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Abstract: Hypertension (HT) is an extreme increment in blood pressure that can prompt a stroke,
kidney disease, and heart attack. HT does not show any symptoms at the early stage, but can lead to
various cardiovascular diseases. Hence, it is essential to identify it at the beginning stages. It is tedious
to analyze electrocardiogram (ECG) signals visually due to their low amplitude and small bandwidth.
Hence, to avoid possible human errors in the diagnosis of HT patients, an automated ECG-based
system is developed. This paper proposes the computerized segregation of low-risk hypertension
(LRHT) and high-risk hypertension (HRHT) using ECG signals with an optimal orthogonal wavelet
filter bank (OWFB) system. The HRHT class is comprised of patients with myocardial infarction,
stroke, and syncope ECG signals. The ECG-data are acquired from physionet’s smart health for
accessing risk via ECG event (SHAREE) database, which contains recordings of a total 139 subjects.
First, ECG signals are segmented into epochs of 5 min. The segmented epochs are then decomposed
into six wavelet sub-bands (WSBs) using OWFB. We extract the signal fractional dimension (SFD) and
log-energy (LOGE) features from all six WSBs. Using Student’s t-test ranking, we choose the high
ranked WSBs of LOGE and SFD features. We develop a novel hypertension diagnosis index (HDI)
using two features (SFD and LOGE) to discriminate LRHT and HRHT classes using a single numeric
value. The performance of our developed system is found to be encouraging, and we believe that it can
be employed in intensive care units to monitor the abrupt rise in blood pressure while screening the
ECG signals, provided this is tested with an extensive independent database.

Keywords: hypertension; ECG; wavelets; optimization; semidefinite program; filter design

1. Introduction

High blood pressure or hypertension (HT) is a severe disease, and patients have no symptoms
in the early stages. Due to low awareness and without proper treatment, this may result in it being
more harmful for hypertensive patients and increases the possibility of having cardiovascular diseases.
In today’s world, due to hypertension, the number of deaths has increased [1]. As per the 2005 global
data, in India, 20.6% of males and 20.9% of females were suffering from hypertension. This trend is
expected to rise to 22.9% (male) and 23.6 (female)%. The current survey shows the pervasiveness of
hypertension in rural and urban India to be 25% and 10%, respectively. Only 25% of hypertension
patients have their blood pressure (BP) under control after the treatment [2]. The BP is the pressure
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exerted by the blood against the walls of the arteries. The pressure relies on the work being done by
the heart and the obstruction of the blood vessels [2]. The possible reasons for hypertension are less
physical activity, lifestyle, smoking, stress, family history, and kidney disease [1]. Hence, it is a crucial
issue to develop awareness, medical care, and treatment for hypertension. Clinically, we can classify
hypertension into mild, moderate, and severe states [3]. It is more important to identify the severity of
hypertension. The ranges of normal and hypertension blood pressure are given in Table 1.

Table 1. Typical blood pressure ranges [3].

Blood Pressure Category Systolic (mmHg) Disystolic (mm Hg)

Normal BP less than 120 less than 80

Elevated, Normal Hypertension 120–129 less than 80

Stage 1 130–139 80–89
High-risk Hypertension

Stage 2 greater than 140 greater than 90
High-risk Hypertension

Stage 3 greater than 180 greater than 120
High-risk Hypertension

The electrocardiogram (ECG) is a valuable tool used to measure the electrical activity of
the heart [4–9]. Currently, there are various wearable and non-intrusive devices used to monitor
hypertension using ECG [10–12]. To diagnose hypertension in a clinical environment, blood pressure
measurement, which is the gold standard, is used. Depending on the range of blood pressure values
(Table 1), the patients are classified as low-risk hypertension (LRHT) and high-risk hypertension
(HRHT) patients.

Various techniques, algorithms, applications, and devices have been developed to detect and
monitor hypertensive patients. Voss et al. [13] used high-resolution ECG, heart rate variability (HRV),
blood pressure variability (BPV), and baroreflex sensitivity (BRS) signals. They found a difference in
HRV signals of a normal pregnant female and a hypertensive pregnant female.

Poddar et al. [14] used the automated classification of hypertension and coronary artery disease
patients using the probabilistic neural network (PNN), k-nearest neighbor (KNN), and support vector
machine (SVM) classifiers with HRV analysis. They obtained the highest classification accuracy of
96.67%. Natrajan et al. [15] observed a significant reduction in high-frequency and an increase in
low-frequency HRV signals of hypertensive patients.

Melillo and Izzo [16] used HRV signals along with various machine learning algorithm (SVM,
decision tree (DT), and convolution neural network (CNN)) to identify HRHT patients, and obtained
the highest accuracy of 87.8%.

Recently, Ni and Wang used fine-grained HRV-based methods and obtained an accuracy of
95% [3]. Song et al. [17] classified normal, hypertensive, and coronary heart disease (CHD) patients
using HRV signals and the naive Bayes classifier. They obtained 92.3% classification accuracy.

Yue et al. [18] used machine learning algorithms to implement an automatic risk indication
for mask-hypertension using HRV analysis [18]. They found that HRV, parameters in essential
hypertension (EH), and mask hypertension (MH) in patients have significantly decreased.

Ni et al. [10] studied hypertension patients and normal subjects using a three-dimensional
feature method with continuous HRV monitoring. They obtained the highest classification accuracy
of 93.33% [10]. Mussalo et al.[19] analyzed different HRV features for various stages of hypertension
patients. They observed significant changes in the HRV parameters of hypertension patients.

Thus, all the above-mentioned studies used HRV signals derived from ECG. The novelty of the
proposed work is that we use optimal wavelet-based features extracted from ECG signals instead of
using HRV. The optimal orthogonal wavelets that are designed by optimizing spectral localization
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(SL) were used in the proposed study [20]. Wavelets are regarded as the best tools for the analysis of
non-stationary signals, including ECG [21–24]. Hence, we employed wavelet-based ECG features to
develop an automated system for the identification of LRHT and HRHT. We applied the SL-optimized
wavelet filter due to the following reasons [25]: (i) In conventional methods, most of the studies
were performed by optimizing stop-band and pass-band energies by accurately defining the edge
frequencies [26]. That may not be understood a priori in each application. Here, we used the orthogonal
wavelet filter [27–29] designed by minimizing its frequency spread. (ii) Minimizing the spectral
localization of a filter, it is possible to take care of both ripples and the transition band of the filter. (iii)
The SL optimized filter gives precisely fewer ripples and sharp roll-off [30].

In our study, we used the SL optimal OWFB. Using a semi-definite program (SDP)
technique [31,32], we optimized the filter coefficients, and the interior point algorithm provided
the optimized solutions [33–35]. Hence, we tested the optimized OWFBs for analyzing ECG signals in
order to separate LRHT from HRHT patients. The OWFB provided various sub-bands (SBs) of the
ECG signal, and from these SBS, we extracted log energy (LOGE) and spectral fractal dimension (SFD)
features [36]. Student’s t-test ranking was applied to all extracted features and the most significant SBs
of SFD and LOGE features.

The main contribution of this study is the development of the hypertension diagnosis index (HDI)
using OWFB-based SFD and LOGE features. HDI provides the discrimination of LRHT and HRHT by
a single numeric value. In a clinical environment, HDI is simpler and easier to use for the diagnosis
of disease.

The remainder of the paper is arranged in the following manner. We discuss the details of the ECG
dataset in Section 2. The methodology and an optimally-designed OWFB are described in Section 3.
Section 4 illustrates the results obtained. In Section 5, we discuss the results obtained. At last, the
concluding remarks of the paper are outlined in Section 6.

2. Dataset

The dataset for this study was taken from physionet’s smart health for assessing the risk of
events of ECG signals (SHAREE project) https://archive.physionet.org/pn6/shareedb/. A total of
139 subjects’ ECG recordings were used with a length of 2 h:10 min:12 s, approximately, for each ECG
signal. Each ECG recording contained three rows (channels/ signals) III, V3, and V5, and each signal
had 1 million samples, approximately. In our study, leads III, V3, and V5 were named CH1 (Channel 1),
CH2, and CH3, respectively. The ECG sampling frequency was 128 Hz with an 8-bit resolution,
and the sampling interval was 0.0078125 s. The average age of patients was 71.4 for LRHT and
74.5 years for HRHT, which included 49 female and 90 male patients. To detect major cardiovascular
and cerebrovascular events, patients were observed for a year. Seventeen patients (three syncopal,
three strokes, eleven myocardial infarctions) were identified as HRHT subjects, while 122 patients
as LRHT subjects. The dataset was authorized by the Federico II University Hospital Trust’s Ethics
Committee. All subjects involved in data collection provided consent and signed for the experimental
use of data. Table 2 gives the details and statistics of the patients included in gathering the SHAREE
database. We segmented our ECG signal into 5-min signals. After the segmentation of ECG signals,
we obtained 3172 ECG epochs corresponding to LRHT and 442 epochs for HRHT subjects for each
channel. Figures 1–4 show the LRHT and HRHT ECG signals of 5 min.

https://archive.physionet.org/pn6/shareedb/


Int. J. Environ. Res. Public Health 2019, 16, 4068 4 of 17

Table 2. Statistics of the patients employed in acquiring the database. LRHT, low-risk hypertension;
HRHT, high-risk hypertension.

S.no Parameters
LRHT Class HRHT Class

Mean Standard Deviation Mean Standard Deviation

1 DBP 76.31 9.1 73.5 8.4
2 SBP 136.6 19.5 141.7 23.5
3 BMI 27.6 3.9 27.9 4.9
4 LVMi 130 26.1 140.2 25.1
5 Age in years 71.4 7 74.1 6.5

DBP = diastolic blood pressure, SBP = systolic blood pressure, BMI = body mass index, and LVMi = left
ventricular mass index.

Figure 1. Typical low-risk hypertension (LRHT) ECG signal.

Figure 2. Typical high-risk hypertension (HRHT) myocardial infraction ECG signal.

Figure 3. Typical high-risk hypertension (HRHT) syncope ECG signal.
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Figure 4. Typical high-risk hypertension (HRHT) stroke ECG signal.

3. Methodology

To separate LRHT and HRHT automatically, the optimally-designed OWFB was used. A total of
six sub-bands (SBs) were produced using wavelet decomposition [26]. Five SBs were used for detail,
and one SB for approximation was used for ECG signals. After the wavelet decomposition into six SBs’
log energy (LOGE) and signal fractional dimensions (SFD), features were extracted from all SBs. Thus,
a total of 12 features were obtained from each ECG epoch, six LOGE and six SFD. The novelty of this
work is the development of the HDI, which can be used to discriminate LRHT and HRHT ECG signals.
The detailed outline of the proposed automated high-risk hypertension detection system is shown in
Figure 5.

Figure 5. Workflow of the proposed work. OWFB, optimal orthogonal wavelet filter bank.



Int. J. Environ. Res. Public Health 2019, 16, 4068 6 of 17

3.1. ECG Segmentation

For fast computing, we pre-processed the ECG signals. Long duration (2 h:10 min:12 s) ECG data
were segmented for the 5-min duration, then each ECG segment was normalized using the Z-score
before applying to the wavelet filter bank.

3.2. Design of Filter Bank

The OWFB contained two sets of filter banks (FLBs) (Figure 6); one was called synthesis FLB,
and another one was analysis FLB [25]. Both FLBs contained low-pass (LP) and high-pass (HP) filters.
For analysis FLB, the outputs of LP and HP were downsampled by 2, and in synthesis FLB, the inputs
to HP and LP were up-sampled by a factor of 2 prior to applying them. Let A0(z) and A1(z) be the LP
and HP filters, respectively, for analysis FLB. Let B0(z) and B1(z) be the LP and HP filters of synthesis
FLB, as shown in Figure 6. The analysis and synthesis LP filters were time-reversed copies of each other,
which is an important characteristic of OWFB [20]. Using the quadrature conjugation technique [37],
the HP filters A1(z) and B1(z) can be derived from LP filters A0(z) and B0(z). Hence, we can get the
remaining three filters directly from the LP analysis filter A0(z). The perfect reconstruction (PR) and
zero-moment (ZM) constraints [28] must be obeyed by optimal OWFB for output O(z) to be a delayed
replica of the input I(z) [29].

Figure 6. Two-channel OWFB.

For perfect reconstruction, the filter must fulfill the orthogonality condition as mentioned below [25]:

A0(z)B0(z) + A0(−z)B0(−z) = 2 (1)

Let P(z) = A0(z)B0(z), P(z) be called the product filter [34]. We can rewrite (1) in terms of the
product filter as below:

P(z) + P(−z) = 2 (2)

Let P(ej f ) be the frequency response of the product filter, which is represented by [34]:

P(ej f ) = ΣnP(n)e−j f n (3)

Now, we can represent the perfect reconstruction condition (2) in the frequency domain as,

|P(ej f )|2 + |P(ej(π− f )|2 = 2 (4)

For the real A0(n), P(ej f ) = |A0(ej f )|2 ≥ 0 [38]. Here, to design a real-coefficient orthogonal
wavelet filter bank, a positive value of the P(ej f ) for f ∈ [0, π] is needed. The total number of roots
at z = −1 can be defined as zero moments (ZM) of the filter [29,39]. To design the LP filter with
Mth-order, ZMs there should be 2M zeros at z = −1 in the product filter.

If the product filter satisfies Equation (2) and the P(ej f ) ≥ 0, f ∈ [0, π] condition, we can convert
the designed OWFB into the designed product filter P(z) [40–42]. After designing P(z), we can obtain
the required analysis LP filter A0(z) using spectral factorization [35,43].
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Constraint in the Time-Domain and Objective Function

To design the optimal OWFB, consider a(n) to be the unit impulse response of finite impulse
response analysis LP filter of A0(z) and b(n) be the unit impulse response of synthesis LP filter B0(z)
of order N − 1. The optimality criterion to design the orthogonal filter design is to minimize the mean
squared spectral localization (MSSL). MSSL happens to be the same for both analysis and synthesis
filters as the former is the time-reversed replica of the latter [24,32,44].
Now, we can define the MSSL, σf

2 of the filter A0(z) as [45]:

σf
2 =

1
2πE

∫ π

−π
f 2|A0(ej f )|2d f (5)

where E represents the squared-norm or energy of the filter. Imposing M zero-moments (regularity)
and orthogonality constraints, we design an optimal OWFB with the objective of having minimum
MSSL. The optimization problem for the filter design can be mentioned as below.

min
a[n]

σf
2 =

1
2πE

∫ π

−π
f 2|A0(ej f )|2d f (6a)

subject to
N

∑
n=0

a(n)a(n− 2m) = δ(m); m = 0, 1, . . . ,
N
2
− 1 (6b)

N

∑
m=0

(−1)mmka(m) = 0; k = 0, 1, . . . , M− 1 (6c)

Hence, to minimize MSSL (6a) for the given regularity (6c) and orthogonality (6b) constraints,
a constrained optimization problem was formulated. To develop a convex formulation, we need to
express the constraints and objective function in terms of P(z). As specified above, the sequence
p(n) (impulse response of the P(z)) is an auto-correlation sequence whose spectrum satisfies the
non-negativity condition P(ej f ) ≥ 0. We can write the objective function (5) in the form of the product
filter as:

σf
2 =

1
2πE

∫ π

−π
f 2|P(ej f )|d f =

1
πE

∫ π

0
f 2|P(ej f )|d f (7)

Thus, the optimization problem (6) can be represented in the form of the product filter as
mentioned below:

min
p[m]

1
π

∫ π

0
f 2P(ej f )d f (8a)

subject to

p[2m] = δ(m); m = 0, 1, . . . ,
N
2
− 1 (8b)

p(0) + 2
N−1

∑
m=1

(−1)m p(m) = 0 (8c)

N−1

∑
m=0

(−1)mm2k p(m) = 0; k = 0, 1, . . . , M− 1 (8d)

P(ej f ) ≥ 0; f ∈ [0, π] (8e)

The above-mentioned optimization problem (8) is a non-convex optimization problem in variable
p(n), whereas the optimization problem in (6) is a convex optimization problem in variable a(n). Now,
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we intend to convert the non-convex problem into a convex problem to get an optimal solution. Using
(8b), the half-band condition is linear in variable p(n). Equations (8c) and (8d) represent the regularity
conditions, which are also linear constraints. Only the non-positivity condition (8e) is a non-linear
semi-infinite constraint (one constraint each for every f ∈ [0, π]), which needs to be converted into a
finite constraint to formulate the convex optimization problem. Sharma and Moulin et al. [46,47] used
the discretization method to transform the semi-infinite constraint into finite constraints. However,
due to the inaccurate solution obtained by the discretization method, it is not advisable to use it.

Hence, we used the Kalman–Yakubovich–Popov lemma (KYPL) [48] for the formulation of a
semidefinite program (SDP). By the KYP lemma, (8e) exists only if there exists a symmetric positive Z ∈ RN×N

such that:
p(m) = ∑

n
[Z]n,n+m; m = 0, 1, . . . , N − 1 (9)

Hence, the objective function (8a) in terms of sequence p(n) can be given below:

σ2
f =

π2

3
p(0)−

N−2
2

∑
m=0

4p(2m + 1)
(2m + 1)2 = spT (10)

Here, s ∈ RN is

π2

3 , −4
12 , −4

32 , 0, . . . , 0, −4
(N−1)2

 and p ∈ RN is [p(0), p(1), . . . , p(N − 1)]. Using (10),

we obtained the objective function as a linear function of p(n). Furthermore, all constraints can be
expressed as a linear function of p(n). Hence, the optimization problem (8) can be written as the
following convex optimization problem [25].

min
Z�0,p(m)

σ2
f = spT (11)

subject to (8b), (8c), (8d), (9) and Z�0

Now, our optimization problem is convex as the objective function, and all the constraints
are convex. To find the global solution of the problem, we can use interior point algorithms such as
SedDumiand SPDT3 [49].The tools SPDT3 and SedDumi can solve the optimization problem accurately
and efficiently. After finding the optimal p(n), the next step is to obtain the desired low-pass filter
A0(z) using spectral localization of P(z).

3.3. Wavelet Decomposition

We designed optimal WFBs for sub-band decomposition of ECG signals [50,51]. We employed
five levels of decomposition. The five-level wavelet decomposition gave us precise information about
the 6 SBs of each ECG epoch. By this technique, we have extracted the desired frequencies present
in the ECG signal. Hence, the five-level wavelet decomposition of the ECG signal was done by this
method. The six SBs had five detailed (SB1–SB5) and one approximate (SB6) SBs.

3.4. Features Used

The selection of essential features was an important part of this work. Using this method, we were
able to classify LRHT and HRHT ECG signals. The log energy (LOGE) and signal fractal dimension
(SFD) features were computed from all six SBs.

Log energy (LOGE): To calculate the LOGE of each SB of the ECG signal, the logarithm of energy
needs to be computed. The general formula of the log energy is [25]:

LOGEm = log ∑n

∣∣rm(n)
∣∣2 (12)
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where LOGEm is the log energy of the mth sub-band and rm(n) is the amplitude of the nth sample of
the mth sub-band.

Signal fractal dimension (SFD): Fractals are figures of geometry or curves that are a subset of
a Euclidean space. These curves have the Hausdorff dimension strictly exceeding the topological
dimension. The fractal dimension provides a statistical magnitude to the complexity detailing the
pattern or fractal pattern with respect to the scale with which it is measured [25].

We can write the SFD equation as below:

SFD =
log(Pm)

log( 1
m )

(13)

where Pm is the number of self-similar patterns used to fill the original pattern and m is the ratio used
to decompose the original pattern into Pm self-similar patterns.

3.5. Hypertension Diagnosis Index

The extracted highly-significant features in Table 3 were used to develop the mathematical model
(14) to discriminate the two classes [52–54].

We propose a hypertension diagnosis index (HDI) to discriminate against the LRHT and HRHT by
a single numeric value. We used two sets of features (SFD and LOGE) with the highest t-value (lowest
p-value) to compute the HDI [55]. We formed the mathematical simulation given by:

HDI = 6− (3× LOGESB2 + 4× LOGESB3 + SFDSB6)−15× (SFDSB2 + SFDSB3 + SFDSB4) (14)

where LOGESB2 and LOGESB3 represent LOGE features extracted from SB2 and SB3, while SFDSB6,
SFDSB2, SFDSB3, and SFDSB4 represent the SFD feature extracted from SB6, SB2, SB3, and SB4.

4. Results

Using the 5-min ECG dataset, it is segmented in 3172 epochs of low-risk hypertension and 442
epochs of high-risk hypertension. Our whole experimental work was performed using MATLAB
Version 9.1 with an Intel Xeon 3.5 gigahertz (GHz) and 16 gigabytes (GB) of random access memory
(RAM). Tables 3–5 represent the statistical differences of LRHT and HRHT for the CH3, CH1, and CH2
ECG signals.

The result of Student’s t-test for each SB is shown in Table 6 with t-values and p-values for both
features (SFD and LOGE). Table 7 shows the result of the calculated HDI. Table 7 presents the range of
HDI and shows a significant difference in the LRHT and HRHT. Figure 7 shows the discrimination
between LRHT and HRHT by the significant numeric value. The segregation of both classes by HDI is
more simple and easy to use in a clinical environment.

Table 3. Mean and standard deviation for CH3.

Sub Bands

SFD LOGE

LRHT HRHT LRHT HRHT

Mean ± Std Mean ± Std Mean ± Std Mean ± Std

SB1 1.016 0.0032 1.016 0.0031 20.263 0.009 20.263 0.0053
SB2 2.011 0.0217 2.017 0.0252 11.983 0.915 11.711 0.7576
SB3 1.892 0.0217 1.899 0.0260 12.481 0.991 12.128 0.8576
SB4 1.621 0.0328 1.626 0.0395 13.096 0.981 12.746 1.0144
SB5 1.214 0.0210 1.213 0.0211 12.943 1.003 12.602 1.0966
SB6 1.059 0.0077 1.056 0.007 12.821 1.089 12.565 1.2976
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Table 4. Mean and standard deviation for CH1. SB, sub-band.

Sub Bands

SFD LOGE

LRHT HRHT LRHT HRHT

Mean ± Std Mean ± Std Mean ± Std Mean ± Std

SB1 1.024 0.0025 1.025 0.0029 20.263 0.005 20.263 0.0052
SB2 2.012 0.0231 2.020 0.0272 12.278 0.713 12.122 0.7550
SB3 1.898 0.0212 1.901 0.0223 12.564 0.858 12.298 0.7611
SB4 1.634 0.0348 1.641 0.0288 13.172 0.796 12.912 0.7564
SB5 1.212 0.017 1.213 0.0179 13.057 0.838 12.794 0.8087
SB6 1.065 0.0039 1.064 0.0035 12.857 0.911 12.673 1.0303

Table 5. Mean and standard deviation for CH2.

Sub Bands

SFD LOGE

LRHT HRHT LRHT HRHT

Mean ± Std Mean ± Std Mean ± Std Mean ± Std

SB1 20.26 0.0146 20.26 0.0106 1.0241 0.003 1.0243 0.0024
SB2 11.99 0.9122 11.76 0.8488 2.0213 0.024 2.0256 0.0291
SB3 12.05 0.9504 11.77 1.0436 1.9083 0.024 1.9121 0.023
SB4 12.64 1.1322 12.55 1.2271 1.6456 0.037 1.6261 0.0348
SB5 12.47 1.2679 12.61 1.250 1.2095 0.017 1.2119 0.0144
SB6 12.34 1.305 12.46 1.2807 1.0644 0.004 1.0643 0.0037

Table 6. Student’s t-test results, t-value and p-value. SFD, signal fractional dimension; LOGE,
log-energy.

Rank Feature t-Value p-Value

1 SFD SB6 8.854 9.47×10−18

2 LOGE SB3 7.943 9.35×10−15

3 LOGE SB2 6.878 1.45×10−11

4 LOGE SB4 6.829 2.22×10−11

5 LOGE SB5 6.196 1.14×10−9

6 SFD SB2 5.744 1.54 ×10−8

7 SFD SB3 4.982 8.59 ×10−7

8 LOGE SB6 3.952 8.79 ×10−5

9 SFD SB4 2.691 0.007341
10 SFD SB5 1.261 0.207762
11 LOGE SB1 1.009 0.313201
12 SFD SB1 0.958 0.338084

Table 7. Hypertension diagnosis index (HDI) range for the LRHT and HRHT classes.

Index LRHT HRHT p-value

HDI 1.501–2.355 2.774–6.084 <0.01
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Figure 7. Box plot of LRHT and HRHT.

5. Discussion

The aim of this study was to calculate the performance of features (LOGE and SFD) extracted from
novel optimal OWFB. In this research work, using spectrum-localized OWFB-based non-linear features,
we could identify HRHT patients using a single numeric value. The employed optimal OWFB-based
features yielded 100% discrimination of LRHT and HRHT patients using HDI. The salient features of
our developed automated system are given below:

• From Table 3, LOGE values of SB2–SB6 showed significant changes corresponding to LRHT and
HRHT patients.

• SFD of SB2 for LRHT and HRHT obtained the highest mean value, while SB1 showed the lowest
mean value. LOGE of SB1 yielded the highest mean value for LRHT, and SB2 for HRHT patients
yielded the lowest mean value.

• The novelty of the proposed work was the development of HDI to discriminate between the two
classes using a single value.

• Table 7 presents the range of HDI and shows a significant difference in the LRHT and HRHT by a
numeric value.

• We did not need classifiers, which involve training and testing. It was fast and involved only the
extraction of two feature sets.
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• The spectral localization technique was used to analyze non-stationary characteristics of the ECG
signal. As we used spectral localized OWFB, our proposed work was unique as compared to
other research works [3,16].

• For better and fast computation, we used fewer features. The length of the ECG signal was 5 min.
Hence, it was not computationally intensive and quicker in diagnosis.

• Using the same database, Melillo and Izzo used various machine learning algorithms (SVM,
decision tree (DT), and convolution neural network (CNN)) and obtained the highest accuracy of
87.8% with HRV signals [16]. Recently, Ni and Wang [3] obtained an accuracy of 95% using heart
rate variability (HRV) signals.

• Many studies have used HRV-based techniques to detect hypertension; we used wavelet-based
features directly extracted from ECG. Our method was different from HRV-based methods and
easy to use in the clinical environment [3].

• The performance of the system was found to be promising, and we expect that it can be employed
in intensive care units to monitor the abrupt rise in blood pressure while screening the ECG
signals, provided it is tested with an extensive independent database.

• The present research work was conducted using 139 ECG recordings segmented into 3614 (3172
as LRHT, 442 as HRHT (78 stroke, 78 syncope, and 286 myocardial infarction)) epochs of 5 min
each comprised of CH1, CH2, and CH3. The ECG dataset was obtained from https://archive.
physionet.org/pn6/shareedb/. Our whole experimental work was performed using MATLAB.
Table 7 shows the results of the automated detection of LRHT and HRHT classes. In Table 8, we
compare our proposed work with other methods. Using HDI, we can discriminate between the
two classes by just the single numeric value with 100% accuracy.

The dataset consisted of 3614 ECG epochs, out of which 87% were LRHT and 13% were HRHT
ECG signals. This imbalanced dataset is one of the limitations of our work. In general, LRHT data are
greater than HRHT data. To reduce this imbalance problem, synthetic balancing data are needed. The
other limitation of our research work is the selection of the optimal number of ZMs and the length of
the filter. In order to achieve accurate identification of HRHT, we cannot predict the estimated order
and ZM a priori.

In recent studies, deep learning methods were widely used for classification problems [56–59]. We
can use deep learning methods like convolution neural networks (CNN) [60]. In deep learning-based
techniques, we need not extract, select, and classify the handcrafted features. However, due to
extensive data processing, the computational complexity is enormous. Hence, they require fast
processing workstations and graphics processing units (GPU).

Table 8. Comparison of work done for automated detection of hypertension ECG signals. HRV, heart
rate variability.

Authors
(Year)

Features and Classifier Classification (in %)

Simjanoska et al. [61] (2018) ECG-based Features Extracted :
• SFD, Entropy ACC: 96.8%
Classifiers:
• SVM
• KNN

Sau et al. [62] (2018) Features :
• BMI, Age, Job ACC: 82.4%
Classifiers: Spec: 81.5%
• Random Forest
• Tree Based Pres: 84.6%

https://archive.physionet.org/pn6/shareedb/
https://archive.physionet.org/pn6/shareedb/
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Table 8. Cont.

Authors (Year) Features and classifier Classification(in %)

Seidler et al. [63] (2019) Features Extracted: AUC: 0.87%
• Pulmonary Artery Pressure ACC: 95%
Classifiers:
• SVM
• Tree Based
• Logistic Regression

Poddar et al. [14] (2019) Features Extracted: ACC: 96.7%
• HRV Linear and Nonlinear
Classification Method:
• Support Vector Machine

Song et al. [17] (2015) Features Extracted: ACC: 92.3%
• HRV in Time Domain
• HRV in Frequency Domain
• HRV Nonlinear Analysis
Classification Method:
• Naive Bayesian

Lee et al. [64] (2015) Features Extracted: ACC: 90%
• Linear and Nonlinear Features
of HRV
Classification Method:
• Support Vector Machine

Melillo et al. [16] (2015) Features Extracted:
• HRV Linear Spec: 71.4%
• HRV Nonlinear Sen: 87.8%
Classification Method:
• SVM
• Tree-based Algorithm
• Artificial Neural Network

Ni et al. [3] (2019) Features Extracted: Precision: 95.1%
• HRV in Time Domain
• HRV in Frequency Domain
• HRV Nonlinear Analysis
Method:
• Fine-grained Analysis Method

Presented Work
Features Extracted of ECG
Signal:

CH3:

• Signal Fractal Dimension LRHT: 1.501 − 2.355
• Log-Energy HRHT: 2.774 − 6.084
Method:

• HDI

Proposed Unique Ranges
for LRHT and HRHT
100% Separation between
Two Classes
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6. Conclusions

In this study, we used optimal OWFB-based non-linear features to discriminate LRHT and HRHT
ECG signals automatically using an index (HDI). The five-level wavelet decomposition of ECG signals
using optimal OWFB produced six (SBs). The LOGE and SFD features were extracted for all six SBs.
Our proposed OWFB-based method was adequate to discriminate the HT ECG signals accurately
utilizing features (LOGE and SFD) by a single numeric value. To evaluate the performance of the
optimal wavelet filter bank, HDI was developed, which separated LRHT and HRHT groups using
the proposed index. Our results show that the developed model was better than the other existing
systems and ready to be tested using a large database. In the future, we plan to test the performance of
our technique to detect the severity of hypertension using certain machine learning-based techniques
with the same database. We also intend to use deep learning-based methods for the classification of
LRHT and HRHT ECG signals as our future work.

Author Contributions: Conceptualization, M.S. and U.R.A.; methodology, J.S.R.; software, J.S.R.; validation, M.S.,
U.R.A. and J.S.R.; formal analysis, M.S. and U.R.A.; investigation, J.S.R.; resources, M.S. and U.R.A.; data curation,
U.R.A.; writing—original draft preparation, J.S.R.; writing—review and editing, M.S. and U.R.A.; visualization,
M.S.; supervision, M.S. and U.R.A.; project administration, M.S. and U.R.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO.A Global Brief on Hypertension; WHO/DCO/WHD/2013.2; WHO: Geneva, Switzerland, 2013;pp. 1–40,
CrossRef]

2. Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension:
analysis of worldwide data. Lancet 2005, 365, 217–223, CrossRef]

3. Ni, H.; Wang, Y.; Xu, G.; Shao, Z.; Zhang, W.; Zhou, X. Multiscale Fine-Grained Heart Rate Variability
Analysis for Recognizing the Severity of Hypertension. Comput. Math. Methods Med. 2019, 2019, 1–9,
CrossRef] [PubMed]

4. Sharma, M.; Singh, S.; Kumar, A.; Tan, R.S.; Acharya, U.R. Automated detection of shockable and
non-shockable arrhythmia using novel wavelet-based ECG features. Comput. Biol. Med. 2019, 103446,
CrossRef] [PubMed]

5. Sharma, M.; Acharya, U.R. A new method to identify coronary artery disease with ECG signals and
time-Frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit. Lett.
2019, 125, 235–240, CrossRef]

6. Sharma, M.; Tan, R.S.; Acharya, U.R. Detection of shockable ventricular arrhythmia using optimal orthogonal
wavelet filters. Neural Comput. Appl. 2019, CrossRef]

7. Sharma, M.; Tan, R.S.; Acharya, U.R. Automated heartbeat classification and detection of arrhythmia using
optimal orthogonal wavelet filters. Inform. Med. Unlocked 2019, 100221, CrossRef]

8. Bhurane, A.A.; Sharma, M.; San-Tan, R.; Acharya, U.R. An efficient detection of congestive heart failure
using frequency localized filter banks for the diagnosis with ECG signals. Cogn. Syst. Res. 2019, CrossRef]

9. Faust, O.; Acharya, R.; Krishnan, S.; Min, L.C. Analysis of cardiac signals using spatial filling index and
time-frequency domain. Biomed. Eng. Online 2004, 3, 30. [CrossRef]

10. Ni, H.; Cho, S.; Mankoff, J.; Yang, J.; Dey, A.k. Automated recognition of hypertension through overnight
continuous HRV monitoring. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 2011–2023, CrossRef]

11. Kwon, S.; Kang, S.; Lee, Y.; Yoo, C.; Park, K. Unobtrusive monitoring of ECG-derived features during daily
smartphone use. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4964–4967, CrossRef]

12. Ji Lee, H.; Hwang, S.; Yoon, H.; Kyu Lee, W.; Park, K. Heart Rate Variability Monitoring during Sleep Based
on Capacitively Coupled Textile Electrodes on a Bed. Sensors 2015, 15, 11295–11311, CrossRef]

13. Voss, A.; Baumert, M.; Baier, V.; Stepan, H.; Walther, T.; Faber, R. Autonomic Cardiovascular Control in
Pregnancies With Abnormal Uterine Perfusion. Am. J. Hypertens. 2006, 19, 306–312, CrossRef] [PubMed]

http://dx.doi.org/WHO/DCO/WHD/2013.2
http://dx.doi.org/10.1016/S0140-6736(05)17741-1
http://dx.doi.org/10.1155/2019/4936179
http://www.ncbi.nlm.nih.gov/pubmed/30805022
http://dx.doi.org/10.1016/j.compbiomed.2019.103446
http://www.ncbi.nlm.nih.gov/pubmed/31627019
http://dx.doi.org/10.1016/j.patrec.2019.04.014
http://dx.doi.org/10.1007/s00521-019-04061-8
http://dx.doi.org/10.1016/j.imu.2019.100221
http://dx.doi.org/10.1016/j.cogsys.2018.12.017
http://dx.doi.org/10.1186/1475-925X-3-30
http://dx.doi.org/10.1007/s12652-017-0471-y
http://dx.doi.org/10.1109/EMBC.2014.6944738
http://dx.doi.org/10.3390/s150511295
http://dx.doi.org/10.1016/j.amjhyper.2005.08.008
http://www.ncbi.nlm.nih.gov/pubmed/16500519


Int. J. Environ. Res. Public Health 2019, 16, 4068 15 of 17

14. Poddar, M.; Birajdar, A.C.; Virmani, J.; Kriti. Chapter 5—Automated Classification of Hypertension and Coronary
Artery Disease Patients by PNN, KNN, and SVM Classifiers Using HRV Analysis; Academic Press: Cambridge,
MA, USA, 2019; pp. 99–125, CrossRef]

15. Natarajan, N.; Balakrishnan, A.K.; Ukkirapandian, K. A study on analysis of Heart Rate Variability in
hypertensive individuals. Int. J. Biomed. Adv. Res. 2014, 5, 109–111, CrossRef]

16. Melillo, P.; Izzo, R.; Orrico, A.; Scala, P.; Attanasio, M.; Mirra, M.; Luca, N.; Pecchia, L. Automatic Prediction
of Cardiovascular and Cerebrovascular Events Using HRV Analysis. PLoS ONE 2015, 10, e0118504, CrossRef]
[PubMed]

17. Song, Y.; Ni, H.; Zhou, X.; Zhao, W.; Wang, T. Extracting Features for Cardiovascular Disease Classification
Based on Ballistocardiography. In Proceedings of the 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence
and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th
Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
Beijing, China, 10–14 August 2015. pp. 1230–1235, CrossRef]

18. Yue, W.w.; Yin, J.; Chen, B.; Zhang, X.; Wang, G.; Li, H.; Chen, H.; Jia, R.y. Analysis of Heart Rate Variability
in Masked Hypertension. Cell Biochem. Biophys. 2014, 70, 201–204, CrossRef]

19. Mussalo, H.; Vanninen, E.; Ikaheimo, R.; Laitinen, T.; Laakso, M.; Lansimies, E.; Hartikainen, J. Heart
rate variability and its determinants in patients with severe or mild essential hypertension. Clin. Physiol.
2001, 21, 594–604, CrossRef]

20. Sharma, M.; Bhurane, A.A.; Acharya, U.R. MMSFL-OWFB: A novel class of orthogonal wavelet filters for
epileptic seizure detection. Knowl. Based Syst. 2018, 160, 265–277, CrossRef]

21. Sharma, M.; Tan, R.S.; Acharya, U.R. A novel automated diagnostic system for classification of myocardial
infarction ECG signals using an optimal biorthogonal filter bank. Comput. Biol. Med. 2018, CrossRef]

22. Zala, J.; Sharma, M.; Bhalerao, R. Tunable Q - wavelet transform based features for automated screening
of knee-joint vibroarthrographic signals. In Proceedings of the 2018 International Conference on Signal
Processing and Integrated Networks (SPIN), Noida, India, 22–23 February 2018.

23. Sharma, M.; Agarwal, S.; Acharya, U.R. Application of an optimal class of antisymmetric wavelet filter banks
for obstructive sleep apnea diagnosis using ECG signals. Comput. Biol. Med. 2018, 100, 100–113, CrossRef]

24. Sharma, M.; Dhere, A.; Pachori, R.B.; Acharya, U.R. An automatic detection of focal EEG signals using new
class of time–frequency localized orthogonal wavelet filter banks. Knowl.-Based Syst. 2017, 118, 217–227.
[CrossRef]

25. Sharma, M.; Raval, M.; Acharya, U.R. A new approach to identify obstructive sleep apnea using an optimal
orthogonal wavelet filter bank with ECG signals. Informatics Med. Unlocked, 2019, 16, 100170, CrossRef]

26. Sharma, M.; Dhere, A.; Pachori, R.B.; Gadre, V.M. Optimal duration-bandwidth localized antisymmetric
biorthogonal wavelet filters. Signal Process. 2017, 134, 87–99. [CrossRef]

27. Sharma, M.; Acharya, U.R. Analysis of knee-joint vibroarthographic signals using bandwidth-duration
localized three-channel filter bank. Comput. Electr. Eng. 2018, 72, 191–202, CrossRef]

28. Sharma, M.; Achuth, P.; Deb, D.; Puthankattil, S.D.; Acharya, U.R. An Automated Diagnosis of Depression
Using Three-Channel Bandwidth-Duration Localized Wavelet Filter Bank with EEG Signals. Cogn. Syst. Res.
2018, 52, 508–520. [CrossRef]

29. SHARMA, M.; SHAH, S. A novel approach for epilepsy detection using time–frequency localized
bi-orthogonal wavelet filter. J. Mech. Med. Biol. 2019, 19, 1940007. [CrossRef]

30. Sharma, M.; Achuth, P.V.; Pachori, R.B.; Gadre, V.M. A parametrization technique to design joint
time–frequency optimized discrete-time biorthogonal wavelet bases. Signal Process. 2017, 135, 107–120.
[CrossRef]

31. Sharma, M.; Bhati, D.; Pillai, S.; Pachori, R.B.; Gadre, V.M. Design of Time–Frequency Localized Filter
Banks: Transforming Non-convex Problem into Convex Via Semidefinite Relaxation Technique. Circuits Syst.
Signal Process. 2016, 35, 3716–3733. [CrossRef]

32. Bhati, D.; Sharma, M.; Pachori, R.B.; Gadre, V.M. Time-frequency localized three-band biorthogonal wavelet
filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal
classification. Digit. Signal Process. 2017, 62, 259–273. [CrossRef]

33. Bhati, D.; Sharma, M.; Pachori, R.B.; Nair, S.S.; Gadre, V.M. Design of Time–Frequency Optimal Three-Band
Wavelet Filter Banks with Unit Sobolev Regularity Using Frequency Domain Sampling. Circuits Syst.
Signal Process. 2016, 35, 4501–4531. [CrossRef]

http://dx.doi.org/10.1016/B978-0-12-816086-2.00005-9
http://dx.doi.org/10.7439/ijbar.v5i2.659
http://dx.doi.org/10.1371/journal.pone.0118504
http://www.ncbi.nlm.nih.gov/pubmed/25793605
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.223
http://dx.doi.org/10.1007/s12013-014-9882-y
http://dx.doi.org/10.1046/j.1365-2281.2001.00359.x
http://dx.doi.org/10.1016/j.knosys.2018.07.019
http://dx.doi.org/10.1016/j.compbiomed.2018.07.005
http://dx.doi.org/10.1016/j.compbiomed.2018.06.011
http://dx.doi.org/10.1016/j.knosys.2016.11.024
http://dx.doi.org/10.1016/j.imu.2019.100170
http://dx.doi.org/10.1016/j.sigpro.2016.11.017
http://dx.doi.org/10.1016/j.compeleceng.2018.08.019
http://dx.doi.org/10.1016/j.cogsys.2018.07.010
http://dx.doi.org/10.1142/S0219519419400074
http://dx.doi.org/10.1016/j.sigpro.2016.12.019
http://dx.doi.org/10.1007/s00034-015-0228-9
http://dx.doi.org/10.1016/j.dsp.2016.12.004
http://dx.doi.org/10.1007/s00034-016-0286-7


Int. J. Environ. Res. Public Health 2019, 16, 4068 16 of 17

34. Sharma, M.; Gadre, V.M.; Porwal, S. An Eigenfilter-Based Approach to the Design of Time-Frequency
Localization Optimized Two-Channel Linear Phase Biorthogonal Filter Banks. Circ. Syst. Signal Process.
2015, 34, 931–959. [CrossRef]

35. Sharma, M.; Deb, D.; Acharya, U.R. A novel three-band orthogonal wavelet filter bank method for an
automated identification of alcoholic EEG signals. Appl. Intell. 2018, 48, 1368–1378, CrossRef]

36. Sharma, M.; Pachori, R.B.; Acharya, U.R. A new approach to characterize epileptic seizures using analytic
time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. 2017, 94, 172–179,
CrossRef]

37. Vetterli, M.; Herley, C. Wavelets and filter banks: Theory and design. IEEE Trans. Signal Process. 1992,
40, 2207–2232. [CrossRef]

38. Daubechies, I. Ten Lectures on Wavelets. Siam Rev. 1992, 61, 2207–2232.
39. Sharma, M.; Goyal, D.; Achuth, P.; Acharya, U.R. An accurate sleep stages classification system using

a new class of optimally time-frequency localized three-band wavelet filter bank. Comput. Biol. Med. 2018,
98, 58–75, CrossRef]

40. Shah, S.; Sharma, M.; Deb, D.; Pachori, R.B. An automated alcoholism detection using orthogonal wavelet
filter bank. In Machine Intelligence and Signal Analysis; Springer: Singapore, 2019; Volume 748, pp. 473–483,
CrossRef]

41. Sharma, M.; Sharma, P.; Pachori, R.B.; Gadre, V.M. Double density dual-tree complex wavelet
transform based features for automated screening of knee-joint vibroarthrographic signals. In Machine
Intelligence and Signal Analysis; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019;
Volume 748; pp. 279–290.

42. Sharma, M.; Pachori, R.B. A novel approach to detect epileptic seizures using a combination of tunable-Q
wavelet transform and fractal dimension. J. Mech. Med. Biol. 2017, 17, 1740003, CrossRef]

43. Sharma, M.; Sharma, P.; Pachori, R.B.; Acharya, U.R. Dual-tree complex wavelet transform-based features
for automated alcoholism identification. Int. J. Fuzzy Syst. 2018, 20, 1297–1308, CrossRef]

44. Sharma, M.; Singh, T.; Bhati, D.; Gadre, V. Design of two-channel linear phase biorthogonal wavelet filter
banks via convex optimization. In Proceedings of the 2014 international conference on signal processing and
communications (SPCOM), Bangalore, India 22–25 July 2014; pp. 1–6, CrossRef]

45. Ishii, R.; Furukawa, K. The uncertainty principle in discrete signals. IEEE Trans. Circuits Syst.
1986, 33, 1032–1034, CrossRef]

46. Moulin, P.; Anitescu, M.; Kortanek, K.O.; Potra, F.A. The role of linear semi-infinite programming in
signal-adapted QMF bank design. IEEE Trans. Signal Process. 1997, 45, 2160–2174, CrossRef]

47. Bhattacharyya, A.; Sharma, M.; Pachori, R.B.; Sircar, P.; Acharya, U.R. A novel approach for automated
detection of focal EEG signals using empirical wavelet transform. Neural Comput. Appl. 2018, 29, 47–57,
CrossRef]

48. Dumitrescu, B.; Tabus, I.; Stoica, P. On the parameterization of positive real sequences and ma parameter
estimation. IEEE Trans. Signal Process. 2001, 49, 2630–2639. [CrossRef]

49. Grant, M.; Boyd, S,P. CVX: MATLAB Software for Disciplined Convex Programming; CVX Research:
Austin, TX, USA, 2014.

50. Sharma, M.; Vanmali, A.V.; Gadre, V.M. Construction of Wavelets: Principles and Practices in Wavelets and
fractals in earth system sciences. In Wavelets and Fractals in Earth System Sciences; Chandrasekhar, E.E., Dimri,
V.P.E., Gadre, V.M.E., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK,
November 2013.

51. Sharma, M.; Kolte, R.; Patwardhan, P.; Gadre, V. Time-frequency localization optimized biorthogonal
wavelets. In Proceedings of the 2010 International Conference on Signal Processing and Communications
(SPCOM), Bangalore, India, 18–21 July 2010; pp. 1–5.

52. Acharya, U.R.; K Sudarshan, V.; Adeli, H.; Santhosh, J.; Koh, J.E.W.; D Puthankatti, S.; Adeli, A. A Novel
Depression Diagnosis Index Using Nonlinear Features in EEG Signals. Eur. Neurol. 2015, 74, 79–83, CrossRef]
[PubMed]

53. Acharya, U.R.; Faust, O.; Subbhuraam, V.S.; Molinari, F.; Garberoglio, R.; Suri, J. Cost-Effective and
Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced
Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScanTM Algorithms.
Technol. Cancer Res. Treat. 2011, 10, 371–80, CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00034-014-9885-3
http://dx.doi.org/10.1007/s10489-017-1042-9
http://dx.doi.org/10.1016/j.patrec.2017.03.023
http://dx.doi.org/10.1109/78.157221
http://dx.doi.org/10.1016/j.compbiomed.2018.04.025
http://dx.doi.org/10.1007/978-981-13-0923-6_41
http://dx.doi.org/10.1142/S0219519417400036
http://dx.doi.org/10.1007/s40815-018-0455-x
http://dx.doi.org/10.1109/SPCOM.2014.6983931
http://dx.doi.org/10.1109/TCS.1986.1085842
http://dx.doi.org/10.1109/78.622941
http://dx.doi.org/10.1007/s00521-016-2646-4
http://dx.doi.org/10.1109/78.960409
http://dx.doi.org/10.1159/000438457
http://www.ncbi.nlm.nih.gov/pubmed/26303033
http://dx.doi.org/10.7785/tcrt.2012.500214
http://www.ncbi.nlm.nih.gov/pubmed/21728394


Int. J. Environ. Res. Public Health 2019, 16, 4068 17 of 17

54. Acharya, U.R.; Fujita, H.; K Sudarshan, V.; Subbhuraam, V.S.; Wei Jie Eugene, L.; Ghista, D.; Tan, R.S. An
Integrated Index for Detection of Sudden Cardiac Death Using Discrete Wavelet Transform and Nonlinear
Features. Knowl. Based Syst. 2015, 83, 149–158, CrossRef]

55. RAJAMANICKAM, Y.; Acharya, U.R.; Hagiwara, Y. A novel Parkinson’s Disease Diagnosis Index using
higher-order spectra features in EEG signals. Neural Comput. Appl. 2016, CrossRef]

56. Acharya, U.R.; Fujita, H.; Oh, S.L.; Raghavendra, U.; Tan, J.H.; Adam, M.; Gertych, A.; Hagiwara, Y.
Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using
convolutional neural network. Future Gener. Comput. Syst. 2018, 79, 952–959, CrossRef]

57. Yıldırım, Z.; Pławiak, P.; Tan, R.S.; Acharya, U.R. Arrhythmia Detection Using Deep Convolutional Neural
Network With Long Duration ECG Signals. Comput. Biol. Med. 2018, 102, 411–420, CrossRef]

58. Tan, J.H.; Hagiwara, Y.; Pang, W.; Lim, I.; Oh, S.L.; Adam, M.; Tan, R.S.; Chen, M.; Acharya, U.R. Application
of stacked convolutional and long short-term memory network for accurate identification of CAD ECG
signals. Comput. Biol. Med. 2018, 94, 19–26, CrossRef]

59. Oh, S.L.; Ng, E.Y.; Tan, R.S.; Acharya, U.R. Automated diagnosis of arrhythmia using combination of CNN
and LSTM techniques with variable length heart beats. Comput. Biol. Med. 2018, 102, 278–287, CrossRef]

60. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based
on physiological signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13. CrossRef]

61. Simjanoska, M.; Gjoreski, M.; Madevska Bogdanova, A.; Koteska, B.; Gams, M.; Tasic, J. ECG-Derived Blood
Pressure Classification Using Complexity Analysis-Based Machine Learning; SCITEPRESS: Setúbal, Portugal, 2018;
pp. 282–292, CrossRef]

62. Sau, A.; Bhakta, I. Screening of anxiety and depression among the seafarers using machine learning
technology. Informatics Med. Unlocked 2018, CrossRef]

63. Seidler, T.; Hellenkamp, K.; Unsoeld, B.; Mushemi-Blake, S.; Shah, A.; Hasenfuss, G.; Leha, A. A machine
learning approach for the prediction of pulmonary hypertension. J. Am. Coll. Cardiol. 2019, 73, 1589. ACC.19:
The American College of Cardiology 68th Annual Scientific Sessions, CrossRef]

64. Brown, T.; Cueto, M.; Fee, E. The World Health Organization and the Transition From “International” to
“Global” Public Health. Am. J. Public Health 2006, 96, 62–72. CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2015.03.015
http://dx.doi.org/10.1007/s00521-016-2756-z
http://dx.doi.org/10.1016/j.future.2017.08.039
http://dx.doi.org/10.1016/j.compbiomed.2018.09.009
http://dx.doi.org/10.1016/j.compbiomed.2017.12.023
http://dx.doi.org/10.1016/j.compbiomed.2018.06.002
http://dx.doi.org/10.1016/j.cmpb.2018.04.005
http://dx.doi.org/10.5220/0006538202820292
http://dx.doi.org/10.1016/j.imu.2018.12.004
http://dx.doi.org/10.1016/S0735-1097(19)32195-3
http://dx.doi.org/10.2105/AJPH.2004.050831
http://www.ncbi.nlm.nih.gov/pubmed/16322464
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dataset
	Methodology
	ECG Segmentation
	Design of Filter Bank
	Wavelet Decomposition
	Features Used
	Hypertension Diagnosis Index

	Results
	Discussion
	Conclusions
	References

