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Abstract: Due to the importance of understanding the relationship between agricultural growth
and environmental quality, we analyzed how high-quality agricultural development can affect
carbon emissions in Northwest China. Based on the concept of the environmental Kuznets curve,
this study uses provincial panel data from 1993 to 2017 to make empirical analyses inflection
point changes and spatio-temporal differences in agricultural carbon emissions. The highlights of
our findings are as follows: (1) In Northwest China, there is an inverse N-shape curve, and the
critical values are 3578 yuan/hm2 and 45,738 yuan/hm2, respectively. (2) For 2017, the agricultural
economic intensity was 50,670 yuan/hm2, exceeding the critical value (high inflection point) of
45,738 yuan/hm2. (3) Ningxia, Gansu, and Qinghai have not reached the turning point. Having
comparable climate, natural conditions, and overall environmental factors, these three provinces
would reach the turning point at similar time periods. (4) The average value in agricultural
carbon emission intensity in the region is 767.79 kg/hm2, and the order based on intensity is
Xinjiang > Shaanxi > Ningxia > Gansu > Qinghai.

Keywords: Northwest China; vulnerable area; agriculture; carbon emission; inflection point;
spatio-temporal differentiation; EKC model

1. Introduction

In order to contribute to lowering global greenhouse gas (GHG) emissions, countries must
reduce their carbon footprints, which would require improving their ecological environment and
advocating for a low-carbon economy. Tian et al. [1] found that land-use change, agricultural
activities, and waste management are the primary sources of terrestrial biogenic greenhouse gases
and significantly contribute to climate change through increased CH4 and N2O emissions. From the
sixth Intergovernmental Panel on Climate Change (IPCC) Special Report on Climate Change and
Land (2019), greenhouse gases emitted by the agriculture, forestry, and other land-use (AFOLU) sector
account for 23% of the total anthropogenic greenhouse gases, while about a third of the natural carbon
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dioxide absorbed by land is caused by emissions from fossil fuel use and production [2]. Due to the
declining vegetation cover, increasing food consumption, and rising energy usage, the amount of
GHG in the atmosphere has been increasing exponentially, trapping heat and causing global warming,
which further aggravates climate change. Considered as a principal contributor to global carbon
dioxide emissions, agriculture, one of China’s primary industries, is closely linked with the problem of
greenhouse gas emissions. The resulting ecological crisis would be catastrophic and irreversible, and
therefore controlling agricultural carbon emissions has become one of China’s primary concerns.

Since 2008, the concept of “low-carbon economy with low emission and high income” has
become widely popular in China. The concept of low-carbon agricultural economy pertains to
agricultural production and operations achieving minimal greenhouse gas emissions while achieving
desired benefits. Through continuous development, low-carbon agriculture has become an emerging
paradigm in agricultural sustainable development, which takes into account economic, ecological, and
social benefits in the context of global climate change and low-carbon economic development [3–7].
In China, following the “two-step” trend in the global energy transformation, the agricultural sector
is being developed to transition from high carbon to low carbon, and eventually towards becoming
carbon-neutral. Since instituting economic reforms, agricultural production conditions have greatly
improved, production efficiency has been significantly enhanced, and the production scale has
substantially increased. However, alongside rapid development, emissions of carbon dioxide and
other GHG from agricultural activities have also increased. Thus, promoting low-carbon agriculture
has become an urgent priority, particularly for developing countries, in order to reduce the sector’s
carbon footprints without sacrificing agronomic production [3–12].

As a critical base for animal husbandry, crop production, and characteristic agriculture in China,
Northwest China is facing increased ecological pressure to boost the agricultural economy and develop
its land resources. However, due to its partly arid and partly semi-arid climate, the water resource
in Northwest China is in short supply, and its ecosystem is fragile. Once damaged, the ecosystem
degradation is irreversible, threatening the local population’s natural and economic environment.
Therefore, research on agricultural carbon emissions, particularly in the arid and vulnerable areas
of Northwest China, is of great importance. This could be used to determine the turning point in
agricultural economic development where a high emission transitions into low emissions, to help
reduce the agricultural carbon footprint and support achieving a high-quality development.

For this study, we analyzed the inflection points and spatio-temporal differences of agricultural
carbon emissions in Northwest China to explore the effects of economic growth on carbon emissions
and identify significant determinants. Our findings would provide theoretical guidance in support
of reducing agricultural carbon emissions and promoting sustainable development of low-carbon
agriculture. Compared with the existing research [12–17], the innovation of this study lies mainly in
three key aspects:

First, our research examined the carbon emission and agricultural economic intensities for
agriculture (crop production) in Northwest China. With improvements in agricultural modernization,
mechanization and chemical use have become widely utilized in farm operations, which have resulted
in increased agricultural yield. As a result, agriculture has become one of the primary sources of
greenhouse gas emissions. In order to fully examine agricultural carbon emissions, agricultural
carbon sources have to be first identified in order to systematically calculate their carbon emission
contributions. Previous studies have analyzed agricultural carbon emissions mainly from a singular
perspective. Li and Li [18] measured carbon emissions caused by the configuration of agricultural
energy consumption through seven types of carbon sources, such as coal, gasoline, diesel natural gas,
and kerosene. Tian and Jiang [19] studied the agricultural carbon emissions in the Hubei Province from
the carbon sources, such as chemical fertilizer, pesticide, agricultural film, and diesel. Wang and Sun [20]
and Li [21] investigated plowing and irrigation and calculated the total agricultural carbon emissions
from the aspects of energy input and land use [18–21]. Using extensive datasets of cities in Northwest
China, this study reevaluated the agricultural carbon emissions to provide more accurate estimates.
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Second, recent research has mainly focused on carbon emissions from China’s more developed
provinces, such as measuring low-carbon agricultural productivity in central and eastern regions and
analyzing the dynamic change and evolution trend of agricultural carbon emissions in China’s coastal
cities at the provincial level. However, the unique agricultural landscape, environmental constraints,
and ecological vulnerability in Northwest China have been overlooked [22–41]. The development of
agricultural carbon emissions is dynamic and complex, and studying the carbon emissions for this
region is of considerable significance and essential in the construction of the ecological civilization and
the development of a regional agricultural economy. Finally, while a number of studies have been
conducted with regard to the relationship between the intensity of agricultural carbon emissions and
per capita GDP, limited research has been done on the relationship between agricultural carbon emission
and agricultural economic growth for Northwest China and the examination of the environmental
Kuznets curve (EKC) of agricultural carbon emission [9,42]. Therefore, this study adopted various
modifications to traditional carbon estimation approaches, such as using the planting area of crops as
starting point, employing agricultural carbon emission intensity to indicate the level of agricultural
carbon emission, and agricultural economic intensity to express the level of agricultural economic
development. By using such an approach, we were able to clearly distinguish the carbon emissions
generated by cropping and other agricultural activities.

2. Materials and Method

2.1. Research Area

Northwest China is composed of Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang and serves as
an essential trade route, such as the “Silk Road Economic Belt” and “Eurasian land bridge”. The region
enjoys unique advantages in natural resources and the agricultural planting industry, which provide a
solid economic foundation for the region [27]. The study area can be seen in Figure 1.

Figure 1. Map of five provinces in Northwest China.

By the end of 2018, the permanent population was 102.79 million, with 47.39% of the population
engaged in agricultural work. The region has a total area of 3.0456 million square kilometers, accounting
for 57.7% of the total area of the western region and 31.7% of the national land area. It consists of 18.53
million hectares of cultivated land and has 0.21 hectares of cultivated land per capita, which is double
the national average. Agriculture in Northwest China is based mainly on large-scale planting of cash
crops and vegetables. Each province has particular advantages in the agricultural industry, different
from other provinces, and the region, in general, has been experiencing considerable agricultural
economic growth [28,29].
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Northwest China is located in the hinterland of the Eurasian continent, which has very little
precipitation and receives no rainfall all year round. The region, which belongs to the arid and
semi-arid area, receives annual precipitation of less than 500 mm. The annual precipitation in the
Loess Plateau is between 300–500 mm, in Qaidam Basin below 200 mm, in Hexi Corridor less than
100 mm, in Dunhuang about 29.5 mm, in Turpan less than 20 mm, and in Ruoqiang about 10.9 mm.
Once the ecosystem is destroyed, environmental degradation becomes irreversible, creating a ‘barrier’
that constrains applications and limits the use [23–29].

2.2. Indicator Selection

The primary agricultural products in Northwest China are vegetables and corn. Aside from these
crops, other agricultural products could be found in particular areas of the region. When differentiated
by province, the dominant agricultural products for Shaanxi are vegetables, corn, and soybeans; for
Gansu, corn, vegetables, and wheat; for Qinghai, corn, vegetables, and rice; for Ningxia, cotton and
vegetables; and, for Xinjiang, corn.

Agricultural greenhouse gases in Northwest China come from two primary sources: nitrous
oxide discharges from crop production and carbon emissions from farm activities. In the process
of crop planting, the destruction of soil surface causes a large volume of N2O gas to be released
in the atmosphere. N2O can be characterized as having high-temperature potential, long retention
time, and can cause damage to the ozone layer. In this study, the N2O emission coefficients of rice,
spring wheat, winter wheat, soybean, corn, vegetable, cotton, and other crops, were based on previous
studies [36–41]. In order to compare values, the N2O emissions were converted into their C equivalent
using the conversion method 1t N2O = 81.27 t C. For carbon emissions from farming activities, the
quantity can be determined using aggregated values of the following: (1) carbon emissions directly or
indirectly generated by the application of chemical fertilizer; (2) carbon emissions directly or indirectly
generated by the use of pesticides; (3) carbon emissions directly or indirectly generated by the use of
agricultural plastic film; (4) carbon emissions generated by the use of agricultural diesel oil consumed
by agricultural machinery; (6) carbon emissions generated by the loss of soil organic carbon pool caused
by the conversion of agricultural lands; and, (6) carbon emissions generated by the consumption of
electric energy in the process of agricultural irrigation.

In order to avoid the variations in the agricultural production scale, we selected intensity indices to
measure agricultural economic growth and environmental quality. The index of agricultural economic
growth is P-AGDP (per unit sown area Agricultural GDP), which is equal to the gross agricultural
product per unit sown area. The total agricultural output value and planting area of crops over the
years were derived from the statistical yearbook of each province published on the website of the
China Statistics Bureau.

P−AGDP = gross output value o f agriculture/Planting area o f crops. (1)

There may be a more direct causal relationship between environmental quality and economic
growth present. In the initial stage of agricultural development, growth mainly depends on increasing
labor input. The range of change in agricultural material input is relatively small, and the carbon
emission intensity per unit sown area may have mixed effects (increase, decrease, or stay the same).
With the maturation of the agricultural sector, the output contribution of labor gradually weakens,
and agricultural growth begins to rely more on fertilizer use. An increase in farm material inputs
(e.g., pesticides) results in improved agricultural yield but can also intensify carbon emissions. When
agriculture develops to a certain level, in order to avoid continued deterioration of the ecological
environment, advanced technology will be widely used for agricultural production, and the dependence
on farming materials will be gradually reduced. At this stage, the farm output will continue to grow,
while the farm carbon emissions will continue to increase.
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2.3. Agricultural Carbon Emission Estimation

At present, most studies have made use of agricultural carbon emission intensity (PCO2) in
studying environmental quality indicators. Based on the agrarian characteristics of the region,
we focused our estimation on the carbon emissions by the following sources: chemical fertilizer use,
pesticide application, use of agricultural film and other agricultural materials, fuel consumption by
farm machinery, carbon released caused by plowing, and electric consumption by irrigation activities
(Table 1). During crop planting, tilling and other soil disturbing activities cause massive amounts
of greenhouse gases to be released in the atmosphere, which further compounds the problem of
GHG emissions (Table 2) [31]. The sown area for each crop type was derived from the Statistical
Yearbook published by the China Statistics Bureau website. The planting area of each crop comes from
the Statistical Yearbook published on the website of the China Statistics Bureau. The intensity of
agricultural carbon emission is obtained by dividing the total amount of agricultural (planting) carbon
emission by the planting area of crops [32,33]. The agrarian carbon emission was then estimated using
the equation:

C =
∑

Cit =
∑

Tit × αi, (2)

where C is the total amount of agricultural carbon emissions; Cit is the agrarian carbon emissions in
year t of type i carbon source; Tit is the amount of carbon source in year t of type i; and αi is the carbon
emission coefficient for each carbon source type i. Considering the different chemical properties of
N2O and C, calculating them directly would be difficult. In this paper, N2O emissions were converted
into equivalent C using the conversion rate: 1 t N2O = 81.27 t C.

Table 1. Emission coefficients of main carbon sources.

Carbon Source Carbon Emission Coefficient Reference Source

Chemical fertilizer 0.8956 kg C/kg T.O.WEST [32] Oak Ridge National
Laboratory

Pesticides 4.9341 kg C/kg Oak Ridge National Laboratory [33]

Agricultural film 5.18 kg C/kg
Institute of agricultural resources and

ecological environment, Nanjing
Agricultural University

Diesel oil 0.5927 kg C/kg IPCC

Plowing 312.6 kg C/km2 School of Biology and Technology,
China Agricultural University [34]

Irrigation 266.48 kg C/hm2 Duan et al. [35]

Table 2. Emission coefficient of various crop varieties.

Crop Varieties N2O Emission Coefficient/(kg/hm2) Reference Source

Unhusked rice 0.24 Wang [36]
Spring wheat 0.4 Yu et al. [37]
Winter wheat 2.05 Pang et al. [38]

Soybean 0.77 Xiong et al. [39]

Corn 2.532 Wang et al. [40]
Vegetables 4.21 Qiu et al. [41]

Cotton 0.4804 Wang [36]

Note: 1 t N2O = 81.27 t C.
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2.4. Environmental Kuznets Curve

Since its establishment, the environmental Kuznets curve (EKC) has been used to measure
the deterioration of environmental quality with economic growth in the early stage of economic
development. When the economy develops into a particular stage, the environmental quality will
improve with economic growth. With the development of China’s agriculture, a number of challenges,
such as less arable land per capita, unskilled agricultural employees, low level of agricultural science
and technology, and wastage in agricultural production resources and energy, have exacerbated the
problem of high carbon emissions. In recent decades, with China’s high levels of agricultural and
economic development, people have started paying more attention on how to control its agricultural
carbon emissions and minimize its impact on the global environment. A number of theoretical and
empirical research has been conducted on the relationship between carbon emissions and economic
growth, and many regression models have been proposed. In constructing the model, we chose a
relatively flexible cubic polynomial form, where the results can be monotone linear, inverted U-shaped,
or N-shaped (Table 3) [43].

Table 3. Regression models analyzed in the study.

Linear

Et = α + β1Yt + εt
lnPCO2 = β0 + β1ln(P-AGDP)t + εt

where β1 > 0

Non-Linear.
Quadratic Model

Et = α + β1Yt + β2Yt + εt
lnPCO2 = β0 + β1ln(P-AGDP)t + β2ln(P-AGDP)t

2 + εt
where β2 < 0 or β2 > 0

Cubic Model

Et = α + β1Yt + β2Yt
2 + β3Yt

3 + εt
lnPCO2 = β0 + β1ln(P-AGDP)t + β2ln(P-AGDP)t

2 + β3ln(P-AGDP)t
3 + εt

where β3 > 0

Note: ε is a random error term.

Where Et is the environmental pressure of the country or region at time t; Yt is the economic
output at time t; and β1, β2, β3 are the parameters to be estimated. Et is commonly expressed by
ecological quality indicators (e.g., pollutant emission intensity). In this study, we used agricultural
carbon emission intensity (PCO2) to denote environmental quality and agricultural economic intensity
(P-AGDP) to indicate economic output [44–49].

The estimation form of the cubic polynomial of the EKC curve was used to construct the model.
In order to reduce the fluctuation and eliminate possible heteroscedasticity in the data, the natural
logarithm of agricultural carbon emission and production per unit planting area were used were
recorded as lnPCO2t = ln (PCO2) and lnP-AGDPt = ln (P-AGDP). In this study, the theoretical model of
Grossman and Krueger was used to provide the relationship between agricultural carbon emission
intensity and agricultural economic intensity [50,51]:

ln PCO2t = β0 + β1 ln(P−AGDP)t + β2 ln(P−AGDP)2
t + β3 ln(P−AGDP)3

t + εt, (3)

where PCO2t is the intensity value of agricultural carbon emission in year t; P-AGDPt is the intensity
value of agrarian economy in year t; εt is the random error term; β0 is the intercept; and β1, β2, and β3

are the parameters to be estimated.
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2.5. Data Collection

The data used in this study were derived from China Statistical Yearbook, Xinjiang Statistical Yearbook,
Shaanxi Statistical Yearbook, Ningxia Statistical Yearbook, Gansu Statistical Yearbook, and Qinghai Statistical
Yearbook. The following spatial data were gathered for each of the five provinces of Northwest China:
rice planting area (hm2), spring wheat planting area (hm2), winter wheat planting area (hm2), soybean
planting area (hm2), corn planting area (hm2), vegetable planting area (hm2), cotton planting area
(hm2), total crop planting area (kg), effective irrigation area (hm2), and actual crop planting area.
Additionally, the following farm-related data were also collected: the net amount of agricultural
fertilizer (kg), the use of pesticide (kg), the use of agricultural plastic film (kg), and the agricultural
diesel oil (kg) consumed for agricultural activities. In order to eliminate the impact of price fluctuations,
the total agricultural output values were adjusted to 1993 prices. The time series of China’s agricultural
economic intensity in 1993–2017 can be obtained by dividing the two [9,23].

3. Results

3.1. Augmented Dickey-Fuller (ADF) Unit Root Test

The natural logarithm sequences lnPCO2, lnP-AGDP, (lnP-AGDP)2, and (lnP-AGDP)3, as well
as their first-order difference sequences, were examined using the unit root test. As shown in
Table 4, the natural logarithm sequences lnPCO2, lnP-AGDP, (lnP-AGDP)2, and (lnP-AGDP)3 were all
non-stationary, while the first-order difference sequences lnPCO2 (1), lnP-AGDP (1), (lnP-AGDP)2 (1),
and (lnP-AGDP)3 (1) are stationary. Therefore, the lnPCO2 (1), lnP-AGDP (1), (lnP-AGDP)2 (1), and
(lnP-AGDP)3 (1) values meet the conditions of the cointegration test.

Table 4. Unit root test results.

Sequence LnPCO2
LnPCO2

(1) LnP-AGDP LnP-AGDP
(1) (lnP-AGDP)2 (lnP-AGDP)2

(1) (lnP-AGDP)3 (lnP-AGDP)3

(1)

ADF test value 5.5688 −4.7912 2.3659 −7.0151 2.4519 −6.8869 2.5448 −6.7404

Prob. 1.0000 0.0009 0.9939 0.0000 0.995 0.0000 0.9959 0.0000

1% critical
value −2.6649 −3.7529 −2.6649 −3.7529 −2.6649 −3.7529 −2.6649 −3.7529

5% critical
value −1.9557 −2.9981 −1.9557 −2.9981 −1.9557 −2.9981 −1.9557 −2.9981

10% critical
value −1.6088 −2.6388 −1.6088 −2.6388 −1.6088 −2.6388 −1.6088 −2.6388

Conclusion Nonstationarystable Nonstationary stable Nonstationary stable Nonstationary stable

Note: () indicates lag order.

3.2. Johansen Cointegration Test

The cointegration test showed that the lnPCO2 (1), lnP-AGDP (1), (lnP-AGDP)2 (1), and
(lnP-AGDP)3 (1) rejected the hypothesis, indicating no cointegration relationship between the variables
at 5% significance level. As shown in Table 5, there was at least one cointegration vector between the
lnPCO2, lnP-AGDP, (lnP-AGDP)2, (lnP-AGDP)3 sequences with a long-term equilibrium relationship,
and there was no pseudo-regression problem.

Table 5. Cointegration test results of variables.

Original Hypothesis With 0 Cointegration Vectors With at Least 1 Cointegration Vector

characteristic value 0.5270 0.3531
Trace statistics 27.2373 10.0166

5% critical value 20.2618 9.1645
p-value 0.0046 0.0344
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3.3. Granger Causality Test

As shown in Table 6, for the level 3 delay, the original hypothesis, “lnP-AGDP is not Granger
cause of lnPCO2”, can be rejected at the 10% confidence level. For level 1 delay, the initial hypothesis,
“lnPCO2 is not Granger cause of lnP-AGDP”, can be dismissed at the 5% confidence level. The results
suggest a two-way Granger causality between lnPCO2 and lnP-AGDP, which indicates that agricultural
economic growth affects the change in agricultural carbon emissions to a certain extent and that the
changes in carbon emissions also impact agricultural economic growth. The existence of causality
ensures that the follow-up regression analysis and EKC verification results are accurate and reliable.

Table 6. Causality test results based on different Lag Length.

Index

LnP-AGDP Is Not lnPCO2 Granger Cause
LnP-AGDP Does Not Granger Cause lnPCO2

lnPCO2 Is Not lnP-AGDP Granger Cause
lnPCO2 Does Not Granger Cause lnP-AGDP

F-Statistic Prob. F-Statistic Prob.

1 2.1531 0.1571 4.9635 0.037
2 1.5017 0.2494 1.0371 0.3747
3 3.2067 0.0535 1.6427 0.2218

Note: P-AGDP is the average GDP.

3.4. EKC Test and Inflection Point Analysis

Through the linear regression of lnPCO2 and lnP-AGDP, the Durbin-Watson (D–W) statistic of
the model was small, indicating the presence of autocorrelation in the regression residual. Therefore,
autocorrelation (AR) (1) and AR (2) were added to the regression equation. The modified D–W statistic
of the sample was 2.0248, eliminating the autocorrelation. Therefore, the third regression model
(model 9) had the best fitting effect, and all variables passed the significance test. Finally, the regression
equation is obtained as follows:

ln PCO2t = 768.2418− 98.8143 ln(P−AGDP)t + 4.2588(lnP−AGDP)2
t − 0.0610(lnP−AGDP)3

t + εt. (4)

According to Table 7, the regression equation satisfied the conditions β1 < 0, β2 > 0, and β3 < 0
indicates an inverted N-shaped relationship between the intensity of agricultural carbon emission and
the intensity of the agricultural economy. However, determining whether there is an inflection point
with an inverted N-shaped EKC requires further calculation. For the EKC curve, the extreme point can
be obtained by the derivative. The derivation of model 9 is as follows:

ln PCO2t = −98.8143 + 8.5176 ln (P−AGDP)t − 0.183 ln(P−AGDP)2
t + εt, (5)

4 = (8.5176)ˆ2−4 × (−0.183) × (−98.8143) = 0.2174 > 0. (6)

Through calculations, we can find the two extreme points in the equation. By letting(lnPCO2t) = 0,
we get [lnP-AGDPt]1 = 21.9981 and [lnP-AGDPt]2 = 24.5462. Due to the coefficient of (lnP-AGDPt)3 =

−0.0610 < 0, the smaller real root (21.9981) is the minimum point, while the larger real root (24.5462) is
the maximum point. We also found that (P-AGDPt)1 = 3578 and (P-AGDPt)2 = 45738, indicating that
the inflection points are 3578 yuan/hm2 and 45,738 yuan/hm2.
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Table 7. Carbon emission model in Northwest China.

Index Linear
(1)

Linear
(2)

Linear
(3)

Quadratic
(4)

Quadratic
(5)

Quadratic
(6)

Cubic
(7)

Cubic
(8)

Cubic
(9)

Ln(P-AGDP) 0.2713 0.2593 1.9916 −0.0956 −1.1367 −1.1124 −67.5346 −95.9554 −98.8143

[LN(P-AGDP)]2 0.0079 0.0273 0.0261 2.9313 4.1360 4.2588

[LN(P-AGDP)]3 −0.0422 −0.0592 −0.0610

C 0.3142 0.59 5.4195 4.5728 18.24 18.3158 522.7035 746.0761 768.2418
AR (1) 0.3052 1.4441 0.9824 1.3944 0.8435 0.9751
AR (2) −0.4551 −0.4138 −0.1665

Model test and summary statistics

R2 0.9553 0.9578 0.9811 0.9559 0.9806 0.983 0.9682 0.9866 0.9869
P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D–W 1.5237 1.9916 2.35 1.3934 1.5332 2.2684 0.8806 1.7036 2.0248

Assume the
shape of EKC
curve when

it exists

Monotonous
rise

Monotonous
rise

Monotonous
rise Type U Type U Type U Inverted

N-type
Inverted
N-type

Inverted
N-type

Note: lnPCO2 and lnP-AGDP are the original data, and P-AGDP is the local average GDP.

4. Discussion

4.1. Economic Implications of the Inflection Point Analysis

When the agricultural output per unit sown area is less than 3578 yuan/hm2, the agricultural
carbon emission intensity and the agricultural economic intensity show a reverse relationship, such that
the agricultural economy would keep on growing, and the agricultural carbon emission intensity would
show a downward trend. In this stage, the increase in agricultural output may be more dependent on
labor because the agricultural material input has not increased dramatically. Furthermore, the progress
in agricultural technology has improved the utilization efficiency of agricultural materials to a certain
extent, thus reducing the intensity of agricultural carbon emission per unit sowing area.

When the agricultural economic intensity is between 3578 yuan/hm2 and 45,738 yuan/hm2, the
agricultural carbon emission and the agricultural economic development have a synchronous ascending
trend. The rise in the total agricultural output value per unit planting area would mean an increase
in the agricultural carbon emission intensity. With the gradual weakening of labor’s contribution
to agricultural output, in this stage, the development of the agricultural economy depends more on
agricultural material inputs, such as chemical fertilizer, pesticide, agricultural film, and agricultural
machinery. While realizing rapid improvements in agricultural economic strength, carbon emissions
from farms also rise at similar rates.

When the intensity of the agricultural economy exceeds 45,738 yuan/hm2, the carbon emission
intensity gradually decreases with the growth of the agricultural economy. At this stage, people
begin to realize that even if high inputs in the agricultural development model can result in rapid
economic growth, the damage to the ecological environment, particularly on soil resources, could
not be overlooked. Therefore, advanced production technologies and concepts become widely used
in agricultural production, such as cultivating enhanced varieties, improving the utilization rate of
agricultural materials, developing facility agriculture and circular agriculture, and accelerating the
pace of agricultural modernization. In doing so, the agricultural economy maintains a sustained
growth trend while the intensity of agricultural carbon emission gradually decreases.

4.2. Spatio-Temporal Differentiation of Inflection Point

In 2017, the intensity of the agricultural economy was 50,670 yuan/hm2, which exceeded the critical
value (45,738 yuan/hm2). This means that with further development of the agricultural economy, the
intensity of agricultural carbon emission will show a downward trend. In terms of spatial distribution,
we compared the agricultural economic intensity per unit sown area for 2017 with the critical value
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of 45,738 yuan. We found that the agricultural economic intensity in Shaanxi (74,406 yuan) and
Xinjiang (52,224 yuan) exceeded the inflection point value, which suggests that the agricultural carbon
emission level in these areas will gradually reduce with the development of the agricultural economy.
Gansu, Ningxia, and Qinghai were found to have lower values than the inflection point of agricultural
carbon emissions.

For the time path difference, we estimated the time point by determining the average annual
growth rate of the actual agricultural economic strength [52]. We calculated the annual growth rate of
the agricultural economic intensity for each province from 1993 to 2017. For each province, the annual
growth rate of the estimated time point was taken, which was then used to calculate and determine the
number of years required to reach the inflection point value. The three provinces (i.e., Ningxia, Gansu,
and Qinghai) that have not reached the inflection points were further examined, and the summary
of results is shown in Table 8. For the three provinces, the number of years needed for the carbon
emission to reach the inflection point of the EKC curve was relatively similar, mainly because these
provinces comprise the national economic crop planting areas. For Ningxia, a year delay in reaching
the inflection point compared with Gansu and Qinghai could be the result of its planting industry
being behind the other provinces. Moreover, constraints in climate and environmental conditions
could have contributed to the lower output level in Ningxia.

Table 8. Summary of values for Ningxia, Gansu, and Qinghai detailing the time required to reach the
inflection point.

Index Ningxia Gansu Qinghai

Current value (2017) 35,347.81 38,552.59 38,665.79
Current annual growth rate (%) 11.66 11.67 11.61
Years to reach inflection point 1.16 0.94 0.94
Specific year of reaching the

inflection point 2020 2019 2019

5. Conclusions

Previous studies have focused mainly on agricultural carbon emissions for whole countries or
regions with highly developed agricultural sectors [53,54]. Research on agricultural carbon emissions
and agricultural output in arid and ecologically fragile areas such as Northwest China has remained
limited. In addition, the per capita indicators that have commonly been used to measure economic
growth and environmental quality, result in either overestimation or underestimation. Since the exact
number of people cannot be accurately determined, it would be difficult to classify and define the
labor force in crop production, forestry, animal husbandry, and aquaculture. A limited number of
studies have also used the EKC curve test results of agricultural carbon emissions and examined the
time inflection points. In this study, we made improvements in the current literature, which can be
summarized as follows:

1. As an important base in animal husbandry, crop production, and prairie in China, the
implementation of the “western development” strategy has accelerated the development of
the agricultural economy in Northwest China. This has resulted in increased carbon emissions
that threaten the region’s ecological balance. Due to its arid and semi-arid climate, once the
ecosystem in Northwest China is destroyed, it will be irreversible. Therefore, it is critical to the
local economy and the environment to examine how to ensure that economic growth will not
contribute to increased carbon emissions;

2. The research focused on emission intensity from using agricultural materials and soil carbon
emissions. Livestock breeding was not incorporated as part of the study and focused solely on
the planting industry. The planting area of crops was used as the starting point, and the carbon
emission and agricultural economic intensities were used to express the agricultural carbon
emission level and agricultural economic development level;
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3. There was an inverse N-shaped EKC relationship between agricultural carbon emission intensity
and agricultural economic intensity, with critical values at 3578 yuan/hm2 and 45,738 yuan/hm2.
Its economic meaning is that when the agricultural output per unit sown area reaches 3578
yuan/hm2, the intensity of agricultural carbon emissions starts to rise from the decline; when the
agricultural economic intensity exceeds 45,738 yuan/hm2, the intensity of agricultural carbon
emissions will gradually decrease; when the agricultural economic intensity is between the critical
value of the double turning point, the two are in a synchronous rising trend;

4. The agricultural economic intensity for 2017 is 50,670 yuan/hm2, exceeding the critical value of
the high inflection point (45,738 yuan/hm2). This suggests further economic growth will result
in a downward trend in carbon emission intensity. The agricultural economic intensities of
Shaanxi and Xinjiang exceed the inflection point value, which are the main production areas for
crop production. Compared with Gansu, Ningxia, and Qinghai, they have a large agricultural
population and have a more developed agricultural economy and technology;

5. Three provinces (Ningxia, Gansu, and Qinghai) that have not reached the inflection point were
further analyzed. The inflection point of agricultural carbon emissions showed clear correlation.
For these three provinces, the years needed to reach the inflection point were similar with similar
climate, natural conditions, and overall environmental factors. The primary difference could be
found in the smaller rural population in Ningxia, resulting in lower output levels from a smaller
planting industry. This could have affected the lag in agricultural economic growth, which could
explain the slight time delay to reach the turning point, compared to Gansu and Qinghai.

Northwest China, as an economically backward and environmentally fragile region, is dominated
by an agricultural economy. This study found that the average value of agricultural carbon emission
intensity in the five northwestern provinces is 769.79 kg/hm2, and the order of agricultural carbon
emission intensity is Xinjiang > Shaanxi > Ningxia > Gansu > Qinghai. In order to bring down
emission levels, the government and the local population, particularly the farmers, ought to focus
on advocating sustainable development of low-carbon agriculture. In agricultural production, we
can promote scientific and technological progress and institutional innovation in combination with
government policies, such as strengthening the application of remote sensing technology in the field of
agriculture, improving the input structure of agricultural production factors in terms of soil, water
resources, prevention and control of agricultural diseases and insect pests, reducing agricultural
(planting) pollution, and improving agricultural economic benefits [55–59]. Areas with inverted
N-shaped EKC should prepare and formulate necessary steps to avoid joint growth of its agricultural
economy and its carbon emissions.
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