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Abstract: Activity recognition methods often include some hyper-parameters based on experience,
which greatly affects their effectiveness in activity recognition. However, the existing hyper-parameter
optimization algorithms are mostly for continuous hyper-parameters, and rarely for the optimization
of integer hyper-parameters and mixed hyper-parameters. To solve the problem, this paper improved
the traditional cuckoo algorithm. The improved algorithm can optimize not only continuous hyper-
parameters, but also integer hyper-parameters and mixed hyper-parameters. This paper validated
the proposed method with the hyper-parameters in Least Squares Support Vector Machine (LS-SVM)
and Long-Short-Term Memory (LSTM), and compared the activity recognition effects before and after
optimization on the smart home activity recognition data set. The results show that the improved
cuckoo algorithm can effectively improve the performance of the model in activity recognition.

Keywords: activity recognition; cuckoo optimization algorithm; hyper-parameter

1. Introduction

In recent years, a number of methods have been proposed for activity recognition
with non-obtrusive sensors [1,2], which have appeared as Ambient Intelligence (AmI) [3]
and enablers to facilitate the development of applications that are aware of users’ presence
and contexts, and are adaptive and responsive to their needs and habits. The methods
mainly include conventional approaches and deep learning approaches, which have wit-
nessed fast development and advancement in recent years [4]. Conventional approaches
mainly use Decision Tree [5], K-Nearest Neighbor (KNN) [6], Support Vector Machine
(SVM) [7], Naïve Bayes(NB) [8], Hidden Markov Model (HMM) [9], Conditional Random
Field (CRF) [10] and other traditional machine learning methods [11]. Deep learning ap-
proaches mainly include Convolutional Neural Network (CNN) [12] and Recurrent Neural
Network (RNN) [13]. Compared to conventional approaches, deep learning approaches
could automatically extract appropriate features from raw sensor data during the train-
ing phase, and present the low-level original temporal features with high-level abstract
sequences [14].

However, both conventional approaches, or traditional methods, and deep learn-
ing methods often contain some hyper-parameters which affect the performance of the
model. Hyper-parameters are defined relative to general parameters. General parame-
ters are variables obtained by model learning, while hyper-parameters are set variables,
based on experience. Specifically, a typical traditional method is Support Vector Machine
(SVM) [15,16], which has been proven to be sensitive to hyper-parameters C and λ, while a
typical deep learning approach is CNN [17,18], which has been proven to be very sensitive
to hyper-parameter network depth, the number of filters and their respective sizes. In
addition, there are other methods that include hyper-parameters but are rarely optimized
for activity recognition, such as Least Squares Support Vector Machine (LS-SVM) [19] and
Long-Short-Term Memory (LSTM) [20].
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Among these algorithms that contain hyper-parameters, some only contain continuous
hyper-parameters, whose values are in a continuous interval, some only contain integer
hyper-parameters, that can only take integer values, and some contain mixed hyper-
parameters, containing both continuous hyper-parameters and integer hyper-parameters.
Gradient algorithm is often used for continuous parameter optimization but is not suitable
for hyper-parameter optimization. Thus, hyper-parameter optimization is important but
faces challenging problems. To solve the hyper-parameter optimization problem, most
researchers resort to intelligent evolutionary algorithms, which mainly include genetic
algorithm [17,21] and particle swarm optimization (PSO) algorithm [18,22]. In recent years,
Derivative-Free Optimization (DFO) was proposed by Koch et al. [23], and used to find
optimal values for options of the global optimization solver BARON by Liu et al. [24].
Optuna [25] is also a hyper-parameter tuning algorithm that comes with Python and
in recent years, it has been used to solve deep learning hyper-parameter optimization
problems [26,27].

This article optimized the hyper-parameters in the activity recognition method based
on the Cuckoo Search (CS). The CS [28] is an intelligent evolutionary algorithm with global
convergence, proposed by Yang Xinshe, in 2009, to simulate the behavior of cuckoos se-
lecting nests and laying eggs. However, the traditional cuckoo algorithm can only deal
with continuous hyper-parameter optimization problems, and is powerless for integer
hyper-parameter optimization problems and mixed hyper-parameter optimization prob-
lems. In order to solve integer hyper-parameter optimization and mixed hyper-parameter
optimization, this paper improved the traditional cuckoo algorithm to adapt to different
types of hyper-parameter optimization problems. Then, to verify the effectiveness of the
algorithm, this paper used the algorithm to optimize the hyper-parameters in the LS-SVM
and LSTM models which are commonly used for activity recognition.

The remainder of this paper is organized as follows. In Section 2, the traditional CS
algorithm will be introduced and the improved CS algorithms will be given. In Section 3,
this paper will introduce the related hyper-parameters in the LS-SVM and LSTM models.
To illustrate the efficiency of the algorithm, in Section 4, simulation results are given for
indoor positioning and activity recognition. Conclusions are drawn in Section 5.

2. Improved Cuckoo Optimization Search Algorithm

This section first introduces the traditional cuckoo optimization algorithm, and then
gives two improved cuckoo algorithms.

2.1. Traditional Cuckoo Optimization Algorithm

The CS Algorithm assumes that the cuckoo’s behavior is in the following three ideal
states: (1) The cuckoo lays only m eggs at a time, and randomly selects a suitable nest to
hatch these m eggs. (2) In the process of cuckoo bird nest selection, the best quality bird
nest will be retained for the next generation. (3) Under the premise of a certain number of
bird nests that a cuckoo can choose from, the probability that each bird nest owner finds a
foreign bird egg is p, where p ∈ [0,1]. If foreign bird eggs are found, the owner of the nest
will rebuild a nest.

The flowchart of traditional the CS algorithm is presented in Figure 1.
The implementation of the traditional CS algorithm is as follows:
Step 1. Generate n random host nests xi, i = 1, · · · , n, set t = 0 and compute the fitness

Fi, i = 1, · · · , n.
Step 2. Find best_nest and best_fitness. If t < iter_num (the maximum number of

iterations), go to Step 3, or else go to the last step.
Step 3. Update_nests: generate xnew

i , i = 1, · · · , n with Lévy flights and compute the
fitness Fnew

i , i = 1, · · · , n, if Fnew
i > Fi, update xi = xnew

i .
Step 4. Abandon_nests: generate a random fraction P for every nest xi, i = 1, · · · , n, if

P < Pa, build a new one at new locations xnew
i via Lévy flights, and update xi = xnew

i .
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Step 5. Calculate Ft
i , i = 1, · · · , n at the nest xi, i = 1, · · · , n obtained in Step 4

in the t-th iterations, and find max_fitness Ftmax and the corresponding nest xtmax, if
Ftmax > best_fitness, update best_nest = xtmax and best_fitness = Ftmax.

Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to
Step 7.

Step 7. Return best_nest and best_fitness.
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2.2. Improved Cuckoo Optimization for Optimizing Integer Parameters

To optimize integer parameters, the host nests xi, i = 1, · · · , n need to be rounded. To
this end, this article changed Steps 1, 3, and 4 in the cuckoo optimization algorithm to adapt
to the optimization of integer parameters. In order to distinguish it from the basic cuckoo
algorithm, this article refers to the above improved algorithm as cuckoo Algorithm 1.
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Algorithm 1 Improved Cuckoo Optimization for Optimizing Integer Parameters

Step 1. Generate n random host nests xi, i = 1, · · · , n, rounding all nests, and compute the fitness
Fi, i = 1, · · · , n.
Step 2. Find best_nest and best_fitness. If t < iter_num, go to Step 3, else go to the last step.
Step 3. Update_nests: generate xnew

i , i = 1, · · · , n with Lévy flights, rounding all nests, and
compute the fitness Fnew

i , i = 1, · · · , n, if Fnew
i > Fi, update xi = xnew

i .
Step 4. Abandon_nests: generate a random fraction P for every nest xi, i = 1, · · · , n, if fraction P <
Pa, build a new one at new locations xnew

i via Lévy flights, rounding it, and update xi = xnew
i .

Step 5. Calculate Ft
i , i = 1, · · · , n at the nest xi, i = 1, · · · , n in the t-th iterations, find max_fitness

Ftmax and the corresponding nest xtmax, if Ftmax > best_fitness, update best_nest = xtmax and
best_fitness = Ftmax.
Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to Step 7.
Step 7. Return best_nest and best_fitness.

2.3. Improved Cuckoo Optimization for Optimizing Continuous and Integer Mixed Parameters

Assuming that the parameters to be trained include m continuous parameters and k
integer parameters, the i-th host nest xi needs to include two parts: the continuous part xm

i
and the integer part xk

i . Therefore, the i-th host nest can be expressed as xi =
[
xm

i xk
i
]
.

To optimize continuous and integer mixed parameters simultaneously, Steps 1, 3, and
4 in the cuckoo optimization algorithm need to be modified. To distinguish it from the
above two previous cuckoo algorithms, this article refers to the above improved algorithm
as cuckoo Algorithm 2.

Algorithm 2 Improved Cuckoo Optimization for Optimizing Continuous and Integer
Mixed Parameters

Step 1. Generate n random host nests xi, i = 1, · · · , n which include two parts, the random
continuous part xm

i , i = 1, · · · , n and the random integer part xk
i , i = 1, · · · , n. Then, compute the

fitness Fi, i = 1, · · · , n.
Step 2. Find best_nest and best_fitness. If t < iter_num, go to Step 3, else go to the last step.
Step 3. Update_nests: generate host nests xnew

i , i = 1, · · · , n with Lévy flights, rounding the
integer part, and compute the fitness Fnew

i , i = 1, · · · , n, if Fnew
i > Fi, update xi = xnew

i .
Step 4. Abandon_nests: For every nest xi, i = 1, · · · , n, generate a random fraction P, if fraction P
< Pa, build a new one at new locations xnew

i via Lévy flights and rounding the integer part, then
update xi = xnew

i .
Step 5. Calculate Ft

i , i = 1, · · · , n at the nest xi, i = 1, · · · , n in the t-th iterations, find max_fitness
Ftmax and the corresponding nest xtmax, if Ftmax > best_fitness, update best_nest = xtmax and
best_fitness = Ftmax.
Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to Step 7.
Step 7. Return best_nest and best_fitness.

3. Hyper-Parameters in LS-SVM and LSTM
3.1. Hyper-Parameters in LS-SVM

LS-SVM is an improvement on the standard SVM. It changes the insensitive loss
function in SVM to a quadratic loss function, and replaces inequality constraints with
equality constraints. The solving coefficient is greatly reduced, and the solving speed
is accelerated.

LS-SVM is described as follows:
Take a given training dataset {xi, yi}, i = 1, · · · , n, where xi is an n-dimensional

input vector and yi is a one-dimensional output scalar. The optimization problem and the
constraint conditions of LS-SVM algorithm are:

min
w,e

J(w, b, ξ) =
1
2
‖w‖2 +

1
2

γ
n

∑
i=1

ξ2
i (1)

s.t yi

[
wTΦ(xi) + b

]
= 1− ξi, i = 1, · · · , n (2)
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where w ∈ H is the weight vector and H is the higher dimension space projected by the
nonlinear function ϕ(x) from the original space R. Furthermore, ξi ∈ R is the slack variable
for xi, which measures the deviation degree of a datum from the ideal condition of the
classification model, and b ∈ R is the bias, γ is regularization factor. The regularization
factor is similar to the penalty factor C in SVM and is used to adjust the confidence interval
of LS-SVM and the proportion of empirical risk.

By solving the above optimization problem, the decision function for classification can
be obtained [29] as:

y(x) = sgn
[
∑n

i=1 αiyiK(x, xi) + b
]

(3)

where K(x, xi) is kernel functions, αi are positive real constants and b is a real constant
which can be obtained by solving the above optimization problem.

There are three commonly used kernel functions: linear kernel functions, polynomial
kernel functions, and radial basis kernel functions. Among the three commonly used
kernel functions, the radial basis kernel function can non-linearly map the samples to the
high-dimensional space, and has fewer parameters and operations compared with the
polynomial kernel function.

The width parameter σ (sigma) of the RBF function, together with the regularization
parameter γ (gam), directly affect the performance of the LS-SVM model. However, the
two hyper-parameters were continuously chosen as a fixed value according to experience.
Therefore, it is very important to study the selection method of σ, and γ. In this paper, we
used the cuckoo search algorithm to optimize the optimal gam and sigma, and then used
the LS-SVM to identify user activities.

3.2. Hyper-Parameters in LSTM

LSTM is one of the RNNs and the primary objectives of LSTM are to model long-term
dependencies and determine the optimal time lags for time series problems. These features
are especially desirable for activity recognition, due to the lack of a priori knowledge on the
relationship between prediction results and the length of input historical data. The LSTM
architecture is composed of one input layer, one recurrent hidden layer, which has a basic
unit that is memory block instead of traditional neuron node, and one output layer.

Suppose that the input sequence is denoted as x = (x1, x2, · · · , xT), the LSTM com-
putes the hidden vector sequence h = (h1, h2, · · · , hT) and the output predicted sequence
y = (y1, y2, · · · , yT) by iterating the following equations:

ht = H(Wxhxt + Whhht−1 + bh) (4)

yt = Whyht + by (5)

where the W term denotes weight matrices (e.g., Wxh is the input-hidden weight ma-
trix), the b term denotes bias vectors (e.g., bh is hidden bias vector) and H is the hidden
layer function.

For more information about the LSTM model, please refer to Reference [30]. In the
model of LSTM, there are integer hyper-parameter num_units and batch_size that affect
the performance. In the RMSprop optimization, there are continuous hyper-parameters,
lr and rho, which also affect the performance of LSTM. Thus, there are both integer and
continuous hyper-parameters affecting the performance of LSTM.

4. Validation

In this section, we validate the proposed method that used the cuckoo algorithm and
the improved algorithm to solve the hyper-parameters problems in LS-SVM and LSTM
with the activity recognition datasets in smart home. In doing so, we first optimized
hyper-parameters in LS-SVM, based on the basic cuckoo algorithm of Section 4.1. Then,
the improved cuckoo algorithms were used to optimize the hyper-parameters in LSTM
of Section 4.2.



Entropy 2022, 24, 845 6 of 14

4.1. Hyper-Parameter Optimization in LS-SVM

This subsection verified the effectiveness of the cuckoo algorithm in optimizing hyper-
parameters in LS-SVM based on WiFi-based indoor positioning dataset.

Wi-Fi based indoor positioning mainly uses the signal strength value generated by
Wi-Fi, that is, the RSSI value, to locate the user’s location. Each hotspot that releases Wi-Fi
signals in space is called AP (access point, the signal sent by the wireless router), and one
or more APs may be detected at each location. They can be detected at the same time.
The AP’s BSSID (that is, the MAC address, which uniquely identifies this hotspot) and the
LEVEL value of the Wi-Fi signal (the strength value of the received Wi-Fi signal, in dBm,
also known as the RSSI value, Received Signal Strength Indication) need to be obtained
The RSSI is continuously collected through a smart phone. First, it is necessary to write an
APP and, then, call the Wi-Fi module that comes with the phone to collect and process the
data. After that, the phone is saved or sent to the computer for processing.

Due to the instability and fading of the signal in space, the RSSI values measured at
the same place and at different times will fluctuate to a certain extent. Therefore, when
position matching is performed, corresponding algorithms are required to calculate the
distribution of values, and then test this to predict the distribution of values. For example,
input the corresponding coordinate matrix and RSSI matrix for training data, and then
input the tested RSSI vector to predict the coordinate value to complete the positioning.

Here we used the LS-SVM to predict the user’s location based on the RSSI value
generated by Wi-Fi. Since the model parameter gam and sigma of the least square support
vector machine have a great influence on the position prediction effect, we first used the
cuckoo search algorithm to optimize the optimal gam and sigma, and then used the least
square support vector machine to determine the position so as to make an estimate.

Errors continuously exist. Assuming that the real coordinates are (x0, y0) and the
predicted coordinates are (x, y), the error between the predicted position coordinates and
the real position coordinates in this paper was defined as:

error =
√
(x0− x)2 + (y0− y)2 (6)

Before optimization, we used the empirical parameters gam = 0.001, sigma = 0.05 as the
initial points, and the search intervals of gam and sigma were both set to [0.001, 1000]. The
predictions errors of the training position with iterate 10, 100 and 1000 times respectively
are shown in Figure 2.

Since the optimized parameters of iterate 1000 have the lowest prediction error for
the training position, we used this parameter to predict and estimate 33 test positions
during the test. Figure 3 is a schematic diagram of the errors before and after prediction at
33 locations, o is the estimated error of the empirical parameter gam = 0.001, sigma = 0.05
for each test location, * is the estimated error of the optimized parameter gam = 0.001,
sigma = 4.3507 for each test location. From the figure, we could see that the optimized
parameters greatly reduced the estimation error of the test data.

Since the coordinates of the 33 tested locations were very close to each other, we only
gave a schematic diagram of the prediction comparison of the first 8 locations. Figure 4
is a schematic diagram of the comparison of predictions before and after optimization.
In the figure, the i-th real coordinate position is marked as + with (L,1), . . . (L,8). The
figure representing the predicted position of the i-th coordinate using the parameters before
optimization (gam = 0.001, sigma = 0.05) is marked as* with (1,p1), . . . (8,p1). The predicted
position of the i-th coordinate using optimized parameters (gam = 0.001, sigma = 4.3507) is
marked as o with (1,p2), . . . (8,p2). From the figure, it can be seen that before optimization,
only 2 positions could be accurately positioned and after optimization, all 8 positions could
be accurately positioned. Thus, after the cuckoo optimized the hyper-parameters, the
LS-SVM model predicted the positions more accurately.
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4.2. Hyper-Parameter Optimization in LSTM

This subsection validated hyper-parameter optimization in LSTM with the ADL
Adlnormal dataset [31] and Kasteren Dataset [32]. Adlnormal dataset was collected in
a smart apartment test bed located on the WSU campus. The dataset recorded 24 WSU
undergraduate students performing five ADLs, one at a time. For the 6425 samples of
the data set, we divided them into three parts: 3000 for the training data set, 2000 for the
validation data set, and 1425 for the test data set. The Kasteren dataset was collected in a
three-room apartment where a 26-year-old man lives and there were 14 state-change sensors
installed in this apartment. We conducted experiments using the previous 30,000 time slices
and split the training, validation and test datasets into three equal parts, i.e., 10,000 time
slices, respectively.

In the model of LSTM, there are integer hyper-parameters num_units and batch_size
that affect the performance. In the RMSprop optimization, there are continuous hyper-
parameters, lr and rho, which also affect the performance of LSTM. Thus, there are both
integer and continuous hyper-parameters affecting the performance of LSTM. This subsec-
tion used the proposed hyper-parameter optimization algorithm to optimize continuous
hyper-parameters, integer hyper-parameters and mixed hyper-parameters, respectively.

In order to verify the effectiveness of our proposed method, the activity recognition
accuracy obtained by this method was not only compared with the empirical value, but also
compared with the activity recognition accuracy obtained by Optuna [25] optimizing hyper-
parameters. Finally, this subsection compared the accuracy of LSTM activity recognition
under different hyper-parameter optimization strategies, and analyzed the impact of
different strategies on the model.
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4.2.1. Experiment 1

This experiment validated continuous hyper-parameter optimization in LSTM. To
optimize the two continuous hyper-parameters, lr and rho, we set other hyper-parameters
to constants (num_units = 128, batch_size = 200). The initial lr and rho were initialized
as [0.001, 0.9], which is the default value of RMSprop, and the search intervals for hyper-
parameters were lr ∈ [0.001, 0.01], rho ∈ (0.1, 0.99).

After CS optimization, the continuous hyper-parameters for the Adlnormal dataset
were lr = 0.00782101 and rho = 0.59629055, and the continuous hyper-parameters for the
Kasteren Dataset were lr = 0.00381946, rho = 0.56684786. It could be seen that the optimized
continuous hyper-parameters of LSTM were different for the different data sets.

Before continuous hyper-parameter optimization, the accuracy score of test data set
for Adlnormal dataset was 0.7986 and the accuracy score of test data set for Kasteren
Dataset was 0.8445. After continuous hyper-parameter optimization with CS, the accuracy
score of test data set for Adlnormal dataset was 0.8529 and the accuracy score of test
data set for Kasteren Dataset was 0.8537. Figure 5 compares the accuracy score of the
test data set with initialized hyper-parameters, hyper-parameter optimization with CS
and hyper-parameter optimization with Optuna, where CHO represents only continuous
hyper-parameters, lr and rho, optimized. From the figure, we can see that the activity
recognition accuracies of the two datasets both improved significantly after continuous
hyper-parameter optimization with CS and CS was better than Optuna.
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Figure 5. The accuracy score before and after continuous hyper-parameters optimization.

4.2.2. Experiment 2

This experiment validated integer hyper-parameter num_units and batch_size opti-
mization in LSTM, based on the improved Cuckoo optimization Algorithm 1 with the ADL
Adlnormal dataset and Kasteren dataset.

To optimize the integer hyper-parameter num_units and batch_size, we set continuous
hyper-parameters to constants (lr = 0.001, rho = 0.9). The integer hyper-parameters were
initialized as num_units = 128, batch_size = 200, and we set the search interval of num_units
and batch_size to [1, 256] and [1, 1000], respectively.

Set epochs = 10, the integer hyper-parameters after optimization for Adlnormal dataset
were num_units = 253, batch_size = 491, and the integer hyper-parameters after optimiza-
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tion for Kasteren Dataset were num_units = 12, batch_size = 931. It could be seen that the
optimized integer hyper-parameters of LSTM were different for the different data sets.

After integer hyper-parameter optimization, the accuracy score of test data set for
Adlnormal dataset was 0.8220 and the accuracy score of test data set for Kasteren Dataset
was 0.8560. Figure 6 compares the accuracy score of the test data set with initialized hyper-
parameters, hyper-parameter optimization with CS and hyper-parameter optimization with
Optuna, where IHO represents only integer hyper-parameter num_units and batch_size
optimized. From the figure, we can see that the activity recognition accuracies of the two
datasets both improved significantly after integer hyper-parameter optimization with CS
and CS was better than Optuna.
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4.2.3. Experiment 3

This experiment validated mixed hyper-parameters lr, rho, num_units and batch_size
optimization in LSTM, based on the improved Cuckoo optimization Algorithm 2 with the
ADL Adlnormal dataset and Kasteren dataset.

To optimize the continuous and integer hyper-parameters together, the mixed hyper-
parameters were initialized as lr = 0.001, rho = 0.9, num_units = 128, batch_size = 200, and
the search intervals for hyper-parameters were set as continuous hyper-parameters and
integer hyper-parameters above.

Set epochs = 10, the mixed hyper-parameters after optimization for Adlnormal dataset
were lr = 0.00989974980, rho = 0.765867432, num_units = 8, batch_size = 78, and the
integer hyper-parameters after optimization for Kasteren Dataset were lr = 0.00793324624,
rho = 0.758825652, num_units = 129, batch_size = 129. It could be seen that the optimized
mixed hyper-parameters of LSTM were different for the different data sets.

After mixed hyper-parameters optimization, the accuracy score of test data set for
Adlnormal dataset was 0.8446 and the accuracy score of test data set for the Kasteren dataset
was 0.8693. Figure 7 compares the accuracy score of the test data set with initialized hyper-
parameters, hyper-parameters optimization with CS and hyper-parameters optimization
with Optuna, where MHO represent optimized mixed hyper-parameters lr, rho, num_units
and batch_size together with lr = 0.001, rho = 0.9, num_units = 128 and batch_size = 200 as
the initial value of optimization. From the figure, we can see that the activity recognition
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accuracies of the two datasets both improved significantly after mixed hyper-parameter
optimization with CS and CS was better than Optuna.
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4.2.4. Experiment 4

This experiment compared the accuracy of LSTM activity recognition under different
hyper-parameter optimization strategies, and analyzed the impact of different strategies on
the model with the ADL Adlnormal dataset and Kasteren Dataset.

The optimized hyper-parameter and activity recognition accuracy with different
strategies are shown in Table 1, where CHO and IHO meant optimizing continuous
hyper-parameters, lr and rho, and optimizing integer hyper-parameters, num_units and
batch_size, separately, and finally, the separately trained parameters were merged together
for activity recognition. CHO after IHO meant optimizing continuous hyper-parameters, lr
and rho, with optimized integer hyper-parameters, num_units and batch_size, as input.
IHO after CHO meant optimizing integer hyper-parameters, num_units and batch_size,
with optimized continuous hyper-parameters, lr and rho, as input. MHO after CHO and
IHO meant optimizing mixed hyper-parameters with CHO and IHO result as the initial
value of optimization.

Table 1. The optimized hyper-parameter with different strategies.

Hyper-Parameters of Adlnormal Dataset Hyper-Parameters of Kasteren Dataset

Initial hyper-parameters (0.001, 0.9, 128, 200) (0.001, 0.9, 128, 200)
CHO (0.00782101, 0.59629055, 128, 200) (0.00381946, 0.56684786, 128, 200)
IHO (0.001, 0.9, 253, 491) (0.001, 0.9, 12, 931)

Mixed (0.00989974980, 0.765867432, 8, 78) (0.00793324624, 0.758825652, 129, 129)
CHO and IHO (0.00782101, 0.59629055, 253, 491) (0.00381946, 0.56684786, 12, 931)
CHO after IHO (0.00528674, 0.72591224, 253, 491) (0.0095465, 0.78940525, 12, 931)
IHO after CHO (0.00782101, 0.59629055, 187, 1) (0.00381946, 0.56684786, 141, 73)

MHO after CHO and IHO (0.00934384542, 0.634805436, 1, 64) (0.00501521055, 0.97690847, 77, 44)



Entropy 2022, 24, 845 12 of 14

Figures 8 and 9 compared the accuracy score of different hyper-parameter optimization
strategies for Adlnormal dataset and Kasteren Dataset, respectively. From the figure, we can
see that the activity recognition accuracy was improved after hyper-parameter optimization
for all optimization strategies. Compared with integer parameters, continuous parameters
had a greater impact on the LSTM. Mixed hyper-parameter optimization obtained a stable
improvement effect. The optimization strategies CHO and IHO, CHO after IHO, IHO after
CHO, MHO after CHO and IHO also obtained relatively good effects.
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Adlnormal dataset.
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5. Conclusions

In order to reduce the hyper-parameter settings influence of certain algorithms on
activity recognition, this paper proposed to use the cuckoo optimization algorithm to
optimize the hyper-parameters in the algorithms, and improved the cuckoo algorithm to
adapt to the optimization of integer hyper-parameters and hybrid hyper-parameters in
activity recognition problems.

To validate the proposed method, this paper first optimized the hyper-parameters
in LS-SVM, based on the basic cuckoo algorithm, and compared the WiFi-based indoor
localization results before and after optimizing the hyper-parameters. The experimental
results showed that after CS optimized the hyper-parameters, the LS-SVM model predicted
the positions more accurately. Then, this paper validated hyper-parameter optimization
in LSTM with the ADL Adlnormal dataset and Kasteren Dataset and compared the activ-
ity recognition accuracy of CS-optimized hyper-parameters, empirical hyper-parameters,
and Optuna optimized hyper-parameters. Experimental results showed that the opti-
mized hyper-parameters of LSTM were different for different data sets and optimizing
hyper-parameters with CS obtained the best activity recognition accuracy compared with
empirical hyper-parameters, and Optuna optimized hyper-parameters. Finally, this paper
compared the accuracy of LSTM activity recognition under different hyper-parameter opti-
mization strategies, and analyzed the impact of different strategies on the model. The result
showed that the mixed hyper-parameter optimized with the improved cuckoo algorithm
obtained a stable improvement effect. The other optimization strategies also obtained
relatively good effects.

Each contribution to activity recognition brings us one step closer to the realization of
Ambient Intelligence. As future work, we plan to expand hyper-parameter optimization
in LS-SVM and LSTM to other activity recognition algorithms, and expand the cuckoo
algorithm hyper-parameter optimization to other artificial intelligence algorithms, such as
particle swarm and wolf swarm algorithms.
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