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Abstract: Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant
anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of
Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has
been reported, the remaining GAOs corresponding to various STLs’ biosynthesis pathways remain
unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of
X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X.
sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned,
and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs,
sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They
were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction
(qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal
cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in
Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography–
mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) methods. The
results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A
(GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion
of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a
useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.

Keywords: Xanthium sibiricum; sesquiterpene lactones; biosynthesis; functional analysis; germa-
crene A

1. Introduction

Sesquiterpene lactones (STLs) are widely distributed in nature and have a broad
range of beneficial biological activities, including anti-bacterial, anti-inflammatory, and
anti-cancer effects [1–5]. Two specific STLs, xanthatin and xanthinosin, are produced in
the burs and leaves of Xanthium L. plants [6–8]. Many studies have been conducted on
the quality and pharmacological activities of X. sibiricum. However, the details of the
biological pathways associated with the anti-cancer effects of STLs in Xanthium species
remain unclear.

Based on the carbon skeleton, STLs can be classified into multiple types, including
germacrene, guaiane, xanthane, pseudoguaiane, eudesmane, and elemane lactones [9]. The
molecular mechanisms of STLs differ among types. For example, eudesmane-type STLs
synthesize the core carbon skeleton 10-epi-junenol before lactone ring synthesis [10], while
guaiane-type STLs are produced from germacrene-type STLs and are induced by proto-
nation [11]. The STL synthesis pathway is usually divided into three main processes: The
first process is the synthesis of intermediates, including isopentenyl pyrophosphate (IPP)
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and dimethylallyl pyrophosphate (DMAPP). The second step involves the formation of
the sesquiterpene skeleton, which is preceded by the formation of farnesyl pyrophosphate
(FPP) from IPP and DMAPP. Sesquiterpene synthase (STP) then catalyzes FPP to produce
the sesquiterpene skeleton. The final step is the formation of the STL end-product, which
involves a variety of structural modifications to the carbon skeleton. In particular, STP
is critical for the structural transformation of FPP to STL, which subsequently catalyzes
the formation of multiple types of sesquiterpenes through a series of chemical processes
such as intermediate cyclization of carbenium ion, deprotonation, and hydrogen trans-
fer [12–17]. Importantly, some STPs, the cytochrome P450 enzymes, play a modulatory role
in SLT biosynthesis, participating in the addition of functional groups to the sesquiterpene
backbone [18]. For example, the cytochrome P450 GAO, isolated from an Asteraceae plant,
catalyzes the three-step sequential oxidation of germacrene A to GAA [19]. In addition,
in common chicory (Cichorium intybus L.), the most critical modification enzyme in the
biosynthetic pathway of the 6α-type STL-myrcene lactone C12 is the cytochrome P450
enzyme [20]. It was also shown that the cytochrome P450 enzymes parthenolide synthase
(PTS) and kauniolide synthase (KLS), cloned from the aster Chrysanthemum paludosum,
catalyzed the oxidation reaction of the C4–5 double-bonds of costunolide, which in turn,
generated parthenolide [11,21]. Since germacrene-derived STLs are the simplest, a number
of studies have investigated these STLs using synthetic biology and related techniques.
Three STP genes were cloned from X. strumarium: XSTPSS1 catalyzed the production
of germacrene D, XSTPSS2 catalyzed the formation of Guaia-4,6-diene, and XSTPSS3
catalyzed the production of germacrene A (Figure 1) [22]. However, it is not clear how
different biologically active STLs are produced in Xanthium species after sesquiterpene
skeleton formation.
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Figure 1. Overview of STL synthesis in X. stramonium. Solid lines are actual biosynthetic steps, and
the dashed line indicates the hypothesized synthetic step.

Studies have shown that GAA is an important precursor substance in the biosynthesis
pathway of germacrene-derived STLs [19]. Based on the findings outlined above, we
hypothesized that, in X. sibiricum, GAO would catalyze the production of GAA from
germacrene A to produce GAA in two consecutive steps (Figure 2).
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Figure 2. Hypothesized STL biosynthetic pathway in X. sibiricum.

To test this hypothesis, we identified the genes homologous to GAO by searching
known GAO gene sequences in the National Center for Biotechnology Information (NCBI)
database against a transcriptome library of X. sibiricum established therein and cloned the
GAO gene using complementary DNA (cDNA). Subsequently, bioinformatic analyses of
the predicted amino acid and protein structures, gene expression patterns, and subcellular
localization were carried out. The enzyme reaction products were detected by GC-MS and
LC-MS methods, where GAO genes were cloned into the expression vector for eukaryotic
expression in S. cerevisiae. The results clarify the downstream STL synthesis pathway in X.
sibiricum in future work.

2. Results
2.1. Establishment of a Transcriptome Library and Gene Annotation of X. sibiricum

The de novo transcriptome library of X. sibiricum included 5,989,562,311 nucleotides
(nt), and the transcriptome Q20, N, and GC percentages were 97.57%, 0.01%, and 45.36%,
respectively. After low-quality reads and filtering out those containing duplicates or
junctions, 49,957,916 valid clean reads remained. The clean reads were assembled de novo
using Trinity assembly software [23], and a total of 68,199 unigenes were obtained, with an
average length of 639 nt and an N50 of 954 nt.

Protein function annotation information for all unigenes was obtained using BLAST [24].
Of the 68,199 unigenes, 19,129, 13,845, 24,721, 37,205, and 14,001 unigenes were successfully
annotated with the Pfam, Kyoto Encyclopedia of Genes and Genome (KEGG), SwissProt,
non-redundant protein sequence database (NR), and string libraries, respectively. A total
of 13,619 unigenes from the transcriptome were successfully annotated to the Cluster
of Orthologous Groups of proteins (COG) database, corresponding to the 25 functional
categories. A total of 990 unigenes mainly focused on function prediction, with the highest
percentage focusing on STLs, and a further 250 unigenes were annotated to secondary
metabolite biosynthesis, transport, and catabolism (Appendix A, Figure A1).

A total of 13,845 unigenes were annotated to 128 metabolic pathways in the KEGG
database, and 342 were annotated to “metabolism of terpenoids and polyketides” (Ap-
pendix A, Figure A2). Among these 342 unigenes, 89 were related to “terpenoid backbone
biosynthesis”, and 22 were involved in “sesquiterpenoid and triterpenoid biosynthesis.”

In plants, the biosynthesis of STLs primarily occurs through the mevalonate (MVA)
or methyl-D-erythritol phosphate (MEP) pathways, which synthesize DMAPP and IPP
precursors [14]. KEGG pathway analysis showed that a total of 31 transcripts in X. sibir-
icum encoded six enzymes of the MVA pathway (acetyl-CoA C-acetyltransferase [ACCT,
E.C.No:2.3.1.9], 3-hydroxy-3-methylglutaryl coenzyme A synthetase [HMGS, E.C.No:2.3.1.10],
3-hydroxy-3-methylglutaryl coenzyme A reductase [HMGR, E.C.No:1.1.3.34], mitogen-
activated protein kinase/extracellular signal-regulated kinase [MEK, E.C.No:2.7.1.36],
phosphomevalonate kinase [PMK, E.C.No:2.7.4.2], and pyrophospomevalonate decar-
boxylase [MVD, E.C.No:4.1.1.33]), and 21 transcripts encoded seven enzymes in the MEP
pathway (1-deoxy-D-xylulose-5-phosphate synthase [DXS, E.C.No:2.2.1.7], 1-deoxy-D-
xylulose 5-phosphate reductoisomerase [DXR, E.C.No:1.1.1.26], 2-C-methyl-D-erythritol
4-phosphate cytidyltransferase [MCT, E.C.No:2.7.7.60], 4-diphosphocytidyl-2-C-methyl-D-
erythritol kinase [CMK, E.C.No:2.7.7.148], 2-C-methyl-D-erythritol 2,4-cyclodiphosphate
synthase [MDS, E.C.No:4.6.1.12], 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
[HDS, E.C.No:1.17.7.1], and 4-hydroxy-3-methylbut-2-enyl-diposphate reductase [HDR,
E.C.No:1.17.1.2]).
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2.2. Cloning and Bioinformatics Analysis of XsGAO Genes

Two candidate GAO genes were designed using these sequences as templates (Ap-
pendix A, Table A1). The full lengths of XsGAO1 and XsGAO2 were 1467 and 1527 bp,
encoding 488 and 508 amino acids, respectively. SMART (Simple Modular Architecture
Research Tool) analysis showed that XsGAO1 and XsGAO2 encoded proteins with molecu-
lar weights of approximately 54.98 and 58.01 kDa, respectively, protein isoelectric points
of approximately 8.72 and 8.40, respectively, and protein a pH value of 5.1. Protein do-
main analysis showed that XsGAO1 harbored a P450 domain comprising 454 amino acids
(amino acid 42-485, Appendix A, Figure A3A,) and XsGAO2 harbored a P450 domain
comprising 462 amino acids (amino acid 40-501, Appendix A, Figure A3B). The secondary
structures of the XsGAO1 and XsGAO2 proteins were predicted using SOMPA online. The
prediction of XsGAO1 indicated that 244 amino acid residues (50%) were involved in the
formation of α-helix, 66 residues (13.52%) were involved in the extended chain, 27 residues
(5.53%) were involved in β-turn, and 151 residues (30.94%) were involved in a random coil
(Appendix A, Figure A4A). Prediction of XsGAO2 indicated that 253 amino acid residues
(49.8%) were involved in the formation of α-helix, 62 residues (12.2%) were involved in the
extended chain, 31 residues (6.1%) were involved in β-turn, and 162 residues (31.89%) were
involved in a random coil (Appendix A, Figure A4B). To better characterize the XsGAO
bioinformation, 3D-structure prediction of the XsGAO1- and XsGAO2-encoded proteins
was performed, and spatial predictions showed high similarity with the P450 enzyme from
Salvia miltiorrhiza (Appendix A, Figure A5).

BLAST analysis showed that XsGAO1 and XsGAO2 were highly similar to 17 GAO pro-
tein homologs from 10 species, which were obtained from the NCBI database (Appendix A,
Table A3). Phylogenetic tree analysis indicated that two XsGAO genes were mainly con-
served in Asteraceae; the amino acid sequence of XsGAO1 shared 94.06% sequence identity
with HaGAO from Helianthus annuus (XP_022000663.1), while XsGAO2 was recovered on a
distinct branch (Figure 3).
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Figure 3. Phylogenetic tree analysis of GAOs is shown. OsJGGAO used as outgroups, which is from
Oryza sativa Japonica Group. Bootstrap value were shown in percentage values from 1000 replicates.

2.3. XsGAO1 and XsGAO2 Expression Patterns in X. sibiricum

Across the three X. sibiricum tissues tested (fruit, leaves, and stems), the expression
patterns of XsGAO1 and XsGAO2 were similar: both genes were more strongly expressed
in the fruits than the leaves or stems (Figure 4A,C).



Molecules 2022, 27, 3322 5 of 17

Molecules 2022, 27, x FOR PEER REVIEW 5 of 18 
 

 

Figure 3. Phylogenetic tree analysis of GAOs is shown. OsJGGAO used as outgroups, which is 

from Oryza sativa Japonica Group. Bootstrap value were shown in percentage values from 1000 

replicates. 

2.3. XsGAO1 and XsGAO2 Expression Patterns in X. sibiricum 

Across the three X. sibiricum tissues tested (fruit, leaves, and stems), the expression 

patterns of XsGAO1 and XsGAO2 were similar: both genes were more strongly ex-

pressed in the fruits than the leaves or stems (Figure 4A,C).  

 

Figure 4. Expression of XsGAO1 and XsGAO2 in different organizations and periods ((A,C) are the 

expressions in different organs; (B,D) are the expressions at different times). 

To localize XsGAO1 and XsGAO2 in the cell, tobacco leaf transformation was per-

formed. Confocal laser scanning microscopy (CLSM) examination of the transformed 

tobacco leaves identified XsGAO1 and XsGAO2 signals in the mitochondria (Figure 5). 

This was consistent with predictions based on their sequence features. 

Figure 4. Expression of XsGAO1 and XsGAO2 in different organizations and periods ((A,C) are the
expressions in different organs; (B,D) are the expressions at different times).

To localize XsGAO1 and XsGAO2 in the cell, tobacco leaf transformation was per-
formed. Confocal laser scanning microscopy (CLSM) examination of the transformed
tobacco leaves identified XsGAO1 and XsGAO2 signals in the mitochondria (Figure 5).
This was consistent with predictions based on their sequence features.
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Figure 5. Subcellular localization of XsGAO1 and XsGAO2 fusion proteins in tobacco leaves. Images
show tobacco leaves transformed with (A–D) the 1300-GFP empty plasmid, (E–H) the 35S: GAO1-
GFP plasmid, and (I–L) the 35S: GAO2-GFP plasmid under various lights. Green signals correspond
to the target gene fused with green fluorescent protein (GFP) after excitation at 488 nm; red signals
correspond to the chloroplasts’ autofluorescence after excitation at 488 nm.



Molecules 2022, 27, 3322 6 of 17

2.4. Functional Study of XsGAO1 and XsGAO2

The full-length XsGAO genes were cloned into the yeast expression vector pYeDP60
and co-transferred into S. cerevisiae WAT11. Compared with the expression of LsGAS
alone or the control yeast bearing the empty vector, germacrene A was obtained through
prokaryotic expression and recombinant protein enzyme activity assays and was used as
the substrate for XsGAO1 and XsGAO2 in the enzymatic activity reaction. Additionally, the
LsGAO gene was cloned from Lactuca sativa, and the microsomal protein expressed in this
gene was used as a positive control. The inactivated microsomes were used as a negative
control to verify whether the microsomal protein expressed in XsGAO1 and XsGAO2
showed catalytic activity through a two-step enzyme activity catalytic assay (Appendix A,
Figures A6–A9).

The gas chromatography–mass spectrometry (GC-MS) chromatogram of enzymatic ac-
tivity experiments on the LsGAS recombinant protein showed two distinct peaks (Figure 6A).
The second peak exhibited fragment ion peaks at m/z 53, 67, 79, 93, 107, 119, 133, 147, 161,
175, 189, and 204 (Figure 6B), which corresponded to the characteristic ions of germacrene
A. However, the first peak exhibited fragment ion peaks at m/z 77, 81, 93, 107, 121, 133, 147,
161, and 189, which corresponded to the characteristic ions of β-elemene (Figure 6C) [10,25].
Therefore, we assumed that peak 1 corresponded to β-elemene and peak 2 corresponded to
germacrene A.
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An analysis of the enzymatic activity of XsGAO1 and XsGAO2 in microsomes iden-
tified peaks in both liquid chromatography–mass spectrometry (LC-MS) chromatograms
with the same retention time as the positive control LsGAO (tR = 12.54 min; Figure 7A).
Further analysis showed that the peaks produced in all three assays (i.e., XsGAO1, XsGAO2,
and LsGAO) had the same m/z in the positive ion mode ([M+H]+ = 235.17; Figure 7B),
suggesting that this peak corresponded to GAA. The results indicated that the XsGAO1
and XsGAO2 proteins both catalyzed the production of GAA from germacrene A in yeast
microsomes.
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3. Discussion

To investigate plant gene expression and analyze its function, transcriptome sequenc-
ing is an important molecular method that can provide genetic information in the absence of
genomic data [26]. The de novo assembly platform greatly contributes to finding new genes,
providing databases of sesquiterpene synthases and cytochrome P450s for cloning in X.
strumarium [27]. X. sibiricum is a traditional plant containing unique secondary metabolites,
of which STLs have various pharmaceutical properties. Although sesquiterpene synthase
(STP) has only been cloned from X. strumarium glandular trichomes [28], transcriptome
databases established from fruits of X. sibiricum provided cDNAs of two GAO genes that
were cloned accurately in this study.

As an enzyme that produces an important precursor substance for the synthesis of
STLs, the GAO gene is conserved in Asteraceae [25,29]. To investigate the function of this
gene, the full-length cDNA sequences of XsGAO1 and XsGAO2 were successfully cloned.
Phylogenetic analysis indicated that XsGAO1 may have a similar function to the GAO
in H. annuus. However, XsGAO2 was distinct from other GAOs, representing a separate
branch that needs further investigation. Multiple comparisons showed that the predicted
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XsGAO1 protein had high homology with other redox-like proteins, and its protein se-
quence contained conserved amino acid residues that are expected in the cytochrome P450
enzyme family [30]. Analysis of the 3D structure predicted that XsGAO1 and XsGAO2 had
functions similar to those corresponding with ferruginol synthase (CYP71 family).

The expression patterns of XsGAO1 and XsGAO2 in X. sibiricum leaves differed over
time, with the highest expression level observed in young leaves, and expression levels
decreasing with maturation. XsGAO1 and XsGAO2 were also differentially expressed
among fruits and stems, presumably related to their functions. The expression of the two
XsGAOs was the highest in fruits, which explains why fruits with higher contents of STLs
are used in the traditional Chinese medicine Cang Er Zi.

XsGAO1 and XsGAO2 cDNAs with the correct sequence were successfully inserted
into an expression vector and used in transient transformation assays of Nicotiana benthami-
ana. However, no fluorescence was observed in the protoplasts. This may be because the
accumulated concentration of the product was below the detection limit of the instrument
or because the GAA generated was intermediately transient in N. benthamiana [31]. Both
XsGAO1 and XsGAO2 were localized in the mitochondria, which was consistent with
terpene synthase in tomatoes (also localized in the mitochondria) [32,33].

GAO isolated from L. sativa was expressed in an engineered yeast to synthesize GAA
de novo, and the classical GAO activity involved three-step oxidation of germacrene A
(GA) to yield GAA and 12,6-guaianolides [25,34], similar to N. benthamiana [35]. Meanwhile,
an XsGAO from X. strumarium catalyzed only one-step conversion of germacrene A to
germacrene alcohol [36], but this study clearly shows that XsGAO1 and XsGAO2 catalyzed
a second step of oxidation of the non-natural substrate germacrene A to germacrene A acid,
which was not observed in yeast with a different GAO. Apparently, XsGAO2 is a unique
enzyme, a functional adaption of SLTs’ biosynthetic pathway diversification. Of course, a
structural analysis of the XsGAO2 biochemical function, such as to identify the active center
and crystal structure of oxidase, would help to examine whether it has unique GAO activity.
In addition, with the advent of CRISPR-Cas genome editing, CRISPR-Cas-mediated gene
knockout in tomatoes and the medicinal plant Salvia miltiorrhiza has been successfully
performed [37,38]. This approach could be applied to verify the function of XsGAO2 in
the future.

Beyond this, X. sibiricum contains a variety of biologically active STLs, mainly xanthane-
STLs with anti-tumor activities [39,40]. As such, studying the genes in the STL synthesis
pathway could provide new ideas for the investigation of xanthane-STL biosynthesis
pathways.

4. Materials and Methods
4.1. Establishment of a Transcriptome Library and Gene Annotation

The fresh samples (fruit, leaf, and stem) of X. sibiricum used for the RNA extraction
were collected from Chaoyang District (N: 40.0031, E: 116.5468, H: 113 m, Beijing, China) in
August, wrapped in tinfoil, and frozen immediately in liquid nitrogen for storage at −80 ◦C.
Species verification was performed by Professor Dongmei Xie at the School of Pharmacy
(Anhui University of Chinese Medicine). The total ribonucleic acid (RNA) was isolated
using a TransZol Up Plus RNA kit (TansGen Biotech, Beijing, China), according to the
manufacturer’s protocol. The RNA extract was reverse-transcribed and then sequenced on
an Illumina HiSeq 3000 platform at Shanghai Majorbio Bio-pharm Technology Corporation.
After high-throughput sequencing, unigenes were assembled de novo from the clean reads
obtained from the raw sequencing reads. To predict the biological function, all unigenes
were annotated via a similarity search against the public databases, which contained
Pfam, NR (http://www.ncbi.nlm.nih.gov/) (accessed on 5 May 2018), SwissProt (http:
//www.uniprot.org/) (accessed on 6 May 2018), KEGG (http://www.genome.jp/kegg/)
(accessed on 8 May 2018), GO (Gene Ontology, http://www.geneontology.org/) (accessed
on 10 May 2018), and BlastX (E value < 1 × 10−5) [24,26].

http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
http://www.uniprot.org/
http://www.genome.jp/kegg/
http://www.geneontology.org/
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4.2. Cloning and Bioinformatics Analysis of XsGAO1 and XsGAO2

GAO gene sequences were searched for in the transcriptome database of X. sibiricum
using local BLAST, with seed sequences downloaded from the NCBI. The full-length cDNA
of two candidate genes, XsGAO1 and XsGAO2, was then cloned using reverse transcription
polymerase chain reaction (RT-PCR) (primers are listed in Appendix A, Table A1).

The nucleotide sequences and their encoded amino acid sequences were analyzed
using bioinformatics software, and the physicochemical properties of the encoding proteins
were predicted using vector NTI, open reading frames (ORF), and amino acid sequence
translation through Expasy Translate (http://web.expasy.org/translate/) (accessed on 1
March 2020). Gene domain analysis was performed using SMART (http://smart.embl-
heidelberg.de/) (accessed on 5 March 2020) [41].

Phylogenetic relationships were constructed using the amino acid sequences of XsGAO1
and XsGAO2 with different reported GAO sequences. Nineteen sequences were aligned us-
ing ClustalX2, and the alignment was used to construct a phylogenetic tree using MEGA5.0
software [42].

Secondary protein structures were obtained using SOMPA online analysis software
(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) (accessed on
20 March 2020), and 3D structures and peptide-sequence fragments of XsGAO proteins
were predicted using the SWISS-MODEL web server (https://swissmodel.expasy.org/
interactive) (accessed on 20 March 2020) and PyMOL software [43].

4.3. Examination of the Expression Patterns of the XsGAO1 and XsGAO2 Genes

To further understand the distribution characteristics of GAO genes in X. sibiricum,
qRT-PCR (primers are listed in Appendix A, Table A2) was employed to determine the
expression patterns of two GAO genes in different organs (leaf, stem, and fruit) at different
stages of X. sibiricum. RNA was extracted according to protocol provided for the TRlzol
reagent (Invitrogen), and this was then converted into cDNA via reverse transcription with
the TransScriptor First-Strand cDNA Synthesis Supermix kit. Subcellular localization of the
protein was observed using CLSM, and the consistency with prediction was determined us-
ing SLP-Local (https://sunflower.kuicr.kyoto-u.ac.jp/~smatsuda/slplocal.html) (accessed
on 25 March 2018) online [27,43].

4.4. Functional Study of XsGAO1 and XsGAO2 Genes in Yeast

The ORFs of XsGAO1 and XsGAO1 were PCR-amplified (primers are listed in Ap-
pendix A, Table A2), and the amplicons were digested with BamHI/EcoRI and cloned into
the respective sites in pYeDP60-XsGAO (pYeDp60 plasmid provided by the Department of
Pharmacology, Second Military Medical University). To supply the substrate for XsGAOs,
the germacrene A synthase gene (LsGAS; AF489965) from L. sativa (provided by the De-
partment of Pharmacognosy, Second Military Medical University) was inserted into the
E. coli expression vector pet28a-LsGAS at EcoRI-SacI sites. Germacrene A was produced
by LsGAS, which was expressed through Transetta (DE3), and then germacrene A was
catalyzed by the XsGAO gene expressed in S. cerevisiae WAT11 (WAT11 provided by the
China Academy of Chinese Medical Sciences). For comparison, we used a classical GAO
from L. sativa (LsGAO; GU198171) that is known to oxidize germacrene A in a three-step
oxidation process. Transgenic yeast cells were cultivated in appropriate dropout media,
and the expression of the transferred genes was induced by 2% galactose [25,34,41].

4.5. GC-MS and LC-MS Analyses

GC-MS analysis was performed [25] using a Shimadzu GC-MS TRACE GC Ultra/DSQ
II instrument (Thermo Fisher Scientific, Waltham, MA, USA). A sample volume of 1 µL was
injected at an inlet temperature of 150 ◦C, and compounds were separated using a DB-5MS
column (30 m × 250 µm × 0.1 µm) with helium as a carrier gas at a flow rate of 2 mL/min.
The GC oven temperature program was as follows: 45 ◦C for 4 min, 45–170 ◦C for 67 min,
and 170 ◦C for 72 min. The electron impact ionization of the mass spectrometric detector

http://web.expasy.org/translate/
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
https://sunflower.kuicr.kyoto-u.ac.jp/~smatsuda/slplocal.html
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was tuned to 70 eV and operated at 40–400 Da in full scan mode. LC-MS/MS analysis
was performed [41] using a UHPLC-Q-TOF-MS system (Agilent Technologies, Santa Clara,
CA, USA) equipped with an XBridgeTM C18 column (2.1 × 100 mm; Waters Corporation,
Milford, MA, USA), with a mobile phase of 0.1% formic acid aqueous solution (A) and
0.1% acetonitrile (B) at a flow rate of 0.4 mL/min, injection volume of 1 µL, and column
temperature of 40 ◦C. Mass spectrometry data were collected by Electrospray ion sources
in the positive mode, and the collection range was 100–1700 m/z.
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Appendix A

The appendix provides data supplemental to the main text.

Table A1. Primers used in GAO gene cloning.

Primer Primer Sequence

XsGAO1F ATGGAAGTCTCCCTCACCACTTC
XsGAO1R TTAAAAACTTGGTACCAATATCAACCC
XsGAO2F ATGGAACTCCATTTTCCCAC
XsGAO2R TCCAAATATCACTATCCTTCG

M13F CAGGAAACAGCTATGAC
M13R GTAAAACGACGGCCAGT

Table A2. Primers used in RT-PCR, qRT-PCR, and expression in yeast.

Primer Primer Sequence

QXsGAO1F CTAATAAGGTGTCCGAGAG
QXsGAO1R GGCAGGTCTTGAATATCT
QXsGAO2F TCTCAACCATAGTAATCTCA
QXsGAO2R CGATGTCTGTGTAATTGTAT

ActinF TACTACAACGGCAGAACGGGAAA
ActinR TCATAGACGGCTGGAACAAAACC

GFP-XsGAO1F acgggggactcttgaccatggATGGAAGTCTCCCTCACCACTTC
GFP-XsGAO1R gcccttgctcaccatactagtAAAACTTGGTACCAATATCAACCCA
GFP-XsGAO2F acgggggactcttgaccatggATGGAACTCCATTTTCCCACC
GFP-XsGAO2R gcccttgctcaccatactagtCATTGTGTTGTAAGGTGTTGGGA

LsGASF ATGGCAGCAGTTGACACTAATG
LsGASR TTACATGGATACAGAACCAAC
LsGAOF ATGGAGCTTTCAATAACCACC
LsGAOR CTAAAAACTCGGTACGAGTAACAAC

pYeDP60-XsGAO1F acacactaaattaccggatccATGGAAGTCTCCCTCACCACTTC
pYeDP60-XsGAO1R gggagatcccccgcggaattcTTAAAAACTTGGTACCAATATCAACCC
pYeDP60-XsGAO2F acacactaaattaccggatccATGGAACTCCATTTTCCCACC
pYeDP60-XsGAO2R gggagatcccccgcggaattcTCACATTGTGTTGTAAGGTGTTGG
pYeDP60-LsGAOF acacactaaattaccggatccATGGAGCTTTCAATAACCACCTCC
pYeDP60-LsGAOR gggagatcccccgcggaattcCTAAAAACTCGGTACGAGTAACAACTC
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Table A3. Reference sequences used for phylogeny construction.

Name Species Gene Bank Accession No.

CcVsGAO1
Cynara cardunculus var.

scolymus

AIA09035.1
CcVsGAO2 XP_024977750.1
CcVsGAO3 AIA09037.1

CcVs-GAOlike XP_024977969.1
TpGAO Tanacetum parthenium AHN62855.1
LsGAO1

Lactuca sativa
XP_023734551.1

LsGAO2 ADF32078.1
LsGAO3 AIX97103.1
BsGAO Barnadesia spinosa ADF43083.1
HaGAO Helianthus annuus ADF43082.1
ScGAO Saussurea costus ADF43081.1
CiGAO Cichorium intybus ADF43080.1
TcGAO Tanacetum cinerariifolium AGO03789.1

CeGAO1
Cichorium endivia

AZI95573.1
CeGAO2 AZI95575.1
CeGAO3 AZI95574.1

OsJGGAO Oryza sativa Japonica Group XP_015624875.1
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