data points were generated by shuffling the positive set, as was derived 
from previous studies as described in the Methods section. However, the 
approaches assume that TCRs show no cross-reactivity. However, this 
assumption, due to challenges in obtaining negative training data, may 
limit the model’s utility, especially in predicting the behavior of pro
miscuous TCRs, with the capacity to bind diverse peptide-MHC com
plexes. TCRs exhibit varying degrees of cross-reactivity, recognizing 
structurally similar peptides presented by different MHC molecules. 
Without accounting for cross-reactivity, predictions for promiscuous 
TCRs may be inaccurate, struggling to capture nuanced interactions with 
diverse peptide-MHC ligands. To improve the method’s utility, re
searchers could explore ways to incorporate cross-reactivity, possibly 
through additional features capturing structural and biochemical prop
erties influencing cross-reactivity. Strategies like transfer learning or 
advanced architectures capable of learning hierarchical representations 
could be considered. Including limited experimental data on cross- 
reactive TCRs may further improve the model’s generalization beyond 
training data. 

The power of utilizing embeddings learned by large protein language 
models was determined. When these embeddings are learned by large 
language models, they can capture the complex relationships and pat
terns present in the data. By using these learned embeddings as inputs to 
simpler machine learning models, such as multi-layer perceptrons 
(MLPs), we can train these models more efficiently compared to using 
more complex models like convolutional neural networks (CNNs), 
autoencoders (AEs), or long short-term memory (LSTM) networks. In the 
context of peptides, utilizing learned embeddings from large protein 
language models and then fine-tuning the embeddings can be particu
larly useful for tasks such as classification. The fine-tuned embeddings 
can be specific to the problem being addressed, in this case, they capture 
the interactions between proteins, such as TCRs, antigens, and MHCs. By 
training a classifier in the feature space of the fine-tuned protein lan
guage model, we can learn better representations of these proteins, 
which may lead to improved classification performance compared to 
traditional approaches. 

Once the embeddings have been learned, they can be used as input to 
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other machine learning models, such as classifiers or clustering algo
rithms. These models can then be trained on the compressed, lower- 
dimensional representation of the data, rather than the original high- 
dimensional representation. This can lead to more efficient training 
and faster model convergence, as well as improved performance on 
downstream tasks. One potential benefit of using embeddings learned by 
a language model instead of an autoencoder is that the embeddings 
capture the relationships between elements in the data, such as amino 
acids in a protein sequence. This can be particularly useful for biological 
data, where the relationships between elements can be important for 
understanding the structure and function of the data. In contrast, 
autoencoders are generally agnostic to the relationships between ele
ments in the data, and simply learn a compressed representation based 
on the patterns present in the data. 

In conclusion, we have developed a model to predict the interactions 
between TCRs and their cognate peptides and MHC molecules. Our re
sults indicate that accurate predictions can only be achieved through the 
use of data from paired TCR α and β chains. While the model’s current 
capabilities are limited to a specific set of peptides due to a lack of 
training data, we expect that its predictive ability will improve as more 
data becomes available, enabling it to accurately predict interactions 
with novel peptides. Additionally, the model framework is adaptable 
and can easily incorporate MHC molecules or TCRα chains when data 
becomes available, providing a comprehensive approach for predicting 
TCR-pMHC interactions. 

4. Methods 

4.1. Data collection 

We download four TCR-peptide binding datasets from the GitHub 
repositories of netTCR2.0 (https://GitHub.com/mnielLab/NetTCR-2.0), 
ERGO II (https://GitHub.com/IdoSpringer/ERGO II-II) and pMTnet 
(https://GitHub.com/tianshilu/pMTnet). The ERGO II repository con
tains McPAS and VDJDB datasets. Since multiple peptides may be pre
sented by the same MHC alleles, the MHC-peptide information may be 
repeated in the positive and negative classes. However, the peptide-TCR 
pairs experimentally validated were labeled as the positive class, the 
negative set was generated by generating random TCR-peptide combi
nations and ensuring these pairs are absent from the positive dataset. 
The training and test datasets were obtained from the ERGO II and 
netTCR2.0 repositories. The external test dataset, MIRA, was also ob
tained from the netTCR2.0 GitHub repository. The MIRA dataset con
tained 376 CDR3β-peptide pairs associated with HLA-A* 02:01. We used 
partitioned data as detailed in netTCR2.0 and ERGO II. The pMTnet 
dataset was used as an external test dataset. A detailed summary of all 
the datasets used in this work is provided in Supplementary Table 3 and 
Supplementary Table 4. 

The McPAS and VDJDB datasets were processed to give two working 
datasets for model training and testing. The peptide and HLA counts of 
the two datasets are indicated in Supplementary Figure 15. Subset-1 
contains paired CDR3α, CDR3β and peptide information only. Subset-2 
contains paired CDR3α, CDR3β, peptide and MHC information. We 
utilized the fair-esm python library provided by the ESM project to 
extract the embeddings for the TCR, peptide and MHC sequences [19, 
21]. First, a FASTA file was created for each dataset. The FASTA files 
were parsed to the ESM1v model to extract the pre-final layer embed
dings of size 1280 for each sequence. The embeddings would have the 
size of 1280 * peptide length (L). Global average pooling was then 
employed to convert it to a 1 * 1280-dimensional vector. 

4.2. Model training and performance evaluation metrics 

The ESM1v protein model was employed as mentioned in the orig
inal paper without finetuning [19]. ESM1v-extracted embeddings 
encode the TCR, peptide and MHC information. The embeddings were 

fed into a feedforward neural network to predict binding. Grid search 
was used to optimize model hyperparameters such as learning rate 
(ranging from 10− 1 to 10− 4), dropout rate (ranging from 0.2 to 0.5), 
number of hidden layers (ranging from 1 to 2) and number of nodes 
(ranging from 22 to 27) in each layer. netTCR2.0 and ERGO II models 
were run on the datasets as baselines to independently calculate the 
MCC value for the benchmarking task. The performance was compared 
with the reported performance values for netTCR2.0 and ERGO II, to 
verify accurate reproduction of results. 

The model uses the GELU activation function [29] in all of its hidden 
layers and the binary cross-entropy loss function for optimization. 
During training, the learning rate was set to 0.08 and was reduced by 5% 
if the validation MCC did not improve after 50 epochs. This was done 
using a learning rate scheduler to adapt to the changing dynamics of the 
training data and potentially improve model performance. 

The model prediction performance was tested mainly based on MCC, 
which is reported to be a reliable statistical measure over other metrics 
such as AUC-ROC and AUC-PR since we performed classification on 
imbalance datasets [27,30]. The MCC is defined as the correlation be
tween the observed and predicted binary classifications. It ranges from 
− 1–1, with values closer to 1 or − 1 indicating a stronger correlation 
and a better model performance. A value of 0 indicates no correlation, 
while negative values indicate an inverse correlation. The MCC results in 
a high score only when the predictions are reliable on all of the four 
categories- true and false positives as well as true and false negatives, 
while being proportional to the size of positive and negative samples in 
the dataset [31]. The model performance is also tested and reported on 
the area under the receiver operating characteristic (AUC-ROC), area 
under the precision-recall curve (AU-PR) as well as F1 scores. The 
metrics are calculated as: 

Precision =
TP

TP + FP  

Recall =
TP

TP + FN  

F1score =
Precision × Recall
Precision + Recall

=
TP

TP + 1
2(FP + FN)

MCC =
TN × TP − FN × FP

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TN: true negatives, TP: true positives, FN: false negatives and FP: 
false positives. 

4.3. Feature importance determination (ablation experiment) 

Feature importance was determined through ablation studies, which 
involve systematically removing or "ablating" each feature from the 
model one at a time and measuring the impact on model performance. 
By comparing the model’s performance with and without a given 
feature, one can determine the importance of that feature in driving the 
model output. In the context of TCR-peptide binding, feature importance 
determination and ablation studies can be used to identify which CDR3 
chains in the TCR has significant contribution towards binding the 
peptides. In cases when MHC information is added to the model, abla
tion studies help determine whether the added information is useful or 
not. For TCR-peptide binding prediction, we created three different 
feature subsets: CDR3α-peptide, CDR3β-peptide and CDR3α-CDR3β- 
peptide. Similarly, for TCR-pMHC binding, we created six different 
feature subsets such as CDR3α-peptide, CDR3β-peptide, CDR3α-CDR3β- 
peptide, CDR3α-peptide-MHC, CDR3β-peptide-MHC and CDR3α- 
CDR3β-peptide-MHC to calculate if adding more features improves the 
performance of the TCR-pMHC binding prediction. Individual models 
such as ERGO II-Autoencoder (ERGO II-AE), ERGO II-LSTM and TCR- 
ESM (developed in this study), were trained for these subsets and the 
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MCC metric was calculated to test the performance. We checked for 
statistical significance of performance using T-test and used Benjamini- 
Hochberg (BH) p-value correction to account for multiple testing [32]. 

4.4. Analysis of fine-tuned embeddings 

The output of the intermediate and penultimate layers was extracted 
from the TCR-ESM feedforward neural network for the most frequent 
peptides in both McPAS and VDJDB dataset. t-distributed Stochastic 
Neighbor Embedding (t-SNE) was then performed on the output em
beddings to reduce them to 2D for visualizing if the positive and nega
tive TCRs cluster separately. 

4.5. External testing analysis 

A crucial component of assessing deep learning models is external 
testing. The model performance is tested on data samples taken from an 
external, other than the training data. Model performance on external 
samples can reveal information about how well it generalizes, or how 
well it can make predictions about unknown data. The model, when 
used in settings where it is likely to encounter data that differs from the 
training data, such as in the real world, external testing is especially 
important. We checked the generalizability by testing the TCR-ESM 
model on an independent dataset obtained from pMTnet [26] (Supple
mentary Table S5), which is a recently reported experimental dataset of 
TCR-peptide-MHC binding. pMTnet contains CDR3-peptide sequences 
which are different from CDR3-peptides sequences present in the McPAS 
and VDJDB datasets, however, there are some common peptides. The 
TCR-ESM models trained on McPAS and VDJDB were tested on the 
pMTNet set as is, after removing the common peptides and also after 
filtering based on 90 % and 80 % sequence similarity (sim) score 
measured by aligning the peptides pairwise and normalizing the align
ment scores by length of the peptide. 

sim(S1, S2) =
maxa∈Ascore(a)

max(len(S1), len(S2))

Where A is the set of all local alignments between sequences S1 and S2, 
and a is the alignment with the highest score score(a). 

Author Statement 

We confirm that the manuscript has been read and approved by all 
authors. 

Declaration of Competing Interest 

The authors declare no conflict of interest. 

Data availability 

Raw data can be downloaded from the GitHub links as mentioned in 
the methods section. Processed data and the working code are available 
at https://GitHub.com/dhanjal-lab/tcr-esm. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2023.11.037. 

References 

[1] Zhang S-Q, Parker P, Ma K-Y, He C, Shi Q, Cui Z, et al. Direct measurement of T cell 
receptor affinity and sequence from naïve antiviral T cells. Sci Transl Med 2016;8 
(341). 341ra377-341ra377. 

[2] Sprent J, Surh CD. T cell memory. Annu Rev Immunol 2002;20(1):551–79. 
[3] Springer I, Besser H, Tickotsky-Moskovitz N, Dvorkin S, Louzoun Y. Prediction of 

specific TCR-peptide binding from large dictionaries of TCR-peptide pairs. Front 
Immunol 2020;11. 

[4] Springer I, Tickotsky N, Louzoun Y. Contribution of T cell receptor alpha and beta 
CDR3, MHC typing, V and J genes to peptide binding prediction. Front Immunol 
2021;12:664514. 

[5] Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. 
Nature 1988;334(6181):395–402. 

[6] Krogsgaard M, Davis MM. How T cells’ see’antigen. Nat Immunol 2005;6(3): 
239–45. 

[7] La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers 
of MHC restriction of T cell receptors. Nat Rev Immunol 2018;18(7):467–78. 

[8] Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, et al. VDJdb in 
2019: database extension, new analysis infrastructure and a T-cell receptor motif 
compendium. Nucleic Acids Res 2020;48(D1):D1057–62. 

[9] Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-TCR: a manually 
curated catalogue of pathology-associated T cell receptor sequences. 
Bioinformatics 2017;33(18):2924–9. 

[10] Lanzarotti E, Marcatili P, Nielsen M. T-cell receptor cognate target prediction based 
on paired α and β chain sequence and structural CDR loop similarities. Front 
Immunol 2019;10:2080. 

[11] Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, et al. 
Quantifiable predictive features define epitope-specific T cell receptor repertoires. 
Nature 2017;547(7661):89–93. 

[12] Lu YC, Zheng Z, Lowery FJ, Gartner JJ, Prickett TD, Robbins PF, et al. Direct 
identification of neoantigen-specific TCRs from tumor specimens by high- 
throughput single-cell sequencing. J Immunother Cancer 2021;9(7). 

[13] Lundegaard C, Lund O, Nielsen M. Predictions versus high-throughput experiments 
in T-cell epitope discovery: competition or synergy? Expert Rev Vaccin 2012;11(1): 
43–54. 

[14] Jokinen E, Huuhtanen J, Mustjoki S, Heinonen M, Lähdesmäki H. Predicting 
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