
Citation: Tong, Y.; Yu, B. Research on

Hyper-Parameter Optimization of

Activity Recognition Algorithm

Based on Improved Cuckoo Search.

Entropy 2022, 24, 845. https://

doi.org/10.3390/e24060845

Academic Editor: Sergio Saponara

Received: 31 May 2022

Accepted: 14 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Research on Hyper-Parameter Optimization of Activity
Recognition Algorithm Based on Improved Cuckoo Search
Yu Tong 1,* and Bo Yu 2

1 School of Computer Science and Technology, Hefei Normal University, Hefei 230601, China
2 School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; yubochina@hfut.edu.cn
* Correspondence: tongyu24@126.com

Abstract: Activity recognition methods often include some hyper-parameters based on experience,
which greatly affects their effectiveness in activity recognition. However, the existing hyper-parameter
optimization algorithms are mostly for continuous hyper-parameters, and rarely for the optimization
of integer hyper-parameters and mixed hyper-parameters. To solve the problem, this paper improved
the traditional cuckoo algorithm. The improved algorithm can optimize not only continuous hyper-
parameters, but also integer hyper-parameters and mixed hyper-parameters. This paper validated
the proposed method with the hyper-parameters in Least Squares Support Vector Machine (LS-SVM)
and Long-Short-Term Memory (LSTM), and compared the activity recognition effects before and after
optimization on the smart home activity recognition data set. The results show that the improved
cuckoo algorithm can effectively improve the performance of the model in activity recognition.

Keywords: activity recognition; cuckoo optimization algorithm; hyper-parameter

1. Introduction

In recent years, a number of methods have been proposed for activity recognition
with non-obtrusive sensors [1,2], which have appeared as Ambient Intelligence (AmI) [3]
and enablers to facilitate the development of applications that are aware of users’ presence
and contexts, and are adaptive and responsive to their needs and habits. The methods
mainly include conventional approaches and deep learning approaches, which have wit-
nessed fast development and advancement in recent years [4]. Conventional approaches
mainly use Decision Tree [5], K-Nearest Neighbor (KNN) [6], Support Vector Machine
(SVM) [7], Naïve Bayes(NB) [8], Hidden Markov Model (HMM) [9], Conditional Random
Field (CRF) [10] and other traditional machine learning methods [11]. Deep learning ap-
proaches mainly include Convolutional Neural Network (CNN) [12] and Recurrent Neural
Network (RNN) [13]. Compared to conventional approaches, deep learning approaches
could automatically extract appropriate features from raw sensor data during the train-
ing phase, and present the low-level original temporal features with high-level abstract
sequences [14].

However, both conventional approaches, or traditional methods, and deep learn-
ing methods often contain some hyper-parameters which affect the performance of the
model. Hyper-parameters are defined relative to general parameters. General parame-
ters are variables obtained by model learning, while hyper-parameters are set variables,
based on experience. Specifically, a typical traditional method is Support Vector Machine
(SVM) [15,16], which has been proven to be sensitive to hyper-parameters C and λ, while a
typical deep learning approach is CNN [17,18], which has been proven to be very sensitive
to hyper-parameter network depth, the number of filters and their respective sizes. In
addition, there are other methods that include hyper-parameters but are rarely optimized
for activity recognition, such as Least Squares Support Vector Machine (LS-SVM) [19] and
Long-Short-Term Memory (LSTM) [20].

Entropy 2022, 24, 845. https://doi.org/10.3390/e24060845 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060845
https://doi.org/10.3390/e24060845
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24060845
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060845?type=check_update&version=1

Entropy 2022, 24, 845 2 of 14

Among these algorithms that contain hyper-parameters, some only contain continuous
hyper-parameters, whose values are in a continuous interval, some only contain integer
hyper-parameters, that can only take integer values, and some contain mixed hyper-
parameters, containing both continuous hyper-parameters and integer hyper-parameters.
Gradient algorithm is often used for continuous parameter optimization but is not suitable
for hyper-parameter optimization. Thus, hyper-parameter optimization is important but
faces challenging problems. To solve the hyper-parameter optimization problem, most
researchers resort to intelligent evolutionary algorithms, which mainly include genetic
algorithm [17,21] and particle swarm optimization (PSO) algorithm [18,22]. In recent years,
Derivative-Free Optimization (DFO) was proposed by Koch et al. [23], and used to find
optimal values for options of the global optimization solver BARON by Liu et al. [24].
Optuna [25] is also a hyper-parameter tuning algorithm that comes with Python and
in recent years, it has been used to solve deep learning hyper-parameter optimization
problems [26,27].

This article optimized the hyper-parameters in the activity recognition method based
on the Cuckoo Search (CS). The CS [28] is an intelligent evolutionary algorithm with global
convergence, proposed by Yang Xinshe, in 2009, to simulate the behavior of cuckoos se-
lecting nests and laying eggs. However, the traditional cuckoo algorithm can only deal
with continuous hyper-parameter optimization problems, and is powerless for integer
hyper-parameter optimization problems and mixed hyper-parameter optimization prob-
lems. In order to solve integer hyper-parameter optimization and mixed hyper-parameter
optimization, this paper improved the traditional cuckoo algorithm to adapt to different
types of hyper-parameter optimization problems. Then, to verify the effectiveness of the
algorithm, this paper used the algorithm to optimize the hyper-parameters in the LS-SVM
and LSTM models which are commonly used for activity recognition.

The remainder of this paper is organized as follows. In Section 2, the traditional CS
algorithm will be introduced and the improved CS algorithms will be given. In Section 3,
this paper will introduce the related hyper-parameters in the LS-SVM and LSTM models.
To illustrate the efficiency of the algorithm, in Section 4, simulation results are given for
indoor positioning and activity recognition. Conclusions are drawn in Section 5.

2. Improved Cuckoo Optimization Search Algorithm

This section first introduces the traditional cuckoo optimization algorithm, and then
gives two improved cuckoo algorithms.

2.1. Traditional Cuckoo Optimization Algorithm

The CS Algorithm assumes that the cuckoo’s behavior is in the following three ideal
states: (1) The cuckoo lays only m eggs at a time, and randomly selects a suitable nest to
hatch these m eggs. (2) In the process of cuckoo bird nest selection, the best quality bird
nest will be retained for the next generation. (3) Under the premise of a certain number of
bird nests that a cuckoo can choose from, the probability that each bird nest owner finds a
foreign bird egg is p, where p ∈ [0,1]. If foreign bird eggs are found, the owner of the nest
will rebuild a nest.

The flowchart of traditional the CS algorithm is presented in Figure 1.
The implementation of the traditional CS algorithm is as follows:
Step 1. Generate n random host nests xi, i = 1, · · · , n, set t = 0 and compute the fitness

Fi, i = 1, · · · , n.
Step 2. Find best_nest and best_fitness. If t < iter_num (the maximum number of

iterations), go to Step 3, or else go to the last step.
Step 3. Update_nests: generate xnew

i , i = 1, · · · , n with Lévy flights and compute the
fitness Fnew

i , i = 1, · · · , n, if Fnew
i > Fi, update xi = xnew

i .
Step 4. Abandon_nests: generate a random fraction P for every nest xi, i = 1, · · · , n, if

P < Pa, build a new one at new locations xnew
i via Lévy flights, and update xi = xnew

i .

Entropy 2022, 24, 845 3 of 14

Step 5. Calculate Ft
i , i = 1, · · · , n at the nest xi, i = 1, · · · , n obtained in Step 4

in the t-th iterations, and find max_fitness Ftmax and the corresponding nest xtmax, if
Ftmax > best_fitness, update best_nest = xtmax and best_fitness = Ftmax.

Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to
Step 7.

Step 7. Return best_nest and best_fitness.

Entropy 2022, 24, x FOR PEER REVIEW 3 of 15

Generate n random host

nests xi (i=1,2,…,n)

Evaluate its

fitness: Fi

Update_nests

Abandon_nests

best_nest,

best_fitness

yes

no

t < iter_num

yes

no

Find best_nest,

best_fitness

Update best_nest,

best_fitness

t >= iter_num or

best_fitness=max

t=t+1

Figure 1. The traditional CS algorithm flowchart.

The implementation of the traditional CS algorithm is as follows:

Step 1. Generate n random host nests , 1, ,ix i n= , set t = 0 and compute the fitness

, 1, ,iF i n= .

Step 2. Find best_nest and best_fitness. If t < iter_num (the maximum number of

iterations), go to Step 3, or else go to the last step.

Step 3. Update_nests: generate , 1, ,new

ix i n= with Lévy flights and compute the

fitness , 1, ,new

iF i n= , if new

i iF F , update new

i ix x= .

Step 4. Abandon_nests: generate a random fraction P for every nest , 1, ,ix i n= , if P

< Pa, build a new one at new locations
new

ix via Lévy flights, and update new

i ix x= .

Step 5. Calculate , 1, ,t

iF i n= at the nest , 1, ,ix i n= obtained in Step 4 in the t-th

iterations, and find max_fitness maxtF and the corresponding nest maxtx , if
max best_fitnesstF  , update best_nest = maxtx and best_fitness = maxtF .

Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to Step

7.

Step 7. Return best_nest and best_fitness.

Figure 1. The traditional CS algorithm flowchart.

2.2. Improved Cuckoo Optimization for Optimizing Integer Parameters

To optimize integer parameters, the host nests xi, i = 1, · · · , n need to be rounded. To
this end, this article changed Steps 1, 3, and 4 in the cuckoo optimization algorithm to adapt
to the optimization of integer parameters. In order to distinguish it from the basic cuckoo
algorithm, this article refers to the above improved algorithm as cuckoo Algorithm 1.

Entropy 2022, 24, 845 4 of 14

Algorithm 1 Improved Cuckoo Optimization for Optimizing Integer Parameters

Step 1. Generate n random host nests xi, i = 1, · · · , n, rounding all nests, and compute the fitness
Fi, i = 1, · · · , n.
Step 2. Find best_nest and best_fitness. If t < iter_num, go to Step 3, else go to the last step.
Step 3. Update_nests: generate xnew

i , i = 1, · · · , n with Lévy flights, rounding all nests, and
compute the fitness Fnew

i , i = 1, · · · , n, if Fnew
i > Fi, update xi = xnew

i .
Step 4. Abandon_nests: generate a random fraction P for every nest xi, i = 1, · · · , n, if fraction P <
Pa, build a new one at new locations xnew

i via Lévy flights, rounding it, and update xi = xnew
i .

Step 5. Calculate Ft
i , i = 1, · · · , n at the nest xi, i = 1, · · · , n in the t-th iterations, find max_fitness

Ftmax and the corresponding nest xtmax, if Ftmax > best_fitness, update best_nest = xtmax and
best_fitness = Ftmax.
Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to Step 7.
Step 7. Return best_nest and best_fitness.

2.3. Improved Cuckoo Optimization for Optimizing Continuous and Integer Mixed Parameters

Assuming that the parameters to be trained include m continuous parameters and k
integer parameters, the i-th host nest xi needs to include two parts: the continuous part xm

i
and the integer part xk

i . Therefore, the i-th host nest can be expressed as xi =
[
xm

i xk
i
]
.

To optimize continuous and integer mixed parameters simultaneously, Steps 1, 3, and
4 in the cuckoo optimization algorithm need to be modified. To distinguish it from the
above two previous cuckoo algorithms, this article refers to the above improved algorithm
as cuckoo Algorithm 2.

Algorithm 2 Improved Cuckoo Optimization for Optimizing Continuous and Integer
Mixed Parameters

Step 1. Generate n random host nests xi, i = 1, · · · , n which include two parts, the random
continuous part xm

i , i = 1, · · · , n and the random integer part xk
i , i = 1, · · · , n. Then, compute the

fitness Fi, i = 1, · · · , n.
Step 2. Find best_nest and best_fitness. If t < iter_num, go to Step 3, else go to the last step.
Step 3. Update_nests: generate host nests xnew

i , i = 1, · · · , n with Lévy flights, rounding the
integer part, and compute the fitness Fnew

i , i = 1, · · · , n, if Fnew
i > Fi, update xi = xnew

i .
Step 4. Abandon_nests: For every nest xi, i = 1, · · · , n, generate a random fraction P, if fraction P
< Pa, build a new one at new locations xnew

i via Lévy flights and rounding the integer part, then
update xi = xnew

i .
Step 5. Calculate Ft

i , i = 1, · · · , n at the nest xi, i = 1, · · · , n in the t-th iterations, find max_fitness
Ftmax and the corresponding nest xtmax, if Ftmax > best_fitness, update best_nest = xtmax and
best_fitness = Ftmax.
Step 6. t = t + 1, if t < iter_num, and best_fitness < max, go to Step 3, or else go to Step 7.
Step 7. Return best_nest and best_fitness.

3. Hyper-Parameters in LS-SVM and LSTM
3.1. Hyper-Parameters in LS-SVM

LS-SVM is an improvement on the standard SVM. It changes the insensitive loss
function in SVM to a quadratic loss function, and replaces inequality constraints with
equality constraints. The solving coefficient is greatly reduced, and the solving speed
is accelerated.

LS-SVM is described as follows:
Take a given training dataset {xi, yi}, i = 1, · · · , n, where xi is an n-dimensional

input vector and yi is a one-dimensional output scalar. The optimization problem and the
constraint conditions of LS-SVM algorithm are:

min
w,e

J(w, b, ξ) =
1
2
‖w‖2 +

1
2

γ
n

∑
i=1

ξ2
i (1)

s.t yi

[
wTΦ(xi) + b

]
= 1− ξi, i = 1, · · · , n (2)

Entropy 2022, 24, 845 5 of 14

where w ∈ H is the weight vector and H is the higher dimension space projected by the
nonlinear function ϕ(x) from the original space R. Furthermore, ξi ∈ R is the slack variable
for xi, which measures the deviation degree of a datum from the ideal condition of the
classification model, and b ∈ R is the bias, γ is regularization factor. The regularization
factor is similar to the penalty factor C in SVM and is used to adjust the confidence interval
of LS-SVM and the proportion of empirical risk.

By solving the above optimization problem, the decision function for classification can
be obtained [29] as:

y(x) = sgn
[
∑n

i=1 αiyiK(x, xi) + b
]

(3)

where K(x, xi) is kernel functions, αi are positive real constants and b is a real constant
which can be obtained by solving the above optimization problem.

There are three commonly used kernel functions: linear kernel functions, polynomial
kernel functions, and radial basis kernel functions. Among the three commonly used
kernel functions, the radial basis kernel function can non-linearly map the samples to the
high-dimensional space, and has fewer parameters and operations compared with the
polynomial kernel function.

The width parameter σ (sigma) of the RBF function, together with the regularization
parameter γ (gam), directly affect the performance of the LS-SVM model. However, the
two hyper-parameters were continuously chosen as a fixed value according to experience.
Therefore, it is very important to study the selection method of σ, and γ. In this paper, we
used the cuckoo search algorithm to optimize the optimal gam and sigma, and then used
the LS-SVM to identify user activities.

3.2. Hyper-Parameters in LSTM

LSTM is one of the RNNs and the primary objectives of LSTM are to model long-term
dependencies and determine the optimal time lags for time series problems. These features
are especially desirable for activity recognition, due to the lack of a priori knowledge on the
relationship between prediction results and the length of input historical data. The LSTM
architecture is composed of one input layer, one recurrent hidden layer, which has a basic
unit that is memory block instead of traditional neuron node, and one output layer.

Suppose that the input sequence is denoted as x = (x1, x2, · · · , xT), the LSTM com-
putes the hidden vector sequence h = (h1, h2, · · · , hT) and the output predicted sequence
y = (y1, y2, · · · , yT) by iterating the following equations:

ht = H(Wxhxt + Whhht−1 + bh) (4)

yt = Whyht + by (5)

where the W term denotes weight matrices (e.g., Wxh is the input-hidden weight ma-
trix), the b term denotes bias vectors (e.g., bh is hidden bias vector) and H is the hidden
layer function.

For more information about the LSTM model, please refer to Reference [30]. In the
model of LSTM, there are integer hyper-parameter num_units and batch_size that affect
the performance. In the RMSprop optimization, there are continuous hyper-parameters,
lr and rho, which also affect the performance of LSTM. Thus, there are both integer and
continuous hyper-parameters affecting the performance of LSTM.

4. Validation

In this section, we validate the proposed method that used the cuckoo algorithm and
the improved algorithm to solve the hyper-parameters problems in LS-SVM and LSTM
with the activity recognition datasets in smart home. In doing so, we first optimized
hyper-parameters in LS-SVM, based on the basic cuckoo algorithm of Section 4.1. Then,
the improved cuckoo algorithms were used to optimize the hyper-parameters in LSTM
of Section 4.2.

Entropy 2022, 24, 845 6 of 14

4.1. Hyper-Parameter Optimization in LS-SVM

This subsection verified the effectiveness of the cuckoo algorithm in optimizing hyper-
parameters in LS-SVM based on WiFi-based indoor positioning dataset.

Wi-Fi based indoor positioning mainly uses the signal strength value generated by
Wi-Fi, that is, the RSSI value, to locate the user’s location. Each hotspot that releases Wi-Fi
signals in space is called AP (access point, the signal sent by the wireless router), and one
or more APs may be detected at each location. They can be detected at the same time.
The AP’s BSSID (that is, the MAC address, which uniquely identifies this hotspot) and the
LEVEL value of the Wi-Fi signal (the strength value of the received Wi-Fi signal, in dBm,
also known as the RSSI value, Received Signal Strength Indication) need to be obtained
The RSSI is continuously collected through a smart phone. First, it is necessary to write an
APP and, then, call the Wi-Fi module that comes with the phone to collect and process the
data. After that, the phone is saved or sent to the computer for processing.

Due to the instability and fading of the signal in space, the RSSI values measured at
the same place and at different times will fluctuate to a certain extent. Therefore, when
position matching is performed, corresponding algorithms are required to calculate the
distribution of values, and then test this to predict the distribution of values. For example,
input the corresponding coordinate matrix and RSSI matrix for training data, and then
input the tested RSSI vector to predict the coordinate value to complete the positioning.

Here we used the LS-SVM to predict the user’s location based on the RSSI value
generated by Wi-Fi. Since the model parameter gam and sigma of the least square support
vector machine have a great influence on the position prediction effect, we first used the
cuckoo search algorithm to optimize the optimal gam and sigma, and then used the least
square support vector machine to determine the position so as to make an estimate.

Errors continuously exist. Assuming that the real coordinates are (x0, y0) and the
predicted coordinates are (x, y), the error between the predicted position coordinates and
the real position coordinates in this paper was defined as:

error =
√
(x0− x)2 + (y0− y)2 (6)

Before optimization, we used the empirical parameters gam = 0.001, sigma = 0.05 as the
initial points, and the search intervals of gam and sigma were both set to [0.001, 1000]. The
predictions errors of the training position with iterate 10, 100 and 1000 times respectively
are shown in Figure 2.

Since the optimized parameters of iterate 1000 have the lowest prediction error for
the training position, we used this parameter to predict and estimate 33 test positions
during the test. Figure 3 is a schematic diagram of the errors before and after prediction at
33 locations, o is the estimated error of the empirical parameter gam = 0.001, sigma = 0.05
for each test location, * is the estimated error of the optimized parameter gam = 0.001,
sigma = 4.3507 for each test location. From the figure, we could see that the optimized
parameters greatly reduced the estimation error of the test data.

Since the coordinates of the 33 tested locations were very close to each other, we only
gave a schematic diagram of the prediction comparison of the first 8 locations. Figure 4
is a schematic diagram of the comparison of predictions before and after optimization.
In the figure, the i-th real coordinate position is marked as + with (L,1), . . . (L,8). The
figure representing the predicted position of the i-th coordinate using the parameters before
optimization (gam = 0.001, sigma = 0.05) is marked as* with (1,p1), . . . (8,p1). The predicted
position of the i-th coordinate using optimized parameters (gam = 0.001, sigma = 4.3507) is
marked as o with (1,p2), . . . (8,p2). From the figure, it can be seen that before optimization,
only 2 positions could be accurately positioned and after optimization, all 8 positions could
be accurately positioned. Thus, after the cuckoo optimized the hyper-parameters, the
LS-SVM model predicted the positions more accurately.

Entropy 2022, 24, 845 7 of 14

Entropy 2022, 24, x FOR PEER REVIEW 7 of 15

cuckoo search algorithm to optimize the optimal gam and sigma, and then used the least

square support vector machine to determine the position so as to make an estimate.

Errors continuously exist. Assuming that the real coordinates are (x0, y0) and the

predicted coordinates are (x, y), the error between the predicted position coordinates and

the real position coordinates in this paper was defined as:

2 2(0error) (0)x x y y− + −= (6)

Before optimization, we used the empirical parameters gam = 0.001, sigma = 0.05 as

the initial points, and the search intervals of gam and sigma were both set to [0.001, 1000].

The predictions errors of the training position with iterate 10, 100 and 1000 times

respectively are shown in Figure 2.

Since the optimized parameters of iterate 1000 have the lowest prediction error for

the training position, we used this parameter to predict and estimate 33 test positions

during the test. Figure 3 is a schematic diagram of the errors before and after prediction

at 33 locations, o is the estimated error of the empirical parameter gam = 0.001, sigma =

0.05 for each test location, * is the estimated error of the optimized parameter gam = 0.001,

sigma = 4.3507 for each test location. From the figure, we could see that the optimized

parameters greatly reduced the estimation error of the test data.

Figure 2. The prediction errors of the training position with iterates 10, 100 and 1000 times,

respectively.

Since the coordinates of the 33 tested locations were very close to each other, we only

gave a schematic diagram of the prediction comparison of the first 8 locations. Figure 4 is

a schematic diagram of the comparison of predictions before and after optimization. In

the figure, the i-th real coordinate position is marked as + with (L,1),...(L,8). The figure

representing the predicted position of the i-th coordinate using the parameters before

optimization (gam = 0.001, sigma = 0.05) is marked as* with (1,p1),...(8,p1). The predicted

position of the i-th coordinate using optimized parameters (gam = 0.001, sigma = 4.3507)

is marked as o with (1,p2),...(8,p2). From the figure, it can be seen that before optimization,

only 2 positions could be accurately positioned and after optimization, all 8 positions

could be accurately positioned. Thus, after the cuckoo optimized the hyper-parameters,

the LS-SVM model predicted the positions more accurately.

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0 200 400 600 800 1000 1200

E
rr

o
rs

Iteration times

Figure 2. The prediction errors of the training position with iterates 10, 100 and 1000 times, respectively.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 15

Figure 3. Prediction errors at 33 positions before and after optimization, (o) the estimated error of

the empirical parameter, (*) the estimated error of the optimized parameter.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(L1)
 (1,p1) (1,p2) (L2)

 (2,p1) (2,p2)(L3) (3,p1)

 (3,p2)

(L4) (4,p1)
 (4,p2)

(L5) (5,p1)
 (5,p2)

(L6) (6,p1)
 (6,p2)

(L7)
 (7,p1)
 (7,p2)

(L8) (8,p1) (8,p2)

Figure 3. Prediction errors at 33 positions before and after optimization, (o) the estimated error of the
empirical parameter, (*) the estimated error of the optimized parameter.

Entropy 2022, 24, 845 8 of 14

Entropy 2022, 24, x FOR PEER REVIEW 8 of 15

Figure 3. Prediction errors at 33 positions before and after optimization, (o) the estimated error of

the empirical parameter, (*) the estimated error of the optimized parameter.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(L1)
 (1,p1) (1,p2) (L2)

 (2,p1) (2,p2)(L3) (3,p1)

 (3,p2)

(L4) (4,p1)
 (4,p2)

(L5) (5,p1)
 (5,p2)

(L6) (6,p1)
 (6,p2)

(L7)
 (7,p1)
 (7,p2)

(L8) (8,p1) (8,p2)

Figure 4. The schematic diagram of real coordinate position (+), prediction positions without CS
optimization (*) and prediction positions with CS optimization (o).

4.2. Hyper-Parameter Optimization in LSTM

This subsection validated hyper-parameter optimization in LSTM with the ADL
Adlnormal dataset [31] and Kasteren Dataset [32]. Adlnormal dataset was collected in
a smart apartment test bed located on the WSU campus. The dataset recorded 24 WSU
undergraduate students performing five ADLs, one at a time. For the 6425 samples of
the data set, we divided them into three parts: 3000 for the training data set, 2000 for the
validation data set, and 1425 for the test data set. The Kasteren dataset was collected in a
three-room apartment where a 26-year-old man lives and there were 14 state-change sensors
installed in this apartment. We conducted experiments using the previous 30,000 time slices
and split the training, validation and test datasets into three equal parts, i.e., 10,000 time
slices, respectively.

In the model of LSTM, there are integer hyper-parameters num_units and batch_size
that affect the performance. In the RMSprop optimization, there are continuous hyper-
parameters, lr and rho, which also affect the performance of LSTM. Thus, there are both
integer and continuous hyper-parameters affecting the performance of LSTM. This subsec-
tion used the proposed hyper-parameter optimization algorithm to optimize continuous
hyper-parameters, integer hyper-parameters and mixed hyper-parameters, respectively.

In order to verify the effectiveness of our proposed method, the activity recognition
accuracy obtained by this method was not only compared with the empirical value, but also
compared with the activity recognition accuracy obtained by Optuna [25] optimizing hyper-
parameters. Finally, this subsection compared the accuracy of LSTM activity recognition
under different hyper-parameter optimization strategies, and analyzed the impact of
different strategies on the model.

Entropy 2022, 24, 845 9 of 14

4.2.1. Experiment 1

This experiment validated continuous hyper-parameter optimization in LSTM. To
optimize the two continuous hyper-parameters, lr and rho, we set other hyper-parameters
to constants (num_units = 128, batch_size = 200). The initial lr and rho were initialized
as [0.001, 0.9], which is the default value of RMSprop, and the search intervals for hyper-
parameters were lr ∈ [0.001, 0.01], rho ∈ (0.1, 0.99).

After CS optimization, the continuous hyper-parameters for the Adlnormal dataset
were lr = 0.00782101 and rho = 0.59629055, and the continuous hyper-parameters for the
Kasteren Dataset were lr = 0.00381946, rho = 0.56684786. It could be seen that the optimized
continuous hyper-parameters of LSTM were different for the different data sets.

Before continuous hyper-parameter optimization, the accuracy score of test data set
for Adlnormal dataset was 0.7986 and the accuracy score of test data set for Kasteren
Dataset was 0.8445. After continuous hyper-parameter optimization with CS, the accuracy
score of test data set for Adlnormal dataset was 0.8529 and the accuracy score of test
data set for Kasteren Dataset was 0.8537. Figure 5 compares the accuracy score of the
test data set with initialized hyper-parameters, hyper-parameter optimization with CS
and hyper-parameter optimization with Optuna, where CHO represents only continuous
hyper-parameters, lr and rho, optimized. From the figure, we can see that the activity
recognition accuracies of the two datasets both improved significantly after continuous
hyper-parameter optimization with CS and CS was better than Optuna.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 15

Figure 5. The accuracy score before and after continuous hyper-parameters optimization.

4.2.2. Experiment 2

This experiment validated integer hyper-parameter num_units and batch_size

optimization in LSTM, based on the improved Cuckoo optimization Algorithm 1 with the

ADL Adlnormal dataset and Kasteren dataset.

To optimize the integer hyper-parameter num_units and batch_size, we set

continuous hyper-parameters to constants (lr = 0.001, rho = 0.9). The integer hyper-

parameters were initialized as num_units = 128, batch_size = 200, and we set the search

interval of num_units and batch_size to [1, 256] and [1, 1000], respectively.

Set epochs = 10, the integer hyper-parameters after optimization for Adlnormal

dataset were num_units = 253, batch_size = 491, and the integer hyper-parameters after

optimization for Kasteren Dataset were num_units = 12, batch_size = 931. It could be seen

that the optimized integer hyper-parameters of LSTM were different for the different data

sets.

After integer hyper-parameter optimization, the accuracy score of test data set for

Adlnormal dataset was 0.8220 and the accuracy score of test data set for Kasteren Dataset

was 0.8560. Figure 6 compares the accuracy score of the test data set with initialized hyper-

parameters, hyper-parameter optimization with CS and hyper-parameter optimization

with Optuna, where IHO represents only integer hyper-parameter num_units and

batch_size optimized. From the figure, we can see that the activity recognition accuracies

of the two datasets both improved significantly after integer hyper-parameter

optimization with CS and CS was better than Optuna.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Adlnormal dataset

A
c
c
u
ra

c
y
 s

c
o
re

Initial
CHO by CS

CHO by Optunag
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Kasteren Dataset

A
c
c
u
ra

c
y
 s

c
o
re

Initial
CHO by CS

CHO by Optunag

Figure 5. The accuracy score before and after continuous hyper-parameters optimization.

4.2.2. Experiment 2

This experiment validated integer hyper-parameter num_units and batch_size opti-
mization in LSTM, based on the improved Cuckoo optimization Algorithm 1 with the ADL
Adlnormal dataset and Kasteren dataset.

To optimize the integer hyper-parameter num_units and batch_size, we set continuous
hyper-parameters to constants (lr = 0.001, rho = 0.9). The integer hyper-parameters were
initialized as num_units = 128, batch_size = 200, and we set the search interval of num_units
and batch_size to [1, 256] and [1, 1000], respectively.

Set epochs = 10, the integer hyper-parameters after optimization for Adlnormal dataset
were num_units = 253, batch_size = 491, and the integer hyper-parameters after optimiza-

Entropy 2022, 24, 845 10 of 14

tion for Kasteren Dataset were num_units = 12, batch_size = 931. It could be seen that the
optimized integer hyper-parameters of LSTM were different for the different data sets.

After integer hyper-parameter optimization, the accuracy score of test data set for
Adlnormal dataset was 0.8220 and the accuracy score of test data set for Kasteren Dataset
was 0.8560. Figure 6 compares the accuracy score of the test data set with initialized hyper-
parameters, hyper-parameter optimization with CS and hyper-parameter optimization with
Optuna, where IHO represents only integer hyper-parameter num_units and batch_size
optimized. From the figure, we can see that the activity recognition accuracies of the two
datasets both improved significantly after integer hyper-parameter optimization with CS
and CS was better than Optuna.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 15

Figure 6. The accuracy score before and after integer hyper-parameters optimization.

4.2.3. Experiment 3

This experiment validated mixed hyper-parameters lr, rho, num_units and

batch_size optimization in LSTM, based on the improved Cuckoo optimization Algorithm

2 with the ADL Adlnormal dataset and Kasteren dataset.

To optimize the continuous and integer hyper-parameters together, the mixed hyper-

parameters were initialized as lr = 0.001, rho = 0.9, num_units = 128, batch_size = 200, and

the search intervals for hyper-parameters were set as continuous hyper-parameters and

integer hyper-parameters above.

Set epochs = 10, the mixed hyper-parameters after optimization for Adlnormal

dataset were lr = 0.00989974980, rho = 0.765867432, num_units = 8, batch_size = 78, and the

integer hyper-parameters after optimization for Kasteren Dataset were lr = 0.00793324624,

rho = 0.758825652, num_units = 129, batch_size = 129. It could be seen that the optimized

mixed hyper-parameters of LSTM were different for the different data sets.

After mixed hyper-parameters optimization, the accuracy score of test data set for

Adlnormal dataset was 0.8446 and the accuracy score of test data set for the Kasteren

dataset was 0.8693. Figure 7 compares the accuracy score of the test data set with

initialized hyper-parameters, hyper-parameters optimization with CS and hyper-

parameters optimization with Optuna, where MHO represent optimized mixed hyper-

parameters lr, rho, num_units and batch_size together with lr = 0.001, rho = 0.9, num_units

= 128 and batch_size = 200 as the initial value of optimization. From the figure, we can see

that the activity recognition accuracies of the two datasets both improved significantly

after mixed hyper-parameter optimization with CS and CS was better than Optuna.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Adlnormal dataset

A
c
c
u
ra

c
y
 s

c
o
re

Initial
IHO by CS

IHO by Optunag

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Kasteren Dataset

A
c
c
u
ra

c
y
 s

c
o
re

Initial
IHO by CS

IHO by Optunag

Figure 6. The accuracy score before and after integer hyper-parameters optimization.

4.2.3. Experiment 3

This experiment validated mixed hyper-parameters lr, rho, num_units and batch_size
optimization in LSTM, based on the improved Cuckoo optimization Algorithm 2 with the
ADL Adlnormal dataset and Kasteren dataset.

To optimize the continuous and integer hyper-parameters together, the mixed hyper-
parameters were initialized as lr = 0.001, rho = 0.9, num_units = 128, batch_size = 200, and
the search intervals for hyper-parameters were set as continuous hyper-parameters and
integer hyper-parameters above.

Set epochs = 10, the mixed hyper-parameters after optimization for Adlnormal dataset
were lr = 0.00989974980, rho = 0.765867432, num_units = 8, batch_size = 78, and the
integer hyper-parameters after optimization for Kasteren Dataset were lr = 0.00793324624,
rho = 0.758825652, num_units = 129, batch_size = 129. It could be seen that the optimized
mixed hyper-parameters of LSTM were different for the different data sets.

After mixed hyper-parameters optimization, the accuracy score of test data set for
Adlnormal dataset was 0.8446 and the accuracy score of test data set for the Kasteren dataset
was 0.8693. Figure 7 compares the accuracy score of the test data set with initialized hyper-
parameters, hyper-parameters optimization with CS and hyper-parameters optimization
with Optuna, where MHO represent optimized mixed hyper-parameters lr, rho, num_units
and batch_size together with lr = 0.001, rho = 0.9, num_units = 128 and batch_size = 200 as
the initial value of optimization. From the figure, we can see that the activity recognition

Entropy 2022, 24, 845 11 of 14

accuracies of the two datasets both improved significantly after mixed hyper-parameter
optimization with CS and CS was better than Optuna.

Entropy 2022, 24, x FOR PEER REVIEW 12 of 15

Figure 7. The accuracy score before and after mixed hyper-parameters optimization.

4.2.4. Experiment 4

This experiment compared the accuracy of LSTM activity recognition under different

hyper-parameter optimization strategies, and analyzed the impact of different strategies

on the model with the ADL Adlnormal dataset and Kasteren Dataset.

The optimized hyper-parameter and activity recognition accuracy with different

strategies are shown in Table 1, where CHO and IHO meant optimizing continuous

hyper-parameters, lr and rho, and optimizing integer hyper-parameters, num_units and

batch_size, separately, and finally, the separately trained parameters were merged

together for activity recognition. CHO after IHO meant optimizing continuous hyper-

parameters, lr and rho, with optimized integer hyper-parameters, num_units and

batch_size, as input. IHO after CHO meant optimizing integer hyper-parameters,

num_units and batch_size, with optimized continuous hyper-parameters, lr and rho, as

input. MHO after CHO and IHO meant optimizing mixed hyper-parameters with CHO

and IHO result as the initial value of optimization.

Table 1. The optimized hyper-parameter with different strategies.

 Hyper-Parameters of Adlnormal Dataset Hyper-Parameters of Kasteren Dataset

Initial hyper-parameters (0.001, 0.9, 128, 200) (0.001, 0.9, 128, 200)

CHO (0.00782101, 0.59629055, 128, 200) (0.00381946, 0.56684786, 128, 200)

IHO (0.001, 0.9, 253, 491) (0.001, 0.9, 12, 931)

Mixed (0.00989974980, 0.765867432, 8, 78) (0.00793324624, 0.758825652, 129, 129)

CHO and IHO (0.00782101, 0.59629055, 253, 491) (0.00381946, 0.56684786, 12, 931)

CHO after IHO (0.00528674, 0.72591224, 253, 491) (0.0095465, 0.78940525, 12, 931)

IHO after CHO (0.00782101, 0.59629055, 187, 1) (0.00381946, 0.56684786, 141, 73)

MHO after CHO and IHO (0.00934384542, 0.634805436, 1, 64) (0.00501521055, 0.97690847, 77, 44)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Adlnormal dataset

A
c
c
u
ra

c
y
 s

c
o
re

Initial

MHO by CS

MHO by Optunag

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kasteren Dataset

A
c
c
u
ra

c
y
 s

c
o
re

Initial

MHO by CS

MHO by Optunag

Figure 7. The accuracy score before and after mixed hyper-parameters optimization.

4.2.4. Experiment 4

This experiment compared the accuracy of LSTM activity recognition under different
hyper-parameter optimization strategies, and analyzed the impact of different strategies on
the model with the ADL Adlnormal dataset and Kasteren Dataset.

The optimized hyper-parameter and activity recognition accuracy with different
strategies are shown in Table 1, where CHO and IHO meant optimizing continuous
hyper-parameters, lr and rho, and optimizing integer hyper-parameters, num_units and
batch_size, separately, and finally, the separately trained parameters were merged together
for activity recognition. CHO after IHO meant optimizing continuous hyper-parameters, lr
and rho, with optimized integer hyper-parameters, num_units and batch_size, as input.
IHO after CHO meant optimizing integer hyper-parameters, num_units and batch_size,
with optimized continuous hyper-parameters, lr and rho, as input. MHO after CHO and
IHO meant optimizing mixed hyper-parameters with CHO and IHO result as the initial
value of optimization.

Table 1. The optimized hyper-parameter with different strategies.

Hyper-Parameters of Adlnormal Dataset Hyper-Parameters of Kasteren Dataset

Initial hyper-parameters (0.001, 0.9, 128, 200) (0.001, 0.9, 128, 200)
CHO (0.00782101, 0.59629055, 128, 200) (0.00381946, 0.56684786, 128, 200)
IHO (0.001, 0.9, 253, 491) (0.001, 0.9, 12, 931)

Mixed (0.00989974980, 0.765867432, 8, 78) (0.00793324624, 0.758825652, 129, 129)
CHO and IHO (0.00782101, 0.59629055, 253, 491) (0.00381946, 0.56684786, 12, 931)
CHO after IHO (0.00528674, 0.72591224, 253, 491) (0.0095465, 0.78940525, 12, 931)
IHO after CHO (0.00782101, 0.59629055, 187, 1) (0.00381946, 0.56684786, 141, 73)

MHO after CHO and IHO (0.00934384542, 0.634805436, 1, 64) (0.00501521055, 0.97690847, 77, 44)

Entropy 2022, 24, 845 12 of 14

Figures 8 and 9 compared the accuracy score of different hyper-parameter optimization
strategies for Adlnormal dataset and Kasteren Dataset, respectively. From the figure, we can
see that the activity recognition accuracy was improved after hyper-parameter optimization
for all optimization strategies. Compared with integer parameters, continuous parameters
had a greater impact on the LSTM. Mixed hyper-parameter optimization obtained a stable
improvement effect. The optimization strategies CHO and IHO, CHO after IHO, IHO after
CHO, MHO after CHO and IHO also obtained relatively good effects.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 15

Figures 8 and 9 compared the accuracy score of different hyper-parameter

optimization strategies for Adlnormal dataset and Kasteren Dataset, respectively. From

the figure, we can see that the activity recognition accuracy was improved after hyper-

parameter optimization for all optimization strategies. Compared with integer

parameters, continuous parameters had a greater impact on the LSTM. Mixed hyper-

parameter optimization obtained a stable improvement effect. The optimization strategies

CHO and IHO, CHO after IHO, IHO after CHO, MHO after CHO and IHO also obtained

relatively good effects.

Figure 8. The activity recognition accuracy of different hyper-parameter optimization strategies for

Adlnormal dataset.

0.78

0.8

0.82

0.84

0.86

0.88

0.9
The accuracy score of Adlnormal dataset

Initial CHO IHO Mixed
CHO and IHO

CHO after IHO
IHO after CHO

MHO after CHO and IHO

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875
The accuracy score of Kasteren Dataset

Initial CHO IHO Mixed
CHO and IHO

CHO after IHO
IHO after CHO

MHO after CHO and IHO

Figure 8. The activity recognition accuracy of different hyper-parameter optimization strategies for
Adlnormal dataset.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 15

Figures 8 and 9 compared the accuracy score of different hyper-parameter

optimization strategies for Adlnormal dataset and Kasteren Dataset, respectively. From

the figure, we can see that the activity recognition accuracy was improved after hyper-

parameter optimization for all optimization strategies. Compared with integer

parameters, continuous parameters had a greater impact on the LSTM. Mixed hyper-

parameter optimization obtained a stable improvement effect. The optimization strategies

CHO and IHO, CHO after IHO, IHO after CHO, MHO after CHO and IHO also obtained

relatively good effects.

Figure 8. The activity recognition accuracy of different hyper-parameter optimization strategies for

Adlnormal dataset.

0.78

0.8

0.82

0.84

0.86

0.88

0.9
The accuracy score of Adlnormal dataset

Initial CHO IHO Mixed
CHO and IHO

CHO after IHO
IHO after CHO

MHO after CHO and IHO

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875
The accuracy score of Kasteren Dataset

Initial CHO IHO Mixed
CHO and IHO

CHO after IHO
IHO after CHO

MHO after CHO and IHO

Figure 9. The activity recognition accuracy of different hyper-parameter optimization strategies for
Kasteren Dataset.

Entropy 2022, 24, 845 13 of 14

5. Conclusions

In order to reduce the hyper-parameter settings influence of certain algorithms on
activity recognition, this paper proposed to use the cuckoo optimization algorithm to
optimize the hyper-parameters in the algorithms, and improved the cuckoo algorithm to
adapt to the optimization of integer hyper-parameters and hybrid hyper-parameters in
activity recognition problems.

To validate the proposed method, this paper first optimized the hyper-parameters
in LS-SVM, based on the basic cuckoo algorithm, and compared the WiFi-based indoor
localization results before and after optimizing the hyper-parameters. The experimental
results showed that after CS optimized the hyper-parameters, the LS-SVM model predicted
the positions more accurately. Then, this paper validated hyper-parameter optimization
in LSTM with the ADL Adlnormal dataset and Kasteren Dataset and compared the activ-
ity recognition accuracy of CS-optimized hyper-parameters, empirical hyper-parameters,
and Optuna optimized hyper-parameters. Experimental results showed that the opti-
mized hyper-parameters of LSTM were different for different data sets and optimizing
hyper-parameters with CS obtained the best activity recognition accuracy compared with
empirical hyper-parameters, and Optuna optimized hyper-parameters. Finally, this paper
compared the accuracy of LSTM activity recognition under different hyper-parameter opti-
mization strategies, and analyzed the impact of different strategies on the model. The result
showed that the mixed hyper-parameter optimized with the improved cuckoo algorithm
obtained a stable improvement effect. The other optimization strategies also obtained
relatively good effects.

Each contribution to activity recognition brings us one step closer to the realization of
Ambient Intelligence. As future work, we plan to expand hyper-parameter optimization
in LS-SVM and LSTM to other activity recognition algorithms, and expand the cuckoo
algorithm hyper-parameter optimization to other artificial intelligence algorithms, such as
particle swarm and wolf swarm algorithms.

Author Contributions: Conceptualization, Y.T. and B.Y.; methodology, Y.T.; software, Y.T.; validation,
Y.T.; formal analysis, B.Y.; investigation, B.Y.; resources, Y.T.; writing—original draft preparation, Y.T.;
writing—review and editing, B.Y.; visualization, Y.T.; supervision, Y.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant
number 11872166 and 11502063; Key scientific research project of Hefei Normal University, grant
number 2021KJZD18.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition: A

comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]
2. Jobanputra, C.; Bavishi, J.; Doshi, N. Human activity recognition: A survey. Procedia Comput. Sci. 2019, 155, 698–703. [CrossRef]
3. Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob.

Comput. 2009, 5, 277–298. [CrossRef]
4. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-based Human Activity Recognition: Overview,

Challenges, and Opportunities. ACM Comput. Surv. (CSUR) 2021, 54, 1–40. [CrossRef]
5. Fan, L.; Wang, Z.; Wang, H. Human activity recognition model based on decision tree. In Proceedings of the 2013 International

Conference on Advanced Cloud and Big Data, Nanjing, China, 13–15 December 2013; pp. 64–68.
6. Jain, A.; Kanhangad, V. Human activity classification in smartphones using accelerometer and gyroscope sensors. IEEE Sens. J.

2017, 18, 1169–1177. [CrossRef]
7. Deshpnande, A.; Warhade, K.K. An Improved Model for Human Activity Recognition by Integrated feature Approach and

Optimized SVM. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI),
Pune, India, 5–7 March 2021; pp. 571–576.

8. Tapia, E.M.; Intille, S.S.; Larson, K. Activity recognition in the home using simple and ubiquitous sensors. In Proceedings of the
International Conference on Pervasive Computing, Vienna, Austria, 21–23 April 2004; Springer: Berlin/Heidelberg, Germany;
pp. 158–175.

http://doi.org/10.1016/j.patcog.2020.107561
http://doi.org/10.1016/j.procs.2019.08.100
http://doi.org/10.1016/j.pmcj.2009.04.001
http://doi.org/10.1145/3447744
http://doi.org/10.1109/JSEN.2017.2782492

Entropy 2022, 24, 845 14 of 14

9. Singla, G.; Cook, D.J.; Schmitter-Edgecombe, M. Recognizing independent and joint activities among multiple residents in smart
environments. J. Ambient Intell. Humaniz. Comput. 2010, 1, 57–63. [CrossRef] [PubMed]

10. Nazerfard, E.; Das, B.; Holder, L.B.; Cook, D.J. Conditional random fields for activity recognition in smart environments.
In Proceedings of the 1st ACM International Health Informatics Symposium, Arlington, VA, USA, 11–12 November 2010;
pp. 282–286.

11. Tong, Y.; Chen, R. Latent-Dynamic Conditional Random Fields for recognizing activities in smart homes. J. Ambient Intell. Smart
Environ. 2014, 6, 39–55. [CrossRef]

12. Bevilacqua, A.; MacDonald, K.; Rangarej, A.; Widjaya, V.; Caulfield, B.; Kechadi, T. Human activity recognition with convolutional
neural networks. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Würzburg, Germany, 16–20 September 2018; pp. 541–552.

13. Murad, A.; Pyun, J.Y. Deep recurrent neural networks for human activity recognition. Sensors 2017, 17, 2556. [CrossRef] [PubMed]
14. Bengio, Y. Deep learning of representations: Looking forward. In Proceedings of the International Conference on Statistical

Language and Speech Processing, Cardiff, UK, 23–25 November 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–37.
15. Klatzer, T.; Pock, T. Continuous hyper-parameter learning for support vector machines. In Proceedings of the Computer Vision

Winter Workshop (CVWW), Seggau, Austria, 9–11 February 2015; pp. 39–47.
16. Diale, M.; Van Der Walt, C.; Celik, T.; Modupe, A. Feature selection and support vector machine hyper-parameter optimisation

for spam detection. In Proceedings of the 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics
International Conference (PRASA-RobMech), Stellenbosch, South Africa, 30 November–2 December 2016; pp. 1–7.

17. Loussaief, S.; Abdelkrim, A. Convolutional neural network hyper-parameters optimization based on genetic algorithms. Int. J.
Adv. Comput. Sci. Appl. 2018, 9, 252–266. [CrossRef]

18. Foysal, M.; Ahmed, F.; Sultana, N.; Rimi, T.A.; Rifat, M.H. Convolutional Neural Network Hyper-Parameter Optimization
Using Particle Swarm Optimization. In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2021;
pp. 363–373.

19. Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Processing Lett. 1999, 9, 293–300.
[CrossRef]

20. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
21. Nikbakht, S.; Anitescu, C.; Rabczuk, T. Optimizing the neural network hyperparameters utilizing genetic algorithm. J. Zhejiang

Univ. Sci. A 2021, 22, 407–426. [CrossRef]
22. Wang, Y.; Zhang, H.; Zhang, G. cPSO-CNN: An efficient PSO-based algorithm for fine-tuning hyper-parameters of convolutional

neural networks. Swarm Evol. Comput. 2019, 49, 114–123. [CrossRef]
23. Koch, P.; Golovidov, O.; Gardner, S.; Wujek, B.; Griffin, J.; Xu, Y. Autotune: A derivative-free optimization framework for

hyperparameter tuning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, London, UK, 19–23 August 2018; pp. 443–452.

24. Liu, J.; Ploskas, N.; Sahinidis, N.V. Tuning BARON using derivative-free optimization algorithms. J. Glob. Optim. 2019, 74,
611–637. [CrossRef]

25. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4–8 August 2019; pp. 2623–2631.

26. Ekundayo, I. OPTUNA Optimization Based CNN-LSTM Model for Predicting Electric Power Consumption. Master’s Thesis,
National College of Ireland, Dublin, Ireland, 2020.

27. Nishitsuji, Y.; Nasseri, J. LSTM with Forget Gates Optimized by Optuna for Lithofacies Prediction. 2022. Available online:
https://eartharxiv.org/repository/view/3164/ (accessed on 30 May 2022).

28. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

29. Han, H.; Cui, X.; Fan, Y.; Qing, H. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault
indicative features. Appl. Therm. Eng. 2019, 154, 540–547. [CrossRef]

30. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.
Sensors 2016, 16, 115. [CrossRef] [PubMed]

31. Cook, D.J.; Schmitter-Edgecombe, M. Assessing the quality of activities in a smart environment. Methods Inf. Med. 2009, 48,
480–485. [PubMed]

32. Van Kasteren, T.; Noulas, A.; Englebienne, G.; Krose, B.J.A. Accurate activity recognition in a home setting. In Proceedings of the
10th International Conference on Ubiquitous Computing, Seoul, Korea, 21–24 September 2008; pp. 1–9.

http://doi.org/10.1007/s12652-009-0007-1
http://www.ncbi.nlm.nih.gov/pubmed/20975986
http://doi.org/10.3233/AIS-130240
http://doi.org/10.3390/s17112556
http://www.ncbi.nlm.nih.gov/pubmed/29113103
http://doi.org/10.14569/IJACSA.2018.091031
http://doi.org/10.1023/A:1018628609742
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1631/jzus.A2000384
http://doi.org/10.1016/j.swevo.2019.06.002
http://doi.org/10.1007/s10898-018-0640-3
https://eartharxiv.org/repository/view/3164/
http://doi.org/10.1016/j.applthermaleng.2019.03.111
http://doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://www.ncbi.nlm.nih.gov/pubmed/19448886

	Introduction
	Improved Cuckoo Optimization Search Algorithm
	Traditional Cuckoo Optimization Algorithm
	Improved Cuckoo Optimization for Optimizing Integer Parameters
	Improved Cuckoo Optimization for Optimizing Continuous and Integer Mixed Parameters

	Hyper-Parameters in LS-SVM and LSTM
	Hyper-Parameters in LS-SVM
	Hyper-Parameters in LSTM

	Validation
	Hyper-Parameter Optimization in LS-SVM
	Hyper-Parameter Optimization in LSTM
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusions
	References

