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Abstract

Background: The liver plays a central role in nutrient and xenobiotic metabolism, but its functionality declines with age.
Senior dogs suffer from many of the chronic hepatic diseases as elderly humans, with age-related alterations in liver
function influenced by diet. However, a large-scale molecular analysis of the liver tissue as affected by age and diet has not
been reported in dogs.

Methodology/Principal Findings: Liver tissue samples were collected from six senior (12-year old) and six young adult (1-
year old) female beagles fed an animal protein-based diet (APB) or a plant protein-based diet (PPB) for 12 months. Total RNA
in the liver tissue was extracted and hybridized to Affymetrix GeneChipH Canine Genome Arrays. Using a 2.0-fold cutoff and
false discovery rate ,0.10, our results indicated that expression of 234 genes was altered by age, while 137 genes were
differentially expressed by diet. Based on functional classification, genes affected by age and/or diet were involved in
cellular development, nutrient metabolism, and signal transduction. In general, gene expression suggested that senior dogs
had an increased risk of the progression of liver disease and dysfunction, as observed in aged humans and rodents. In
particular for aged liver, genes related to inflammation, oxidative stress, and glycolysis were up-regulated, whereas genes
related to regeneration, xenobiotic metabolism, and cholesterol trafficking were down-regulated. Diet-associated changes
in gene expression were more common in young adult dogs (33 genes) as compared to senior dogs (3 genes).

Conclusion: Our results provide molecular insight pertaining to the aged canine liver and its predisposition to disease and
abnormalities. Therefore, our data may aid in future research pertaining to age-associated alterations in hepatic function or
identification of potential targets for nutritional management as a means to decrease incidence of age-dependent liver
dysfunction.
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Introduction

The liver is the central organ in the regulation of nutrient

metabolism, xenobiotic metabolism, and detoxification. Evidence

from humans and rodents has indicated that aging leads to a

marked change in the liver structure and function [1]. In general,

aged liver is characterized by a decline in weight, blood flow,

regeneration rate, and detoxification, which have been related to

an increased risk of liver abnormalities in the elderly [1].

Moreover, age-associated changes in liver function are expected

to be affected by diet because dietary nutrient metabolism is

centered in the liver. However, molecular mechanisms underlying

the effects of age and diet on liver physiology and pathogenesis

remain inconclusive.

Recent advances in microarray technology and bioinformatics

allow the analysis of genome-wide gene expression changes,

providing a useful link between complex molecular events and

physiological responses by identifying specific genes and metabolic

pathways involved [2]. Although senior dogs suffer from many of

the chronic diseases present in the elderly [3], molecular analyses

of canine tissues have been rarely performed. To our knowledge,

no data pertaining to a large-scale molecular analysis of the liver

tissue in senior vs. young adult dogs have been reported.

As a starting point, our laboratory performed an experiment

designed to measure physiological response of healthy adult dogs

as a function of age and diet [4]. Young adult or senior dogs were

fed either an animal protein-based diet (APB) containing high

dietary fat and low fiber or a plant protein-based diet (PPB)

containing moderate fat and high fiber. We found that the diet

altered nutrient digestibility, blood chemistry, gastrointestinal

morphology, and microbial fermentation, with the effects being

dependent on age [4,5]. In previous publications, we reported the

effects of age and diet on gene expression alterations in cerebral

cortex [6], adipose tissue [7], and skeletal muscle [8] of the dogs

that were used by Swanson et al. [4]. In the current experiment,

total RNA was isolated from the liver tissue collected from our

PLoS ONE | www.plosone.org 1 October 2010 | Volume 5 | Issue 10 | e13319



previous experiment [4], comparing hepatic gene expression

profiles as a function of age and diet using commercial canine

microarrays. Given the fact that the liver plays a central role in

nutrient metabolism and its functionality declines with age, it was

hypothesized that hepatic gene expression would be largely

dysregulated in senior vs. young adult dogs and this impairment

would be exacerbated by feeding APB diet containing animal-

derived lipids high in saturated fatty acids and cholesterol.

Results

Based on a 2.0-fold change cutoff and FDR ,0.10, a total of

371 gene transcripts were differentially expressed by age (234

genes) and/or diet (137 genes), according to the pre-planned

statistical screening methods (Table 1). The heat map in Figure 1

indicates significant and consistent gene expression changes due to

age, and within age groups dietary treatment had a greater impact

on gene expression changes in young dogs than in senior dogs.

However, when genes altered by diet were clustered, inconsistent

pattern was observed (Figure 2). Following removal of unannotat-

ed genes and duplicate probe sets of the same gene, 89 genes were

identified as being differentially expressed by age (53 genes) and/

or diet (36 genes). Twenty five genes were up-regulated (Tables 2

and 3) and 28 genes were down-regulated (Tables 4 and 5) with

increased age. Nine genes were up-regulated (Table 6) and 27

genes were down-regulated (Tables 7 and 8) in dogs fed the APB

vs. PPB diet.

For validation of microarray data, 5 genes (WFDC2, PFKP,

FADS3, GBGT1, and NCOA2) identified to be differentially

expressed by age in microarray analysis were selected and

validated by quantitative real-time PCR (qRT-PCR) according

to methods described previously [9]. Although the magnitude of

fold change by microarray vs. qRT-PCR was variable, the

direction in gene expression change was identical between the 2

methods (data not shown).

Hepatic lipid composition is presented in Table 9. Senior dogs

had greater (P,0.01) concentrations of total lipids and total

monounsaturated fatty acids and had a tendency for greater

concentrations of total saturated fatty acids (P = 0.09) and total

polyunsaturated fatty acids (P = 0.06) as compared to young adult

dogs. Despite differences in diet composition and diet-associated

blood cholesterol changes as observed in our previous experiment

[4], however, diet did not alter hepatic lipid composition in either

senior or young adult dogs. No significant interaction between age

and diet was observed for hepatic lipid composition.

Discussion

Global alterations in gene expression due to age and diet
Of the 13,778 genes expressed in liver tissue, 1.7% (234/

13,778) of gene transcripts were differentially expressed by age,

while 1.0% (137/13,778) of gene transcripts were altered by diet

in this experiment. This observation that a relatively small

number of genes was altered by age and diet in these dogs is in

agreement with our previous microarray data for cerebral cortex

[6], abdominal adipose [7], and skeletal muscle [8] tissues of the

same dogs. Therefore, it may be implicated that physiological

alteration in the liver due to age and diet, as reported in other

body tissues, is likely achieved by a small number of genes and

their transcriptional alterations [10]. Age*diet interactions

appeared to be present because age-associated gene expression

changes in the liver were more common in dogs fed APB (38

genes) than for dogs fed PPB (21 genes). We speculate that

because APB had a greater concentration of protein and lipid

than PPB, it put more pressure on the liver to metabolize dietary

protein and lipids.

Age-associated alterations in gene expression
The WAP four-disulfide core domain 2 (WFDC2) was greatly

up-regulated in senior dogs consuming APB (107.0 fold) or PPB

(21.97 fold) in this experiment. The up-regulation of WFDC2 gene

has been considered an early biomarker for carcinogenesis,

especially for ovarian and pancreatic cancers [11]. It has also

been reported that WFDC2 is involved in inflammatory responses

and host defense, and its activity is increased in chronically

inflamed lungs with cystic fibrosis [12]. Increased expression of

genes related to inflammation and immune response was also

observed in other tissues from these dogs [6,7,8]. In our previous

experiment [4], senior dogs fed APB had a greater concentration

of blood cholesterol than those fed PPB diet. Increased blood

cholesterol concentration has been related to an increased risk of

liver inflammation and cystic fibrosis [13]. This may explain why

the magnitude of change in WFDC2 gene expression was greater

in senior dogs fed APB as compared to those fed PPB. Although

physiological significance of WFDC2 in the liver has yet to be

identified and dogs used in this experiment were all clinically

healthy, it may be worthy to study this gene as a potential

biomarker for the progression of liver dysfunction.

Several genes associated with cellular metabolism of amino

acids, carbohydrates, lipids, or xenobiotics were affected by age.

The up-regulation (2.67 fold) of the D-amino acid oxidase (DAO)

Table 1. Global view of liver gene expression alterations in senior vs. young adult dogs fed an animal protein-based diet (APB) or
plant protein-based diet (PPB).

Number of gene transcripts altered1 Number of annotated genes altered2

Total genes differentially expressed 371 (2.7%) 89

Age-associated alterations 234 (1.7%) 53

Up-regulated 76 25

Down-regulated 158 28

Diet-associated alterations 137 (1.0%) 36

Up-regulated 65 9

Down-regulated 72 27

1Values in the parenthesis represent the percentage of gene transcripts differentially expressed in relation to the total number of genes expressed in the liver tissue
(13,778 genes).

2Number of annotated and non-redundant genes that had .2.0 fold-change in gene expression.
doi:10.1371/journal.pone.0013319.t001
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gene in senior dogs agrees with previous results of increased DAO

activity in the liver of aged rats [14]. This response has been

hypothesized to be due to an increased need for detoxification of

D-amino acids that may accumulate during aging [14]. The

expression of kynurenine 3-monooxygenase (KMO), a key enzyme

associated with tryptophan catabolism, was down-regulated (2.48

fold) in senior dogs fed PPB. Age-associated decline in KMO

activity was also reported in the rat liver [15]. It is suggested that

decreased nicotinic acid synthesis as a result of disturbed

tryptophan (kynurenine) catabolism with age may be a reason

for age-associated abnormalities (e.g., impaired glucose tolerance)

in the liver and other body organs [15].

Genes associated with the glycolytic pathway were differentially

expressed in this experiment. Expression of phosphofructokinase

(PFKP), which plays a role in the glycolytic flux as the first

committed step of glycolysis [16], was up-regulated (4.27 fold) in

the liver of senior dogs fed PPB. Moreover, 6-phosphfructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which converts

fructose-6-phosphate to fructose-2,6-bisphosphate [16], was also

up-regulated (3.10 fold) in the liver of senior dogs fed PPB.

Fructose-2,6-bisphosphate is a strong allosteric activator of PFKP

to increase the rate of glycolysis, whereas it inhibits gluconeogen-

esis by decreasing activity of fructose-1,6-bisphophatase [16].

Moreover, increased concentrations of intracellular ATP are

known to allosterically inhibit activity of PFKP [16]. We observed

that the aged liver had a down-regulation (4.22 fold) of ATPase

(ATP8A1) gene related to ATP synthesis. Overall, these

observations suggest that hepatic glycolytic activity increases but

gluconeogenic activity decreases in aged dogs and, therefore,

possibly decreased hepatic glucose concentrations. Although it was

Figure 1. Heatmap of senior vs. young adult dog pairwise comparisons. Values are the GCRMA-processed probe set value (Log2 scale)
minus the mean value for that probe set across all arrays. The dendrogram was created by hierarchical cluster analysis.
doi:10.1371/journal.pone.0013319.g001
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not measured in this experiment, a reduction in hepatic glucose

concentrations has been observed in aged mice [17]. Given the

fact that liver is an important regulator of blood glucose

concentrations, therefore, our observation in senior dogs suggests

that aged liver may have a decreased capacity to maintain blood

glucose homeostasis.

The down-regulation (2.26 fold) of glycogen synthase kinase-3

beta gene (GSK3B), which is known to inactivate glycogen

synthase [18], in senior dogs fed APB may reflect increased rate of

glycogenesis in the aged liver. To our knowledge, however,

increased glycogen synthesis or storage in the liver of aged

individuals has not been reported, while a decrease in age-related

hepatic glycogen storage was observed in aged mice [17]. Apart

from its role in glycogen metabolism, it has been reported that

hepatic expression of GSK3B declines with age in mice and this

reduction is responsible for decreased regenerative ability of aged

liver [19]. Therefore, decreased expression of GSK3B observed in

this experiment may be more associated with a reduction in

regenerative capacity of the liver rather than an increase in hepatic

glycogen synthesis in senior dogs.

Senior dogs had greater amounts of hepatic total lipids,

saturated fatty acids, and unsaturated fatty acids as compared to

young adult dogs. This result was expected because increased

hepatic lipid accumulation with age in humans and animals is a

well known phenomenon [20,21]. This response has been

frequently associated with an increased risk of age-dependent

liver diseases [22]. However, only a small number of genes

(FADS3, RDH16, GBGT1, NPC1) involved in hepatic lipid

metabolism were differentially expressed by age in this

experiment.

Figure 2. Heatmap of animal-protein based diet (APB) vs. plant-protein based diet (PPB) pairwise comparisons. Values are the
GCRMA-processed probe set value (Log2 scale) minus the mean value for that probe set across all arrays. The dendrogram was created by hierarchical
cluster analysis.
doi:10.1371/journal.pone.0013319.g002
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Increased expression (4.91 fold) of fatty acid desaturase 3

(FADS3) in the aged liver may indicate the possibility of increased

activity of de novo lipogenesis, although the liver is not the major

de novo lipogenic organ in dogs [23]. It can be assumed that

increased hepatic glycolytic activity observed in this experiment

may accelerate the synthesis of citrate, the precursor for fatty acids

and cholesterol biosynthesis [24,25]. As a result, the activity of

FADS3, which converts saturated fatty acids as the major end-

Table 2. Up-regulated cell growth and development-, cellular metabolism-, and cell signaling and signal transduction-associated
genes in hepatic tissue of senior vs. young adult dogs fed an animal protein-based (APB) or plant protein-based (PPB) diet.

Fold Change

Functional classification Gene name Symbol APB PPB

Cell growth and development

Tumor marker WAP four-disulfide core domain 2 WFDC2 107.0 21.97

Cell adhesion CD99 molecule CD99 3.17

p53 in cell cycle arrest G-2 and S-phase expressed 1 GTSE1 2.24

Cellular metabolism

Amino acid metabolism D-amino-acid oxidase DAO 2.67

Carbohydrate metabolism Phosphofructokinase PFKP 4.27

Carbohydrate metabolism 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase3

PFKFB3 3.10

Lipid metabolism Fatty acid desaturase 3 FADS3 4.91

Lipid metabolism Retinol dehydrogenase 16 RDH16 2.38

Glycolipid synthetic process Forssman glycolipid synthetase (FS) GBGT1 3.59 4.49

Glyoxylate and dicarboxylate metabolism Hydroxyacid oxidase 2 HAO2 2.12

Xenobiotic metabolism (detoxification) Glutathione S-transferase, pi 1 GSTP1 4.41 12.60

Xenobiotic metabolism Carboxylesterase 2 CES2 3.87

Cell signaling and signal transduction

RAS signaling pathway RAS guanyl releasing protein 1 RASGRP1 2.63

doi:10.1371/journal.pone.0013319.t002

Table 3. Up-regulated cellular trafficking and protein processing-, immune and stress response-, and transcription-translation-
associated genes in hepatic tissue of senior vs. young adult dogs fed an animal protein-based (APB) or plant protein-based (PPB)
diet.

Fold Change

Functional classification Gene name Symbol APB PPB

Cellular trafficking and protein processing

Transmembrane transport Peroxisomal membrane protein 69 ABCD4 3.13

Synaptic transmission Synaptophysin-like 1 SYPL1 2.11

Protein ubiquitination Ubiquitin-like 1 activating enzyme E1A SAE1 2.27

Immune and stress response

Immune response Galectin-2 LGALS2 2.07

Immune response Ig heavy chain V-III region VH26 precursor LOC607467 9.66

Transcription-translation

Transcription Ribosomal protein L6 RPL6 3.53

Telomere maintenance Telomeric repeat binding factor 2 interacting protein 1 TERF2IP 2.73

Miscellaneous and unknown

Muscle growth Musculoskeletal, embryonic nuclear protein 1 MUSTN1 64.66

Calcium channel activity Glycoprotein M6A GPM6A 8.73 8.32

Fibrinolysis Annexin A2 ANXA2 7.82

Unknown FUN14 domain containing 2 FUNDC2 2.45

Unknown Transmembrane 6 superfamily member 1 TM6SF1 3.82

doi:10.1371/journal.pone.0013319.t003
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Table 4. Down-regulated cell growth and development-, cellular metabolism-, and cell signaling and signal transduction-
associated genes in hepatic tissue of senior vs. young adult dogs fed an animal protein-based (APB) or plant protein-based (PPB)
diet.

Fold Change

Functional classification Gene name Symbol APB PPB

Cell growth and development

Cell adhesion Coxsackie virus and adenovirus receptor CXADR 22.69

Cytoskeleton organization Erythrocyte surface protein band 4.1 EPB41 22.25

Cell cycle DIP13 beta APPL2 22.40

Cellular metabolism

ATP synthesis ATPase II ATP8A1 24.22

Glycogen metabolism Glycogen synthase kinase-3 beta (GSK-3 beta) GSK3B 22.26

AA metabolism Asparagine synthetase domain containing 1 ASNSD1 22.00

Tryptophan metabolism (catabolism) Kynurenine 3-monooxygenase KMO 22.48

Cholesterol homeostasis Niemann-Pick disease, type C1 NPC1 22.05

Xenobiotic metabolism UDP glucuronosyltransferase 2 family, polypeptide B15 UGT2B15 23.30

Aldehyde metabolism Aldehyde dehydrogenase 1 family, member A1 ALDH1A1 22.29

Cell signaling and signal transduction

TGF-b signaling pathway Follistatin FST 25.39 23.73

TGF-b signaling pathway Thrombospondin 1 precursor THBS1 24.28

Androgen receptor signaling pathway Nuclear receptor coactivator 2 NCOA2 24.08 23.00

Phosphatidylinositol signaling pathway Inositol polyphosphate 1-phosphatase (IPPase) (IPP) INPP1 23.05

Leukemia inhibitory factor signaling pathway Leukemia inhibitory factor receptor alpha LIFR 22.39

doi:10.1371/journal.pone.0013319.t004

Table 5. Down-regulated cellular trafficking and protein processing-, immune and stress response-, and transcription-translation-
associated genes in hepatic tissue of senior vs. young adult dogs fed an animal protein-based (APB) or plant protein-based (PPB)
diet.

Fold Change

Functional classification Gene name Symbol APB PPB

Cellular trafficking and protein processing

Endoplasmic reticulum organization Atlastin GTPase ATL2 22.92

Transport Golgi phosphoprotein 4 GOLIM4 23.63

Protein transport Solute carrier family 15 (H+/peptide transporter) SLC15A2 23.22

Protein transport Regulating synaptic membrane exocytosis protein 2 RIMS2 23.03

Proteolysis Nardilysin precursor (N-arginine dibasic convertase) NRD1 22.13

Ion transport Six transmembrane epithelial antigen of the prostate 2 STEAP2 22.67

Immune and stress response

Immune response Galectin 8 LGALS8 24.56

Immune response IgA heavy chain constant region IGHAC 24.24

Transcription-translation

Transcription CG32045-PB, isoform B FRY 25.06

Translation Eukaryotic translation initiation factor 4E type 3 LOC611215 23.01

Histone acetylation Enhancer of polycomb homolog 1 isoform 2 EPC1 22.45

Miscellaneous and unknown

Unknown Spermatogenesis associated, serine-rich 2 SPATS2 22.13

Unknown CG7020-PA DIP2B 22.19

doi:10.1371/journal.pone.0013319.t005
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products of de novo lipogenesis to monounsaturated fatty acids

(e.g., oleic acids) as a main storage form in triglycerides [26], is

expected to be increased. This may also explain why senior dogs

had greater concentrations of hepatic lipids and monounsaturated

fatty acids than young adult dogs.

The down-regulation (2.05 fold) of Niemann-Pick disease type

C1 (NPC1), as observed in senior dogs consuming APB, may also

contribute to increased hepatic lipid concentrations in the aged

dogs. The NPC1 gene plays a role in the regulation of intracellular

cholesterol trafficking and homeostasis, with its defect leading to

Table 6. Up-regulated genes in hepatic tissue of senior and young adult dogs fed an animal protein-based (APB) vs. plant protein-
based (PPB) diet.

Fold Change

Functional classification Gene name Symbol Senior Young

Cell growth and development

Cytoskeleton organization PDZ and LIM domain 3 PDLIM3 3.08

Cytoskeleton organization Erythrocyte surface protein band 4.1 EPB41 2.07

Cellular metabolism

Tetrahydrofolate metabolism Pipecolic acid oxidase PIPOX 2.10

Aldehyde metabolism Aldehyde dehydrogenase 1 family, member A1 ALDH1A1 2.18

Cell signaling and signal transduction

G-protein mediated signal pathway Regulator of G-protein signaling 10 (RGS10) RGS10 2.39

Leukemia inhibitory factor signaling pathway Leukemia inhibitory factor receptor alpha LIFR 2.06

Cellular trafficking and protein processing

Protein transport Golgi phosphoprotein 4 GOLIM4 3.47

Protein transport Regulating synaptic membrane exocytosis protein 2 RIMS2 2.52

Miscellaneous and unknown

Unknown CG7020-PA DIP2B 2.15

doi:10.1371/journal.pone.0013319.t006

Table 7. Down-regulated cell growth and development-, cellular metabolism-, and immune and stress response-associated genes
in hepatic tissue of senior and young adult dogs fed an animal protein-based (APB) vs. plant protein-based (PPB) diet.

Fold Change

Functional classification Gene name Symbol Senior Young

Cell growth and development

Tumor suppressor Major facilitator superfamily domain containing 2A MFSD2A 22.53

Autophagy Autophagy protein 12-like (APG12-like) (ATG12) ATG12 24.73

Cell cycle Cell cycle associated protein 1 CAPRIN1 24.17

Cell cycle Retinoblastoma binding protein 4 RBBP4 23.74

Cell death TAR DNA binding protein isoform 4 TARDBP 22.22

Cellular metabolism

ATP synthesis ATP synthase gamma chain, mitochondrial ATP5C1 24.73

AA metabolism Branched-chain alpha-keto acid dehydrogenase E1
component beta chain

BCKDHB 23.72

CHO metabolism Pyruvate dehydrogenase protein X component,
mitochondrial precursor

PDHX 22.38

Lipid metabolism N-acylsphingosine amidohydrolase (acid ceramidase) 1 ASAH1 210.63

Glucocorticoid metabolism Hydroxysteroid (11-beta) dehydrogenase 1 HSD11B1 24.69

O-linked glycosylation GalNAc transferase 13 GalNAc-T13 22.05

Xenobiotic metabolism UDP-glucuronosyltransferase 2A1 precursor, microsomal UGT2A1 24.15

Immune and stress response

Immune response Ectonucleotide pyrophosphatase/phosphodiesterase 2 ENPP2 22.82

Oxidative stress Superoxide dismutase [Mn], mitochondrial precursor SOD2 22.22

Oxidative stress Catalase CAT 22.22

doi:10.1371/journal.pone.0013319.t007
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an abnormal accumulation of cholesterol and other lipids in

hepatic cells [27]. Although hepatic cholesterol concentrations

were not measured in this experiment, increased blood cholesterol

concentrations were observed in senior dogs [4]. Therefore, age-

associated change in NPC1 expression and its effects on hepatic

cholesterol concentrations may be a useful measure in future aging

studies. Interestingly, Forssman glycolipid synthetase (GBGT1)

gene related to Forssman glycolipid biosynthesis was up-regulated

in senior dogs consuming APB (3.59 fold) or PPB (4.49 fold). It has

been reported that increased expression of GBGT1 reduces the

susceptibility to microbial toxins (e.g., Shiga toxins) because

Forssman glycolipids, which do not bind microbial toxins, are

thought to inhibit the binding of toxin by replacing toxin-binding

glycolipid [28]. It is not clear why aged canine liver had increased

expression of GBGT1 gene, but deserves attention in future

experiments.

In mammals, the liver is the central organ for xenobiotic

metabolism. It is well-known that the ability to detoxify

xenobiotics in the liver declines with age [1,29,30]. This lowered

capacity of hepatic xenobiotic clearance is often associated with

abnormal drug reactions and further increased risk of liver disease

and cancer in the elderly [31]. The UDP glucuronosyltransferase

2B15 (UGT2B15) gene was down-regulated (3.30 fold) in the liver

of senior dogs fed PPB. This gene encodes glucuronosyltransferase

that catalyzes glucuronidation in phase II reactions of xenobiotic

metabolism and, therefore, its mutation increases abnormal drug

metabolism and tumorigenesis [32]. Therefore, decreased expres-

sion of UGT2B15 in senior dogs may contribute to the decreased

efficacy of hepatic xenobiotic metabolism with age. Glutathione-S-

transferase pi 1 (GSTP1), which encodes glutathione-S-transferase

(GST), was up-regulated in senior dogs fed APB (4.41 fold) or PPB

(12.60 fold). The GST gene plays an important role in the

clearance of cellular xenobiotics, carcinogens, [33] and defense

against oxidative stress [34]. It is likely that increased expression of

GSTP1 gene in the liver of aged dogs may reflect a physiological

adaptation to an increase in xenobiotic loads and oxidative stress

with age. To our knowledge, however, no experiments have

reported an age-associated increase in hepatic GSTP1 expression,

although it is reported that GSTP1 expression and GST activity in

normal colonic mucosa increased with age in female adults [35].

Further research is required to explore age-related GSTP1

regulation on hepatic xenobiotic metabolism and oxidative stress.

There were numerous age-associated alterations in genes related

to signaling transduction, such as RAS (RASGRP1), TGF-b (FST,

THBS1), androgen receptor (NCOA2), and phosphatidylinositol

(INPP1) pathways. Therefore, modification of intracellular signaling

pathways may be an integral part of the aging process in the liver.

The signaling pathways mentioned above are associated with

inflammation and immune response in the liver. RASGRP1 is

involved in the development and activation of several immune cell

types [36,37]. Up-regulated RASGRP1 expression (2.63 fold), as

Table 8. Down-regulated cell signaling and signal transduction-, cellular trafficking and protein processing-, and transcription-
translation-associated genes in hepatic tissue of young adult dogs fed an animal protein-based (APB) vs. plant protein-based (PPB)
diet.

Functional classification Gene name Symbol Fold Change

Cell signaling and signal transduction

Neurotropin signaling pathway Mitochondrial import stimulation factor L subunit YWHAE 216.21

Hepatocyte growth factor receptor signaling pathway Met proto-oncogene (hepatocyte growth
factor receptor)

MET 23.33

Wnt signaling pathway Ras-like protein TC25 RAC1 23.65

Wnt signaling pathway Calcineurin A2 PPP3CB 22.42

Wnt signaling pathway HMG-box transcription factor 1 HBP1 22.16

Cellular trafficking and protein processing

Transport Synaptophysin-like 1 isoform b SYPL1 22.26

Protein secretion Protein disulfide-isomerase A4 PDIA4 25.35

Protein transport Ras-related protein Rab-18 RAB18 24.37

Protein binding Multiple PDZ domain protein MPDZ 23.10

Protein binding TIP41, TOR signaling pathway regulator-like TIPRL 22.55

Transcription-translation

Transcription Mediator complex subunit 28 MED28 24.72

Telomere maintenance Telomeric repeat binding factor 2 interacting
protein 1

TERF2IP 23.26

doi:10.1371/journal.pone.0013319.t008

Table 9. Hepatic lipid composition in senior vs. young adult
dogs fed an animal protein-based (APB) or plant protein-
based (PPB) diet1.

Senior dogs Young dogs P – value2

Lipid
compositions APB PPB APB PPB SEM Age Diet

Total lipids 178.2 157.8 120.6 114.7 10.80 ,0.01 0.26

Total SAT 100.5 94.9 85.3 81.2 7.38 0.09 0.53

Total MUFA 64.7 52.7 31.5 29.0 5.76 ,0.01 0.24

Total PUFA 13.0 10.1 3.8 4.5 3.40 0.06 0.76

1Values for lipid concentrations are presented as mg/g DM of tissue (n = 3 per
treatment).

2No age6diet interactions were significant (P.0.05).
doi:10.1371/journal.pone.0013319.t009

Canine Hepatic Gene Expression

PLoS ONE | www.plosone.org 8 October 2010 | Volume 5 | Issue 10 | e13319



observed in senior dogs consuming PPB, may be related to

increased inflammatory response as is frequently observed with

aging [31]. Senior dogs fed APB (5.39 fold) or PPB (3.73 fold) had

decreased expression of follistatin (FST) that has been related to

various cellular processes such as cell development, wound healing,

apoptosis, and immune response by antagonizing activin activity in

the TGF-b signaling pathway [38]. It is suggested that the decreased

ability of FST to neutralize activin activity may lead to an increased

risk of hepatic pathogenesis such as chronic inflammation and

fibrosis [39]. Likewise, the decreased expression (4.28 fold) of

thrombospondin 1 (THBS1), as observed in senior dogs fed APB,

may also indicate the predisposition of the liver to inflammation and

fibrosis with age because THBS1, a mediator of TGF-b signaling

pathway, has been implicated in attenuating inflammatory response

and fibrosis by limiting angiogenesis in the heart [40]. However, the

role of TGF-b signaling pathway in hepatic inflammation and

fibrosis remains speculative.

Diet-associated alterations in gene expression
The liver is the central organ to metabolize dietary nutrients. It

has been reported that hepatic gene expression profiles were

affected by protein quality and quantity in rats [41]. Moreover, a

greater concentration of lipids in the APB diet (22.6%) than in the

PPB diet (11.2%) and different fatty acid composition between

these 2 diets were expected to induce hepatic gene expression

differentially. In this study, however, dietary treatment resulted in

a relatively small number of gene expression changes (36 genes)

with inconsistent patterns of gene expression (Figure 2). The

reason for this observation may be that both diets in this

experiment were formulated to contain adequate amounts of

dietary protein and essential amino acids for senior or young adult

dogs. Furthermore, the lack of effect of dietary treatment on

hepatic lipid composition and concentrations in this experiment

may also explain why there were the small changes in diet-

associated gene expression. Likewise, our previous experiment

reported that hematology and blood metabolites involved in liver

metabolism were not significantly affected by dietary treatment

[4].

The APB diet contained a greater amount of animal-derived

lipids high in saturated fatty acids and cholesterols, which are

predisposing factors for liver abnormalities in the elderly [42,43].

Therefore, we hypothesized that APB diet would affect gene

expression changes to a greater extent in senior dogs than in young

adult dogs. However, of 36 genes differentially expressed by

dietary treatment, gene expression changes were more pro-

nounced in young dogs (33 genes) than in senior dogs (3 genes),

again suggesting the presence of age*diet interactions. The reason

for this observation is not clear, but it is likely due to differences in

feeding strategy between young adult and senior dogs. A restricted

feeding method was used to maintain body weight of senior dogs

in this experiment, which may attenuate the effects of diet on gene

expression involved in hepatic metabolism because food restriction

has been shown to result in an overall reduction in metabolic rate

[10,44].

Up-regulation of PDLIM3 (3.08 fold) and ALDH1A1 (2.18 fold)

genes and down-regulation of MFSD2A gene (2.53 fold) were

observed in the liver of senior dogs consuming APB. It is reported

that ALDH1A1 expression was positively associated with hepato-

cyte cytotoxicity in response to saturated fatty acid insults [45].

Therefore, the observation for increased expression of ALDH1A1

gene may indicate that feeding animal-derived ingredient high

lipids and saturated fatty acids to senior dogs increases incidence of

hepatocyte damage and death. Although MFSD2A gene is highly

expressed in the liver [46], its role in liver metabolism has not been

elucidated. A recent experiment reported that MFSD2A acts as a

tumor suppressor in the lung by regulating expression of genes

related to cell cycle and extracellular matrix [47].

Young dogs consuming the APB diet had a down-regulation of

several genes associated with cellular metabolism of ATP

(ATP5C1), branched chain amino acids (BCKDHB), carbohy-

drates (PDHX), lipids (ASAH1, HSD11B1), and xenobiotics

(UGT2A1). Moreover, genes associated with signal transduction

(YWHAE, MET, RAC1, PPP3CB, and HBP1) were also down-

regulated in the liver of young dogs consuming APB. The reason

for this observation is not clear; however, it may be related to

differences in nutrient intake and subsequent nutrient digestion

between dogs fed APB and PPB. Based on our calculation using

nutrient intake and nutrient digestibility from our previous

experiment [4], young dogs fed APB digested 38% greater

amount of lipids (32.3 vs. 22.0 g/d for APB vs. PPB) and 37%

lower amount of protein (30.4 vs. 44.1 g/d for APB vs. PPB) as

compared to young dogs fed PPB. Therefore, the decreased

expression (3.72 fold) of BCKDHB, which encodes branched

chain a-keto acid dehydrogenase required for branched chain

amino acid catabolism, may be a consequence of a lower

absorption of branched chain amino acids in young dogs fed

APB. Moreover, the decreased gene expression (4.69 fold) of

HSD11B1 (11b-hydroxysteroid dehydrogenase type 1) in young

dogs fed APB may also be related to high fat intake and

absorption. The HSD11B1 is an enzyme that converts 11-

dehydrocorticosterone to active corticosterone (cortisol) and is

highly expressed in liver and adipose tissue [48]. It has been

reported that mice fed a high fat diet had decreased activity of

HSD11B1 in the liver and adipose tissue, suggesting that its down-

regulation may be an adaptive mechanism in response to high fat

intake [48,49].

The observation for decreased expression of genes associated

with antioxidant enzymes, including superoxide dismutase (SOD2)

and catalase (CAT) in the liver of young dogs fed APB, was

surprising because high lipid and/or cholesterol intake, as

observed in young dogs fed APB, is expected to increase hepatic

oxidative stress concomitant with increased expression of genes

related to antioxidant enzymes [50,51,52]. It has been reported

that feeding diets containing high cholesterol and lipids to rabbits

decreased SOD and CAT activities in the liver [53,54]. Similar

reduction in SOD activity was also observed in the kidney and

vascular tissues of rats fed high lipid diets [55]. Taken together, it

may be suggested that high lipid and/or cholesterol intake as

occurs when consuming animal-derived ingredients, may decrease

expression of genes related to antioxidant enzymes and subse-

quently increase oxidative stress in the liver.

Although statistical differences were detected in expression of

several genes due to diet in young dogs, such changes may be of

little pathological relevance to hepatic function because all young

dogs remained healthy and had normal growth during the entire

experiment. In addition, our previous observation for serum

metabolites and hematology in young dogs fed APB vs. PPB

indicates normal liver function in young adult dogs [4]. It is

speculated, therefore, that the diet-associated modulation of

hepatic gene expression observed in young dogs may be an

adaptive mechanism in response to the distinct diet composition.

In conclusion, using canine microarray technology, we have

identified global gene expression in the liver as affected by age and

diet. Among transcriptional changes, more genes appeared to be

altered by age as compared to diet, but age*diet interactions were

also noted. Genes involved in cellular development, metabolism,

and signaling transduction were differentially expressed by age

and/or diet. In general, the gene expression changes in senior dogs
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suggest a propensity for liver disease and dysfunction because

genes related to inflammation and oxidative stress were up-

regulated, whereas genes related to regeneration and xenobiotic

metabolism were down-regulated. Diet-induced gene expression

changes were likely due to differences in feeding strategy between

senior and young adult dogs, and in lipid concentrations between

APB and PPB diet. In particular, genes encoding antioxidant

enzymes were down-regulated in young adult dogs fed APB. This

study, therefore, has highlighted hepatic alterations in global gene

expression due to age and diet, providing a useful foundation for

future research pertaining to age-dependent changes in hepatic

physiology and pathogenesis, and nutritional intervention.

Materials and Methods

Animals, diets and experimental design
All experimental procedures were approved by the University of

Illinois Institutional Animal Care and Use Committee (IACUC

#02056) prior to initiation of the experiment. All animal care,

handling, and sampling procedures are detailed in Swanson et al.

[4]. In short, 6 senior (average age = 11.1 y at baseline; Kennel-

wood Inc., Champaign, IL) and 6 young (8 wk at baseline;

Marshall Farms USA, Inc., North Rose, NY) female beagles were

randomly allotted to 1 of 2 dietary treatments for 12 months. One

diet was an animal protein-based diet (APB) containing 28.0%

crude protein (CP), 22.6% fat, and 4.8% total dietary fiber (TDF).

The other diet was a plant protein-based diet (PPB) containing

25.5% CP, 11.2% fat, and 15.2% TDF. The APB diet was

formulated with brewer’s rice, chicken by-product meal, and

poultry fat, while the PPB diet consisted mainly of corn, soybean

meal, and wheat middlings. Specific details of these 2 dietary

treatments were reported previously [4]. Both diets were

formulated to meet or exceed all nutrient requirements for canine

growth and maintenance according to the Association of

American Feed Control Officials [56].

Young dogs were fed ad libitum to allow for adequate growth,

whereas senior dogs were fed a restricted amount of the diet to

maintain baseline body weight throughout the experiment. Senior

dogs maintained body weight and a fairly constant food intake

over the course of the experiment, consuming similar amounts of

food (APB: 199.1 vs. 183.5 g dry matter/d; PPB: 250.4 vs. 235.2 g

dry matter/d), energy (APB: 1071 vs. 987 kcal/d; PPB: 1190 vs.

1117 kcal/d), protein (APB: 55.7 vs. 51.4 g/d; PPB: 63.9 vs.

60.0 g/d), fat (APB: 45.0 vs. 41.5 g/d; PPB: 28.0 vs. 26.3 g/d),

and fiber (APB: 9.6 vs. 8.8 g/d; PPB: 38.1 vs. 35.8 g/d) during the

early (3 months after baseline) and late (10 months after baseline)

stages of the experiment. Young dogs also had similar food (APB:

150.4 vs. 148.6 g dry matter/d; PPB: 225.6 vs. 237.7 g dry

matter/d), energy (APB: 809 vs. 800 kcal/d; PPB: 1071 vs.

1129 kcal/d), protein (APB: 42.1 vs. 41.6 g/d; PPB: 57.7 vs.

60.6 g/d), fat (APB: 34.0 vs. 33.6 g/d; PPB: 25.3 vs. 26.6 g/d),

and fiber (APB: 7.2 vs. 7.1 g/d; PPB: 34.3 vs. 36.1 g/d) intakes at

the 3 and 10-month time points. Although similar food and

macronutrient intakes were observed over time in young dogs, it

occurred with much different body weights (6.2 kg at 3 months vs.

9.0 kg at 10 months). Therefore, macronutrient intake per kg body

weight was much greater at 3 months, a period of rapid growth,

than at 10 months when growth is much slower.

Sample collection, RNA extraction, and microarray data
analyses

After 12 months of experiment, dogs were fasted for 12 hours

and euthanized using a lethal dose (130 mg/kg body weight) of

sodium pentobarbital (EuthasolH, Virbac Corp., Fort Worth, TX).

Liver tissue was immediately collected, flash frozen using liquid

nitrogen, and stored at 280uC. Total cellular RNA was isolated

from liver tissue using Trizol (Invitrogen, Carlsbad, CA). RNA

concentration was measured using a ND-1000 spectrophotometer

(Nanodrop Technologies, Wilmington, DE) and RNA integrity

was verified on a 1.2% denaturing agarose gel.

The procedures for microarray data analyses were described

previously by Swanson et al. [6]. In short, the prepared RNA

samples were hybridized to Affymetrix GeneChipH Canine

Genome Arrays (Affymetrix, Santa Clara, CA). After hybridiza-

tion, chips were washed and stained with streptavidin-conjugated

phycoerythrin dye (Invitrogen) enhanced with biotinylated goat

anti-streptavidin antibody (Vector Laboratories, Burlingame, CA)

utilizing an Affymetrix GeneChipH Fluidics Station 450 and

GeneChipH Operating Software. Images were then scanned using

an Affymetrix GeneChipH Scanner 3000. Of the 23,836 probe

sets on the array, 13,778 probe sets were expressed in the liver

tissue and were used to determine effects of age and diet on gene

expression profiles. Functional classification was made by the

database SOURCE (http://source.stanford.edu) [57]. All micro-

array data have been deposited in the Gene Expression Omnibus

(GEO) repository at the National Center for Biotechnology

Information (NCBI) archives (http://www.ncbi.nlm.nih.gov/

geo).

Liver lipid analyses
Lipid concentrations in the liver tissue were measured by gas

chromatography [58]. In short, the liver tissue was homogenized

using a Fisher Powergen Model 125 tissue homogenizer (Fisher

Scientific, Hampton, NH). Internal standards and 0.1 g liver tissue

were passed through hexane to extract the lipids. Fatty acid

composition of the extracted lipids was measured using gas

chromatography (Hewlett-Packard 5890A Series II) and external

standards for identification and quantification.

Statistical analysis
Individual animal was the experimental unit for all analyses.

Differential expression of the microarray data was evaluated using

the limma package [59]. A linear model for the four age x diet

groups was fit for each probe set. Differences between groups were

then extracted from the model as contrasts. An empirical Bayes

‘‘shrinkage’’ method was employed on the standard errors to

improve power for small sample sizes [59]. Lastly, multiple test

correction of P-values was done using the false discovery rate

(FDR) method [60]. Gene transcripts having .2.0-fold change

and FDR ,0.10 were considered significantly different. Data for

hepatic lipid concentrations were analyzed using the Proc Mixed

procedure of SAS (SAS Inst, Inc., Cary, NC). A probability of

P,0.05 was accepted statistically significant and 0.05,P,0.10

was considered as a trend for hepatic lipid concentrations.
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