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Abstract

The unlimited proliferative capacity of human pluripotent stem cells (hPSCs) fortifies

it as one of the most attractive sources for cell therapy application in diabetes. In the

past two decades, vast research efforts have been invested in developing strategies

to differentiate hPSCs into clinically suitable insulin-producing endocrine cells or

functional beta cells (β cells). With the end goal being clinical translation, it is critical

for hPSCs and insulin-producing β cells to be derived, handled, stored, maintained

and expanded with clinical compliance. This review focuses on the key processes and

guidelines for clinical translation of human induced pluripotent stem cell (hiPSC)-

derived β cells for diabetes cell therapy. Here, we discuss the (1) key considerations

of manufacturing clinical-grade hiPSCs, (2) scale-up and differentiation of clinical-

grade hiPSCs into β cells in clinically compliant conditions and (3) mandatory quality

control and product release criteria necessitated by various regulatory bodies to

approve the use of the cell-based products.

1 | INTRODUCTION

Diabetes is a debilitating disease affecting millions worldwide.1

Depending on the subtype, diabetes can be attributed to the autoim-

mune destruction of pancreatic beta cells (β cells) in type 1 diabetes

(T1D), or dysfunction of β cells in type 2 diabetes (T2D). As such, cura-

tive treatment of diabetes may be attained by β cell replacement

therapy. Apart from whole pancreas or islet transplantation, β cells may

also be replaced by transplanting human pluripotent stem cell (hPSC)-

derived β cells into diabetes patients to achieve insulin independence.

hPSCs are one of the most attractive sources of cells for cell therapy

applications due to their unlimited proliferative capacity and their ability to

differentiate into lineages of the three germ layers.2 While tremendous

progress has been made in developing and refining strategies to

Lay Shuen Tan and Juin Ting Chen are the co-authors.

Received: 26 September 2021 Revised: 26 January 2022 Accepted: 28 March 2022

DOI: 10.1111/cpr.13232

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. Cell Proliferation published by John Wiley & Sons Ltd.

Cell Prolif. 2022;55:e13232. wileyonlinelibrary.com/journal/cpr 1 of 19

https://doi.org/10.1111/cpr.13232

https://orcid.org/0000-0001-5901-7075
mailto:ateo@imcb.a-star.edu.sg
mailto:drainteo@gmail.com
mailto:drainteo@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/cpr
https://doi.org/10.1111/cpr.13232


differentiate hPSCs into clinically suitable insulin-producing endocrine

derivatives or functional β cells,3–7 clinical application and commercializa-

tion of these functional β cells for diabetes treatment are impeded by

numerous difficulties, notably the regulatory challenges surrounding the

generation, release and clinical use of stem cell-derived products for cell

therapy purposes.8–11

In recent years, there have been various international efforts by

key stem cell experts to harmonize the critical quality attributes

(CQAs) of clinically compliant stem cells and stem cell-derived cell

therapy products,12–17 but the requirements dictated by different

national and international regulatory bodies and organizations

(Table 1) may still vary.18–28 Therefore, the industry will need to

assess which countries to operate in and engage the relevant regula-

tory authorities to ensure compliance in the entire cell product

manufacturing process. Generally, the overarching principles that are

important in the generation of clinically compliant stem cell-based

products that conform to good manufacturing practice (GMP) are:

writing and following of site master files and standard operating pro-

cedures (SOPs), having well-defined procurement, storage, shipment

and tracking processes, incorporating proper facility design, training

of staff to perform and document all laboratory and administrative

processes, regular equipment maintenance and last but not least,

conducting regular quality checks and compliance assessments to

ensure accountability, performance and safety in all processes and

end products (Figure 1).23,25

Here, we focus on discussing human induced pluripotent stem cell

(hiPSC)-derived insulin-producing β cells as the commercial therapeutic

product for diabetes treatment. While both human embryonic stem

cells (hESCs) and hiPSCs have been used for cell therapy,2 the deriva-

tion of hESCs is accompanied by the ethically controversial destruction

of human embryos. As such, the derivation of hESCs is permitted only

in parts of the United States (US), China and Europe (EU).29 In contrast,

hiPSCs are a more universal resource for clinical and commercial pur-

poses as they do not face the same ethical issues that hESCs face, and

can also be prepared from various somatic cell types of choice.30

In this review, we analyse the suitability of various somatic cell

reprogramming strategies to generate hiPSCs destined for clinical

translation, discuss the importance of xeno-free culture systems

and summarize the mandatory CQAs of clinically compliant hiPSCs.

We also provide insights into the methods and technical complexi-

ties involved in the scale-up of clinical-grade hiPSCs before differ-

entiating them into insulin-producing β cells—a process that is

technically challenging but vital for the success of large-scale com-

mercial cell manufacturing.31 Furthermore, we offer suggestions on

key parameters for quality control (QC) testing during specific

stages in the differentiation process and provide a summary of the

current efforts on transitioning to serum-free and/or xeno-free dif-

ferentiation culture medium to rule out the possibility of animal-

derived infections in future transplant patients. Last but not least,

we present a broad overview of the guidelines governing the

release of hiPSC-derived β cells for clinical applications in diabetes

treatment, detailing the extensive testing required by international

regulatory bodies to ascertain product identity, viability, sterility,

safety and potency before product release.

2 | GENERATION, CULTURE, QC TESTING
AND CHARACTERIZATION OF CLINICAL-
GRADE HIPSCS

2.1 | Reprogramming strategies

The first major step in generating hiPSCs of clinical grade is to select a

suitable and safe reprogramming approach for cell therapy applica-

tions. Successful reprogramming of human skin fibroblasts into hiPSCs

with the induction of four transcription factors (OCT3/4, SOX2, c-MYC

and KLF4) using retroviral transduction was first achieved in 2007 by

Takahashi and Yamanaka.32 However, the use of retroviruses causes

undesired permanent integration of viral vector transgene and back-

bone into the genome, thus raising concerns pertaining to the risk of

unintended insertional mutagenesis.32

Since then, safer reprogramming alternatives to generate clinical-

grade hiPSCs have been developed. Amongst these, the use of the

Sendai virus (SeV), episomal vectors and synthetic mRNA are some of

the most efficient reprogramming methods and will be discussed in

detail below. A comparison of reprogramming approaches with SeV,

episomal vectors and synthetic mRNA is also summarized in Table 2.

As SeV is a single-stranded negative-sense non-integrative RNA

virus that does not replicate through the DNA phase, SeV repro-

gramming strategies thus harbour no risk of genome integration. Its use

in reprogramming was first reported in 2009 by Fusaki et al.,50 and

many studies have demonstrated high efficiency in reprogramming mul-

tiple somatic cell types into hiPSCs.37,44,50 However, it is to be noted

that the use of virus in SeV-based reprogramming complicates the regu-

latory authority approval process, and there is a need to dilute and

eventually rid hiPSCs of residual SeV via passaging.37,51 Based on Mac-

arthur et al.,45 complete vector clearance can be achieved without com-

plications within �10 passages after SeV reprogramming.

In contrast, the use of plasmid DNA in episomal reprogramming

renders ease of assimilating this method into clinically compliant pro-

cesses as compared to SeV reprogramming.37,51 While episomal

reprogramming efficiency is poorer than that of SeV, several groups

have developed techniques that improved the efficiency of this

method of reprogramming.46,49,53,54 It is notable that one drawback of

the episomal method is that there remains a low possibility of epi-

somal vector integration into the genome.37,51

Out of the three methods, the use of synthetic mRNA is possibly the

safest for clinical translation as it does not utilize virus or plasmid DNA

that carries an inherent risk of genome integration.52 However, its main

limitation is its poorer efficiency in reprogramming some non-invasive cell

sources such as blood and keratinocytes (Table 2). Furthermore, this

method is laborious as mRNAs must be fed to the cells daily until colony

emergence.37,52 Therefore, this method is mainly recommended when

skin fibroblasts are used as the starting somatic cell type.

2.2 | Somatic cell types suitable for reprogramming

Blood cells are generally prioritized over skin fibroblasts as the starting

somatic cell type for reprogramming due to the ease of accessibility.55–57
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TABLE 1 Non-exhaustive list of regulatory authorities and stem cell organizations involved in stem cell therapies

Regulatory authorities

Region Name Country/sub-region

The West Food and Drug Administration (FDA) United States

European Medicines Agency (EMA) Europe

Human Fertilization and Embryo Authority (HFEA) United Kingdom

Health Canada Canada

National Regulatory Authorities of Brazil (ANVISA) Brazil

The East Pharmaceuticals and Medical Devices Agency (PMDA) and Ministry of Health,

Labour and Welfare (MHLW)

Japan

National Medical Products Administration (NMPA), formerly known as China

Food and Drug Administration (CFDA)

China

Therapeutic Goods Administration (TGA) Australia

Ministry of Food and Drug Safety (MFDS), formerly known as the Korea Food &

Drug Administration (KFDA)

Korea

Health Sciences Authority (HSA) Singapore

Taiwan Food and Drug Administration (TFDA) Taiwan

The Department of Health-Abu Dhabi Abu Dhabi

Stem cell organizations

Region Name Country/sub-region

International Society for Stem Cell Research (ISSCR) Global

International Society for Cell & Gene Therapy (ISCT) Global

International Stem Cell Banking Initiative (ISCBI) Global

The Global Alliance for iPSC Therapies (GAiT) Global

European Union (EU) EuroStemCell Europe

German Society for Stem Cell Research (GSZ) Germany

German Stem Cell Network (GSCN) Germany

Stem Cell Network North Rhine-Westphalia (NRW) Germany

French Society for Stem Cell Research France

Associazione di Biologia Cellulare e del Differenziamento (ABCD) Italy

Danish Stem Cell Society (DASCS) Denmark

Norwegian Center for Stem Cell Research (NCSCR) Norway

Austrian Society of Stem Cell Research Austria

Swiss Stem Cell Network Switzerland

Belgian Society for Stem Cell Research (BeSSCR) Belgium

Irish Stem Cell Foundation Ireland

United Kingdom (UK) UK Stem Cell Foundation UK

UK Stem Cell Bank UK

UK Regenerative Medicine Platform UK

Americas California Institute for Regenerative Medicine (CIRM) California

New York Stem Cell Foundation (NYSCF) New York

Stem Cell Network (SCN) Canada

Canadian Stem Cell Foundation Canada

Associação Brasileira de Terapia Celular (Brazilian Association for Cell Therapy)

(ABTCel)

Brazil

Rede Nacional de Terapia Celular (National Network of Cell Therapy) Brazil

Asia-Pacific Region Australasian Society for Stem Cell Research (ASSCR) Australasia

Stem Cells Australia Australia

The National Stem Cell Foundation of Australia (NSCFA) Australia

(Continues)
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Furthermore, skin fibroblasts harbour somatic mutation risks due to out-

ward exposure to environmental mutagens such as sunlight.58 Other

non-invasive cell sources such as exfoliated renal epithelial cells from

urine and keratinocytes from hair can also be considered if desired.59,60

Ultimately, the choice of reprogramming method and starting somatic

cell type will be based on the industry's preference when aligned with

the regulatory requirements of their site of operation.

2.3 | Xeno-free culture conditions

The use of xeno-free culture reduces the risk of immune reactions and

zoonotic infections associated with the use of animal-derived reagents.

The manufacturing process should thus be designed in which the entire

pipeline is done in chemically defined xeno-free culture systems. In

addition, all cell culture components should be defined chemically for

TABLE 1 (Continued)

Regulatory authorities

Japanese Society for Regenerative Medicine (JSRM) Japan

Stem Cell Society Singapore (SCSS) Singapore

Korean Society for Stem Cell Research (KSSCR) Korea

Chinese Society for Stem Cell Research (CSSCR) China

Taiwan Society for Stem Cell Research (TSSCR) Taiwan

Middle-East Israel Stem Cell Society (ISCS) Israel

Regenerative and Bionic Medicine Network (RBMN) of Egypt Egypt

Abu Dhabi Stem Cells Center (ADSCC) Abu Dhabi

F IGURE 1 Workflow to generate clinically compliant stem cell-based products with good manufacturing practice (GMP). First, planning of the
correct facility design and processes is enabled by putting together a multidisciplinary team of stem cell biologists, process engineers and skilled
laboratory managers. Standard operating procedures (SOPs) need to be devised for both administrative procedures such as procurement and shipping of
raw materials, reagents and equipment and laboratory procedures such as stem cell maintenance, protocol for differentiating stem cells to end-stage cell
products, operating bioreactor systems and performing flow cytometry for cell characterization. After the planning phase and setting up of all GMP
facilities and processes, staff must be trained on all relevant SOPs before proceeding with the manufacturing process. Trained staff will be required to
execute the SOPs, document all their activities and observations in logbooks and record all quality control data generated. To ensure quality
performance, routine equipment maintenance and on-site audit checks by regulators on current processes, previous batch records, staff practices and
hygiene will need to be conducted. Processes will need to be reviewed and improved if necessary. This figure is created with BioRender.com
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standardization when culturing hiPSCs, for documentation purposes

and for preventing issues arising from lot-to-lot variability in undefined

components such as fetal bovine serum (FBS).61–65

Currently, xeno-free conditions have been successfully incorporated

into SeV, episomal and synthetic mRNA reprogramming processes by

several groups.44–48 A multitude of xeno-free stem cell culture media

and chemically defined feeder-free extracellular matrix proteins, such as

vitronectin and laminin, are now commercially available to replace feeder

cells and Matrigel in the surface coating of hiPSC culture dishes. These

should all be integrated into the production process.44–48,61,62,64–74

Finally, the hiPSC passaging reagent should also be carefully chosen

based on efficiency, reliability and reproducibility.62,71,74

2.4 | Characterization of clinical-grade hiPSCs

Following the reprogramming of somatic cells to hiPSCs, it is crucial for hiP-

SCs to undergo mandatory QC testing and characterization to ascertain their

CQAs as high quality clinical grade hiPSC lines. These tests are designed to

check for (1) sterility, (2) purity, (3) cell viability, (4) genomic identity/stability

and (5) pluripotency (Table 3). For sterility and purity testing, hiPSCs must

test negative for bacteria, virus and mycoplasma, and should be free of

endotoxins. Post-thawing, the viability per vial of hiPSCs should be minimally

50% but stricter criteria of 60%–80% have also been imposed.61,75,76

To ascertain genomic identity/stability, the clearance of residual

reprogramming vector and/or virus in seed and master cell banks must be

proven by appropriate methods.77,78 Karyotyping analysis by Giemsa

banding (G-banding) should also be performed to confirm with 95% prob-

ability that the hiPSCs do not carry chromosomal abnormalities andwhere

possible, whole genome or exome sequencing can also be performed.61,78

To distinguish between hiPSC lines and to avoid cross-contamination,

short tandem repeat (STR) fingerprinting analysis should be performed

with minimally eight core STR loci according to International Cell Line

Authentication Committee guidelines,19 while minimally 15 loci are

required if hiPSCs are destined for autologous cell therapy.79 In Lonza's

cell line authentication process, as many as 16 loci are usually analysed for

at least 80%match.80

To assess pluripotency, flow cytometry analysis is a robust quan-

titative method to determine pluripotency marker expression in hiPSC

lines. A combination of surface pluripotency markers (e.g., TRA-1-60)

and intracellular pluripotency markers (e.g., OCT3/4, SOX2, NANOG)

should be selected for flow cytometry, and >70% pluripotency marker

expression can be set as the minimum standard for QC testing.75 Last

but not least, pluripotency tests such as the teratoma assay or embry-

oid body-based three germ layer differentiation will also be ideal to

demonstrate pluripotency of the hiPSCs.77,78

3 | TECHNICAL CONSIDERATIONS FOR
THE EXPANSION AND DIFFERENTIATION OF
HIPSCS INTO INSULIN-PRODUCING Β CELLS

Following the generation of clinical-grade hiPSCs, these hiPSCs must

then be expanded to generate sufficient biomass before

TABLE 2 Comparison of Sendai virus, episomal and mRNA reprogramming methods for clinical and commercial use

SeV Episomal mRNA

Suitable starting cell types and

reported efficiency

• High efficiency—blood,33

urine,34,35 hair keratinocyte36

• Moderate efficiency—skin

fibroblast37

• High efficiency—blood,33

urine,38 hair keratinocyte39,40

• Low efficiency—skin

fibroblast37

• High efficiency—skin

fibroblast,37 urine41

• Low efficiency—blood, not

efficient but possible with

blood-derived endothelial

progenitor cells,42 hair

keratinocytes43

Examples of xeno-free methods

described

• Churko et al.44 and Macarthur

et al.45
• Chen et al.46 • Warren et al.47,48

Reprogramming agent clearance • Within �10 passages45 • Within �11–20 passages49 • Immediately

Ease of assimilation into clinical

processes

• No risk of genome integration

but uses virus50
• Does not use virus but holds

some risk of episomal vector

genome integration51

• No known issues

Source companies with rights to

reprogramming kits (non-

exhaustive list)

• Thermo Fisher Scientific

(CytoTune-iPS Sendai

Reprogramming Kit)

• Thermo Fisher Scientific (Epi5

Episomal iPSC

Reprogramming Kit)

• Lonza (Lonza L7 hiPSC

Reprogramming and hPSC

Culture System)

• Alstem (Episomal iPSC

Reprogramming Kit)

• Creative Bioarray (QualiStem

Episomal iPSC

Reprogramming Kit)

• Reprocell (Stemgent StemRNA

3rd Gen Reprogramming Kit)

• Creative Bioarray (QualiStem

RNA iPSC Reprogramming Kit)

• Stem Cell Technologies

(ReproRNA-OKSGM)

• Merck (Simplicon RNA

Reprogramming Kit)

Labour requirement • One-time administration of

SeV50

• One-time transfection of

episomal vectors51
• Repeated administration of

mRNA daily till colony

emergence52
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differentiation into insulin-producing β-cells, as it is difficult to scale

up during the differentiation process. About 5000–10,000 islet equiv-

alent (IEQ) per kilogram of the recipient's body weight is required to

improve metabolic control of blood glucose levels.81,82 As �1000 β

cells are estimated to be present in an IEQ,83 close to 1 billion hiPSC-

derived β cells will be required for each diabetes transplant patient.

Similarly, a therapeutic dose of more than 1 billion cells per patient is

also commonly estimated by pharmaceutical manufacturers in the

context of large-scale commercial manufacturing for allogeneic cell

therapy.31

Hence, to cater to the demand for hiPSC-derived β cells, hiPSCs,

which are the starting material for the differentiation process, will need

to be readily expanded. This therefore underlines the need for opti-

mized culture conditions and standardized vessels for robust

manufacturing of cell-based products and guarantee the production of

sufficient hiPSC-derived β cells for cell therapy. To that end, various

strategies pertaining to the inoculation methods and feeding strategies

for two-dimensional (2D) static culture system and three-dimensional

(3D) suspension-based conditions, as well as the vessel choices for

hiPSC expansion (Figure 2) are described in more detail below.

TABLE 3 Summary of relevant in-process and final product testing during hiPSC-derived β-cell manufacturing

Product testing Stage to conduct Assays Criteria

Sterility Working cell bank • Routine testing with compendial 14-day

sterility test and 28-day mycoplasma test

• Free of adventitious agents

Before starting β-cell
differentiation

Final product • PCR-based mycoplasma testing

• ATP bioluminescence measurement of

filtered samples

• CO2 monitoring system of filtered samples

Purity Before starting β-cell
differentiation

• Endotoxin test • Free from endotoxin (<0.25 EU/ml)

Final product • Endotoxin test

• ELISA assay for growth factors and

cytokines

• Free from endotoxin (<0.25 EU/ml),

cytokines and other growth factors

Viability and cell

count

Post-thawing of hiPSCs • Trypan blue staining for viability

• Manual cell counting with the use of a

haemocytometer

• Cell viability and number is dependent on

cell line and number of cells frozen

per vial
Before starting β-cell

differentiation

Final product • Aggregate size of 100–250 μm
• Minimally 70% of viable cells per

aggregate

• Free of adventitious agents

Identity Working cell bank • STR fingerprinting analysis

• Flow cytometry of pluripotency markers

(e.g., TRA-1-60, OCT4, SOX2, NANOG)

• Teratoma assay or other appropriate

pluripotency test

• No cross-contamination of other cell lines

• Minimally >70% pluripotency marker

expression

• hiPSCs are able to generate teratoma

when transplanted in vivo or demonstrate

formation of three germ layers

During β-cell differentiation • Undifferentiated hiPSCs: >80% OCT4+ and TRA-1-60+ (optional: SOX2, NANOG, SSEA4)

• Definitive endoderm: >80% CXCR4+ and SOX17+ (optional: FOXA2)

• Primitive gut tube: optional testing for FOXA2, HNF1B, HNF4A

• Pancreatic progenitor: >60% PDX1+ and NKX6.1+ (optional: HNF6, SOX9, PDX1)

• Endocrine progenitor: optional testing for NGN3, NEUROD1, PAX4, NKX6.1, CHGA

Final product >40% INS+ and NKX6.1+ or >20% C-peptide+ and NKX6.1+ (optional: CHGA, MAFA)

Potency Final product • GSIS

• Calcium flux assay

• Functional GSIS activity comparable to

human islets

• Calcium influx in response to high glucose

levels

Safety Before starting β-cell
differentiation

• Karyotype analysis by G-banding

• Whole genome/exome sequencing

• Normal karyotype

• No chromosomal abnormalities

Final product • Karyotype analysis by G-banding

• TRAP assay for telomerase activity

• Flow cytometry and qRT-PCR of

pluripotency markers (e.g., TRA-1-60,

OCT4, SOX2, NANOG)

• Normal karyotype

• No telomerase activity

• No proliferative activity

• No residual pluripotency cell
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3.1 | Cell inoculation of hiPSCs

To increase the viability and yield of hiPSCs in expansion culture,

cell inoculation has been carried out in a myriad of ways—single cell

inoculation, aggregate inoculation, inoculation with microcarrier-

bound hiPSCs and inoculation with microencapsulated hiPSCs. As

hiPSCs cannot survive as single cells, single cell inoculation of hiP-

SCs will require an initial supplementation with Rho-associated,

coiled-coil containing protein kinase inhibitor (ROCKi).84 By modu-

lating the cell density inoculated for both 2D and 3D culture sys-

tems, and the agitation speed of suspension cultures, cell aggregate

size can be further refined to optimize cell viability and hiPSC

expansion.

In the past, aggregate inoculation methods relied on mechanical

splitting or enzymatic dissociation of stem cell colonies.85,86 As sizes

of starting aggregates often differ, subsequent clumps were often het-

erogeneous and could affect the efficiency of downstream β-cell dif-

ferentiation if this method were used for hiPSC expansion.87 To

circumvent this, single cell dissociation-based aggregate inoculation

method can be utilized, where hiPSCs are first dissociated into single

cells and incubated to form homogeneous aggregates in suspension,

before being transferred to the expansion culture. Using this

approach, Borys et al.88 successfully generated uniform hiPSC spher-

oids (214 ± 6 μm) with high proliferative capabilities (32-fold increase

over 6 days). The homogeneity of spheroid sizes generated will also

improve differentiation efficiency, consistency, functionality and aid in

downstream clinical applications of hiPSCs.89

To further increase the yield of 3D suspension cultures, micro-

carriers have also been added in tandem with hiPSC inoculation. As

the use of uncoated microcarrier beads result in gradual loss of

pluripotency and diminished cell growth when hiPSCs are continu-

ously passaged,90 microbeads surface-coated with xeno-free and

defined matrices that are GMP compliant have been developed and

can be adopted for hiPSC expansion.91–93 Due to the increased sur-

face area to volume ratio, microcarrier-based suspension cultures

have consistently led to higher expansion yield than 2D cul-

tures.94,95 However, the expansion of hiPSCs on microcarriers can

be problematic for clinical applications, as microcarriers should be

separated from the final cell harvest to comply with regulatory

demands, inevitably leading to cell loss. Nonetheless, improvements

in separation methods have been made and the development of dis-

solvable matrices are currently being explored,96,97 positioning

microcarrier 3D suspension systems as a plausible alternative for

large-scale manufacturing in the future.

Last but not least, to protect cells against the inherent shear

force of suspension cultures, hiPSCs can be microencapsulated in

hydrogel prior to inoculation,98,99 with biocompatible hydrogels

such as alginate and agarose used.100–102 However, such methods

prove cumbersome in bioprocessing as additional re-encapsulation

and de-encapsulation steps will be required for routine hiPSC pas-

saging.103 In addition, nutrient diffusion and monitoring of cell

growth in the capsule may also be limited by the physical properties

of encapsulation.

3.2 | Feeding strategies

Unlike 2D planar systems where limited culture size will require fre-

quent medium replacement (repeated batch feeding), 3D vessels

with larger volume capacity and capability for automated processing

can allow for fed-batch systems and perfusion systems to be

implemented. In fed-batch systems, nutrient supplements can be

added to prevent growth inhibition of hiPSCs. In contrast, spent

medium is continuously removed while fresh medium is simulta-

neously added in perfusion systems. Overall, perfusion feeding is

more advantageous as it allows for more homogeneous culture con-

ditions and perfusion feeding has in fact been previously docu-

mented to lead to 47% higher expansion yield than batch-fed

cultures.104 In addition, as a closed-loop system, perfusion feeding

strategies also minimize the risk of contamination and thus, reduce

the number of in-process sterility tests.105 However, the overall

operational complexity and costs associated with perfusion systems

make it prohibitive for widespread adoption.106

3.3 | 2D versus 3D culture vessels for cell culture
and differentiation

Despite the incompatibilities of 2D planar culture with some of the

afore-mentioned inoculation strategies, there are some merits to

this method. 2D static culture system has been routinely employed

in laboratories for stem cell maintenance as it is simple to implement

and is more cost-effective than its 3D suspension-based counter-

part. Culturing hiPSCs as a monolayer, rather than aggregates in sus-

pension, also allows the cells to be more evenly exposed to

nutrients. In the 2D culture system, multi-layered cell stacks and fac-

tories can be utilized for the expansion of hiPSCs through a scale

out process, where capacity increases linearly with the number of

cell stacks added.107,108

However, as cell growth will still be limited by the surface area

of culture plates, 3D culture system is a more viable alternative for

hiPSC expansion. Moreover, variability in conditions between cell

stacks of the multi-layered cell plates have also been docu-

mented.108 Thus, homogeneity of hiPSC quality within the same lot

may be difficult to maintain when multi-layer cell stacks or factories

are used for clinical manufacturing. Therefore, 3D suspension cul-

tures, where large volumes of cells can be cultured in an impeller-

enabled homogenous environment, are typically preferred for scale-

up manufacturing. Of the 3D culture systems, stirred tank bioreac-

tors are most commonly employed in pharmaceutical production

due to their capability to accommodate large volumes,109 although

other 3D suspension culture vessels with different rotational

methods have also been devised.85,110 Equipped with a horizontal

blade at the bottom, the rotational rate of the impeller in stirred tank

bioreactors can be modified based on bioreactor volume to facilitate

nutrient diffusion and oxygen mass transfer.111 However, current

methods of scale-up for stirred tank bioreactors are based on empir-

ical equations and are subjective depending on the geometry of the
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vessel system and impeller design, resulting in inaccurate recapitula-

tion of the local flow pattern within the bioreactor.109 Hence, com-

putational fluid dynamics should be utilized for a more accurate

scale-up in bioprocessing, such that further adjustment of cell cul-

ture parameters in multiple iterations can be avoided.112,113

4 | DIFFERENTIATION METHODS,
CULTURE CONDITIONS, STRATEGIES TO
EXCLUDE UNDIFFERENTIATED HIPSCS, QC
AND CHARACTERIZATION DURING Β CELL
DIFFERENTIATION

4.1 | Methods to differentiate hiPSCs into β cells

Following successful scale-up of hiPSCs, the cells will be progressively

differentiated along the pancreatic lineage to form insulin-producing β

cells. The differentiation process can be broadly broken down into

five developmental stages (definitive endoderm, primitive gut tube,

pancreatic progenitor, endocrine progenitor and insulin-producing β

cells), and methods to differentiate hPSCs into pancreatic β cells often

involve the timed addition of various growth factors and small mole-

cules to model pancreatic development.3–5,114–120

The first widely-employed step in differentiating hPSCs to pan-

creatic cells is definitive endoderm commitment. In 2005, D'Amour

et al.121 devised an efficient method directing up to 80% of hPSCs

to the definitive endoderm lineage via the addition of activin A and

low serum. Protocols demonstrating further specification and differ-

entiation of hPSCs to PDX1+NKX6.1+ pancreatic progenitors were

subsequently published.4,122,123 In 2014, Pagliuca et al.114 and

Rezania et al.3 reported successful in vitro generation of NKX6.1+C-

peptide+/NKX6.1+INS+ functional hPSC-derived β cells at �40%

and �50% efficiency, respectively. As the differentiation is not

100% efficient, it is vital for manufacturers to account for the losses

through the scale-up of hiPSCs. Despite these cells having reduced

glucose-stimulated insulin secretion (GSIS) functionality compared

to human islets, importantly, the cells led to the reversal of diabetes

in diabetic mice post-transplant. Specifically, Rezania et al.3 added

vitamin C to the cells in the early differentiation stages to generate

pancreatic progenitors co-expressing PDX1 and NKX6.1 before

adding a combination of growth factors and small molecules such as

ALK5 inhibitor (ALK5i), BMP receptor inhibitor and thyroid hormone

(T3) to induce co-expression of PDX1, NKX6.1, NEUROD1 and

NKX2.2 in the cell population. Finally, Notch inhibitor was added to

direct the PDX1+NKX6.1+NEUROD1+ cells to express insulin.3

Pagliuca et al.114 also used a similar approach where different small

F IGURE 2 Technical considerations for the expansion and differentiation of human induced pluripotent stem cells. Technical considerations
include the cell inoculation method, feeding strategies and choice of two-dimensional (2D) or three-dimensional (3D) culture vessel. In general,
3D culture systems have a wider range of cell inoculation methods and feeding strategies that are applicable, and are more scalable than the 2D
static counterpart. This figure is created with BioRender.com
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molecules and growth factors were added to hPSCs at specific time

points, though the chemicals used varied from Rezania et al.'s

method.

More recently, modified methods were able to generate cells with

more robust and dynamic GSIS, overcoming the limitation of poor

GSIS in past protocols.6,87,124 Nair et al.5 first showed that isolating

INS+ cells at an early immature stage (Day 20 of differentiation) via

fluorescence-activated cell sorting (FACS), followed by reaggregation

of the sorted INS+ cells into clusters in vitro leads to enhanced β-cell

maturation. However, while dynamic GSIS was observed, the second-

phase response was not sustained. Meanwhile, Velazco-Cruz et al.87

reported that selective modulation of transforming growth factor-β

signalling coupled with the resizing of cell clusters at the final stage of

differentiation helps to obtain cells capable of dynamic GSIS with a

more sustained second-phase response. While the functionality of

hPSC-derived β cells still pale in comparison to human islets, these

continued improvements in protocols are crucial for clinical develop-

ment of hiPSC-derived β cells.

Despite the afore-mentioned progress, one key limitation of cur-

rent differentiation methods is that the entire process, or at least part

of it, is not serum-free and/or xeno-free. This may lead to transla-

tional issues which we will address in the next subsection.

4.2 | Current serum-free and/or xeno-free
standards incorporated into β-cell differentiation
methods

As an important source of various complex growth factors and

molecules, FBS is often included as an essential nutrient supplement

in culture media supporting the differentiation into pancreatic

cells.4,5,115,116,120,125,126 While most regulatory bodies do not explic-

itly ban the use of FBS in the manufacturing process of stem cell-

derived cell products, the undefined nature of FBS with batch-to-

batch variation may increase the complexity of QC and safety testing

required.127 Combined with the risks of disease transmission and ethi-

cal issues associated with its zoonotic origin, there is a need to move

away from FBS towards other serum-free and xeno-free defined alter-

natives for hiPSC differentiation.127

A popular serum-free defined alternative adopted by various

groups to obtain hiPSC-derived β cells is bovine serum albumin

(BSA), as it is an abundant protein present in serum, even though it

is not strictly considered xeno-free, being a bovine-derived pro-

tein.3,6,7,114,128 The use of supplements such as B-27, which are

commercially available in both serum-free and/or xeno-free ver-

sions, have also been reportedly added during β-cell differentiation,

though these protocols did not completely eliminate FBS

use.5,115,128 This partial serum-free replacement approach has also

been utilized in Pagliuca et al.,114 where differentiation media in

the first 20 days of differentiation (S1, S2, S3, S5 media) is sup-

plemented with fatty-acid free BSA instead of FBS. However, the

basal CMRL-1066 medium for S6 media used in the final 15 days of

differentiation, involving committing endocrine progenitors to the

functional insulin-producing β-cell fate, is still supplemented with

10% FBS.114 Separately, there have also been some efforts in

recent years to replace S6 media, such as the use of an enriched

serum-free media designed to ensure a serum-free differentiation

process.87

Separately, Rezania et al. and several other groups were report-

edly able to completely replace FBS with BSA supplementation in

their β-cell differentiation protocol.3,7,126,128 While the complete elim-

ination of FBS supplementation is a huge step towards serum-free

and xeno-free differentiation conditions, it is notable that the basal

MCDB131 medium commonly adopted for β-cell differentiation still

contains low amounts of dialyzed FBS.129 Until a completely serum-

free and/or xeno-free GMP compliant β-cell differentiation process is

devised, it is currently recommended for manufacturers to adopt mini-

mal serum use in their β-cell differentiation procedure to lower the

risks of spreading zoonotic disease and infections post-administration.

Thus, should low amounts of serum components such as FBS need to

be used for β-cell differentiation, safety and sterility testing in end-

stage cell products should be rigorously implemented before clinical

applications.

Eventually, to completely eliminate animal-derived components in

differentiation media, human serum albumin may be used as a

replacement for BSA.130 Furthermore, apart from transitioning to dif-

ferentiation media with minimal serum supplements, other plausible

strategies such as using human recombinant growth factors or small

molecules devoid of any animal-derived component can be used.

However, the change has to be thoughtfully considered, selected,

tested by manufacturers and vetted and approved by regulatory bod-

ies before incorporating into the finalized hiPSC-derived β-cell differ-

entiation procedure.131

Finally, in relation to purity, it will also be necessary to demon-

strate that cytokines and growth factors used during the differentia-

tion process are not present in the final product.132 Endotoxin

testing will also be required. While an acceptable range of endotoxin

levels has not been set for cell therapy products, a maximum endo-

toxin level of 0.25 EU/ml has been established for water in injection

products and may be extrapolated for transplantable hiPSC-derived

β cells.133

4.3 | Methods to exclude residual hiPSCs from
β-cell population during differentiation

Despite the tremendous potential of hiPSC-derived β cells for dia-

betes treatment, the tumourigenicity of residual undifferentiated

hiPSCs following the differentiation process poses a critical safety

risk in cell therapy applications.134 It is therefore important to

implement strategies that can eliminate undesirable remaining

hiPSCs in the differentiated population destined for cell therapy

use. There are a variety of techniques (genetic, chemical,

antibody-based, immunological) devised over the years to exclude

hiPSCs in the final cell therapy product. Genetic methods include

the use of lentiviral transduction of suicide genes such as
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caspase-9 (iC9) into hiPSCs, which enables the eradication of

transduced hiPSCs or any formed tumours after addition of a spe-

cific chemical inducer of dimerization that activates iC9.135,136

One example of chemical methods is the use of survivin inhibitor

YM155, which can induce apoptotic cell death of hPSCs without

damaging the functionality of differentiated cells.137 For

antibody-based methods, Choo et al.138 reported the use of cyto-

toxic antibody that strongly selects and induces cell death in spe-

cifically undifferentiated hESCs. Finally, one example of

immunological methods includes separating pluripotency marker-

expressing undifferentiated hESCs such as SSEA4 and TRA-1-60

from the differentiated population using magnetic-activated cell

sorting (MACS) and FACS.139

However, it is notable that each technique comes with its own

safety concerns and limitations. For genetic modification involving the

introduction of suicide genes into hiPSCs via lentiviral transduction,

techniques involving viral vectors may increase tumourigenicity risk,140

though the problem may be alleviated in the future if novel genetic

engineering strategies that do not involve viral vector use were to be

developed. On the other hand, the addition of chemicals to kill

undifferentiated hiPSCs raises the question of how specific the chemi-

cal is, whether the chemical is also toxic to other cell types and whether

there is a need to continually expose the patient receiving cell therapy

to the drug post-transplant.141 Finally, sorting methods like MACS and

FACS may not be 100% efficient and any remaining hiPSCs that are not

sorted out and transplanted unintentionally can still lead to tumour for-

mation, undermining the patient's health. For instance, Fong et al.

reported MACS sorting of SSEA4+TRA-1-60+ undifferentiated hESCs

at �80% efficiency, which is a high efficiency rate yet clearly imperfect

at sorting out all unwanted hPSCs.

Ultimately, it is recommended for manufacturers to weigh the pros

and cons of each method and choose the most suitable method aligned

to industry standards. Even with the steps to remove undifferentiated

hPSCs, after each batch of hiPSC-derived β cell is produced, testing for

any tumourigenicity due to residual hiPSCs is still required. Details on

product release testing and criteria based on international regulations

will be discussed in the next section under the safety subsection.

4.4 | QC and characterization based on identity
during β-cell differentiation

To reduce heterogeneity, increase cell survival and maximize differen-

tiation outcomes when clinical-grade hiPSCs are differentiated in 3D

suspension cultures as cell clusters (the current preferred choice for

generating insulin-producing β cells as mentioned in the previous sec-

tion), hiPSCs with a high nuclear-to-cytoplasmic ratio should be used

(Figure 3A). One QC strategy is to monitor and standardize the

starting hiPSC clump sizes.88,114,125 Single cell-based dissociation

method as above-mentioned can be utilized to increase homogeneity.

An example of uniform hiPSC clump sizes at �200 μm in diameter is

shown in Figure 3B and the morphology of clumps during the differ-

entiation process is shown in Figure 3C.

Another QC strategy is to characterize the cells during the hiPSC

differentiation process. It is paramount to check the quality, the iden-

tity of intermediate cell types as well as the final β-cell product man-

ufactured. Hence, flow cytometry analysis of cell populations at

various stages of differentiation with stage-specific markers should be

conducted to characterize the cell product.132 The flow cytometry

analysis of hiPSCs and cells at selected stages during pancreatic differ-

entiation should be performed with at least two stage-specific

markers. As gating strategies are operator-dependent, gene expres-

sion profiling of the product in accordance to disallowed gene and

gene expression of mature β cells,142,143 along with additional data

from RT-qPCR and immunostaining of other relevant markers can also

be used to supplement final product characterization by flow

cytometry.

Suggestions of both mandatory and optional QC parameters dur-

ing the pancreatic differentiation process are summarized in

Table 3.3,6,114–116,128,144,145 It is notable that while some protocols

reportedly generate up to 90% PDX1+NKX6.1+ double positive pan-

creatic progenitor cells,144,146 the bar is currently calibrated at 60% at

the afore-mentioned stage in Table 3 based on multiple consider-

ations such as the variability in differentiation efficiencies between

different hPSC lines.3,144 As β-cell differentiation methods are opti-

mized to become more efficient and less cell-line dependent over

time, it is prudent for manufacturers to anticipate increasingly strin-

gent QC parameters for stage-specific markers as the field advances.

5 | PRODUCT RELEASE TESTING AND
CRITERIA BASED ON INTERNATIONAL
REGULATIONS

Testing of the final cell therapy product is required to demonstrate its

identity, purity, sterility, viability, safety and potency. While QC

methods and release testing to ensure proper identity and purity of

hiPSC-derived β cells have been addressed earlier, the appropriate

assays to document sterility, viability, cell count, safety and potency

of hiPSC-derived β cells are not the same. Here, we detail the various

tests necessary to meet the remaining criteria for product release.

5.1 | Sterility

As generating β cells from hiPSCs requires multiple manipulations and

as they are cultivated for a relatively long duration in vitro, sterility

testing of the culture environment and in-process products should be

incorporated into the acceptance criteria for release. Since the final

hiPSC-derived β cell product cannot be terminally sterilized, sterility

testing of the final product is ever more essential to ensure that it is free

of adventitious agents prior to administration into recipients. With ref-

erence to regulatory policies from countries such as US, EU, Japan and

China,147–151 mandatory tests for virus, bacteria and mycoplasma con-

tamination should be regularly administered during the process of deri-

vation of hiPSC-derived β cells and on the final product. A summary of
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the sterility tests to be implemented at various derivation steps for

hiPSC-derived β cells is provided in Table 3, and the methods for bacte-

rial and mycoplasma testing will also be further discussed below.

In accordance to The International Pharmacopoeia that was harmo-

nized with the US Pharmacopoeia, European Pharmacopoeia and

Japanese Pharmacopoeia, a 14-day sterility test and a 28-day mycoplasma

test should be administered to certify that the product is free from bacte-

rial and mycoplasma contamination, respectively.152 Unfortunately, long-

term in vitro cultivation of stem cell-derived β cells has been shown to

result in decreased functionality.87 Hence, due to the probable short shelf-

life of hiPSC-derived β cells, these conventional testing methods with long

read-out durations are less feasible for final product release testing.

It is noted that the US Food and Drug Administration (FDA) and

European Medicines Agency (EMA) also permit product administration

before final product sterility test results are obtained if justifiable QC can

be conducted.147,148 While the EMA did not specify the sterility assur-

ance required, the FDA outlined it as (1) sterility test results on cultures

sampled 48 or 72 h prior to final harvest as proxy, (2) Gram staining or

other rapid detection methods conducted on representative samples of

the final product lot and (3) an investigational plan for sterility failure and

medical management of recipient of contaminated product.148

Despite relative flexibility from the FDA and EMA on sterility test-

ing for lot release, other regulatory bodies such as the Japan Pharma-

ceuticals and Medical Agency (PMDA) do not permit the administration

of the final product before it is certified to be free of contaminating

agents.153 Hence, methods with shorter testing duration such as rapid

microbial test should be conducted in lieu of traditional pharmacopoeia

tests. The use of these methods (Table 3) is generally supported by

FDA, EMA, PMDA and China National Medical Products Administration

(NMPA) provided that better or equivalent sensitivity to conventional

pharmacopoeia methods is demonstrated.23,154–157

5.2 | Viability and cell count

To ensure that the right therapeutic dose will be administered into

the patient and for QC of the final product, cell viability testing and

cell counting should be conducted prior to lot release based on guide-

lines by different regulatory authorities worldwide including the FDA,

EMA, PMDA, Ministry of Health, Labour and Welfare (MHLW) of

Japan and NMPA.147,151,158,159 As hiPSC-derived β cells are cultured

as aggregates, a representative sample of aggregates should be taken

from each lot and dissociated into single cells with reagents such as

TrypLE, for viability and cell-counting measurement with Trypan blue

staining and the use of a haemocytometer. SOPs should be

established to ensure consistent cell clump disaggregation for accu-

rate and reproducible reporting of viability and cell number.160

Release criteria could be set such that each lot should only be clini-

cally administered if the size of each aggregate is comparable with the

diameter of an IEQ. In addition, each aggregate should have a mini-

mum of 70% of viable cells and a consistent cell count.23,161

5.3 | Safety

The safety concerns of hiPSC-derived cell therapy products largely

pertain to its genetic stability in long-term culture and residual tumori-

genic potential. hiPSCs destined for large-scale cell therapy product

F IGURE 3 Differentiating human pluripotent stem cells (hPSCs) into insulin-producing pancreatic β cells. (A) The gross morphology of hPSCs.
(B) hPSCs in three-dimensional cell clusters (�200 μm) dissociated from two-dimensional monolayer culture to prepare for large-scale differentiation in
bioreactors. (C) Images of cell clusters at various stages of β-cell differentiation, ultimately forming insulin-producing β cells. Scale bar = 200 μm
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manufacturing are likely to undergo prolonged cultivation for contin-

ued expansion. However, long-term cultivation of hiPSCs may result

in genetic abnormalities.162,163 With the potential for these mutations

to confer a growth advantage, it is important to regularly assess the

genomic stability of hiPSC-derived products during the manufacturing

process and before product release (Table 3). If aberrations are

detected, the final cell product can only be administered when the

aberrations are documented to be functionally insignificant.164

In addition, as hiPSCs can form teratomas,165 residual

undifferentiated hiPSCs in hiPSC-derived β cells pose tumour risks

when transplanted. Hence, final hiPSC-derived β-cell products should

be screened for tumourigenicity, as outlined under FDA, EMA, MHLW

and NMPA regulations.164,166–168 Such tumorigenic studies can be

conducted via in vivo transplantation of cells into an immunodeficient

mouse for 12–16 weeks. However, the 50% Tumour Producing Dose

(TPD50) of different cell lines may vary.169 As the number of cells

eventually transplanted may have to be scaled down in smaller animal

models due to feasibility issues, tumourigenicity potential may not be

demonstrated until much later, when larger numbers of hiPSC-derived

β cells are transplanted into humans.

Furthermore, it is not practical to conduct in vivo tumourigenicity

studies for batch release due to the long duration required. Therefore, to

address the safety concerns of hiPSC-derived β cells, the use of in vitro

assays to examine the propensity of tumour formation for each lot release

is recommended by various regulatory bodies.151,167,170 For instance,

telomerase repeated amplification protocol can be conducted to test for

telomerase activity, which should be completely absent in hiPSC-derived

β cells.171 With reference to FDA and PMDA, tests focused on detecting

residual hiPSCs should also be conducted to properly assess the tumori-

genic risk in hiPSC-derived β cells.134 Simple and sensitive methods of

detection through quantitative flow cytometry of hiPSC markers as afore-

mentioned for hiPSC characterization can be carried out.172

5.4 | Potency

The choice of potency assay(s) is subjective and dependent on prod-

uct characteristics. Hence, current global regulations do not dictate a

specific type of potency assay to be used for cell therapy products. In

accordance with FDA guidelines, the potency assays used should be

validated and should be able to directly measure the cell product's

activity relevant to its mode of action with accuracy, precision and

robustness.173 Here, we propose a myriad of in vitro and in vivo

assays that can be used to demonstrate the functionality of β cells—

secretion of insulin in response to high blood glucose levels to main-

tain euglycemia.

As the goal of hiPSC-derived β-cell therapy is to mitigate the scar-

city of cadaveric donor islets for diabetes treatment, the functionality

of hiPSC-derived β cell-related products should be compared with

that of bona fide human islets. The in vitro analysis of a β cell's

functionality should include GSIS assays, where the functionality of

hiPSC-derived β cells is demonstrated through an increase in insulin

secretion upon glucose challenge.3,87,114

In addition, an examination of the calcium signalling involved in

insulin secretion will be beneficial to detail the physiological efficacy

of β cells in vitro. When glucose levels increase in vivo, uptake of glu-

cose is mediated through glucose transporters, and glucose is then

catabolized in the aerobic respiration pathway to generate adenosine

triphosphate (ATP).174 In response, ATP-sensitive K+ (KATP) channels

close and initiate a wave of membrane depolarization, which allows

for calcium influx through voltage-dependent calcium channels and

the eventual insulin exocytosis.174 To indirectly demonstrate that the

hiPSC-derived β cells are functional, calcium influx assays can be car-

ried out with a calcium indicator dye such as Fluo-4 AM under glucose

challenge.124,126

6 | CURRENT LANDSCAPE, CHALLENGES
AND FUTURE PERSPECTIVES

Over the past two decades, protocols to differentiate hPSCs into β

cells have been increasingly refined for clinical translation. To date,

applications for hPSC-based diabetes treatment are gradually being

materialized, with numerous companies gearing up to bring their tech-

nologies into clinical use. Promising clinical trial studies include those

from ViaCyte and Vertex Pharmaceuticals (which acquired Semma

Therapeutics).

Proof-of-concept was recently established in ViaCyte's phase 1/2

clinical trial designed to evaluate the engraftment and efficacy of

encapsulated hPSC-derived pancreatic progenitors (VC-01) in immu-

nosuppressed T1D patients. These hPSC-derived pancreatic progeni-

tors were meant to differentiate into glucose-responsive β cells

in vivo. Some subjects with undetectable C-peptide levels prior to the

study were evidenced to have stimulated C-peptide levels post-

transplantation with VC-01. Further examination of transplanted sen-

tinel units—meant for withdrawal at various timepoints for characteri-

zation purposes, revealed successful engraftment and maturation into

insulin-producing β cells.175,176

Semma Therapeutics previously presented that hPSC-derived

islet-like cells were able to engraft and demonstrate functionality in

immunosuppressed non-human primates over 6 weeks.177 Vertex

Pharmaceuticals was later awarded the Fast-Track Designation for

VX-880, whence they commenced the testing of stem cell-derived

islet-like cells in T1D patients with concomitant immunosuppression

in their phase 1/2 clinical trial.178 Recently, Vertex published prelimi-

nary data announcing a proof-of-concept in their first patient, with

transplanted hPSC-derived islet-like cells demonstrating successful

engraftment and glucose responsiveness within 90 days.179 Alto-

gether, while preliminary, the viability and functionality of hPSC-

derived β-like cells underscores its potential in diabetes treatment and

furthers the promise of ushering hiPSC-derived β cells into the clinics.

It should be noted that clinical efforts thus far are mostly geared

towards the treatment of T1D patients, where transplantation of hPSC-

derived β cells serve as a direct replacement for the depleted endoge-

nous β cells. Similarly for T2D patients, hPSC-based cell therapy should

first be initiated in those insulin-requiring T2D patients who no longer
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have functional β-cell mass. T2D patients will have varying levels of

insulin resistance that may complicate dose-finding clinical trials since

patients will require different therapeutic doses. Additionally, the hurdle

of peripheral insulin resistance may not be easily overcome by mere

replacement of endogenous β cells. Indeed, rat islets transplanted into

streptozocin-diabetic rats fed with high fat diet were shown to become

dysfunctional in a chronically hyperglycaemic and high fat environment

that is analogous to T2D.180 However, this challenge may be alleviated

by simultaneous treatment with T2D drugs and hPSC-derived β-cell

transplantation. This was demonstrated in a study conducted by Bruin

et al.,181 where treatment with T2D drugs in combination with hPSC-

derived pancreatic progenitor transplantation led to significantly

improved glucose tolerance within 16 weeks in a high fat diet-induced

T2D mouse model. Most notably, treatment of the T2D mouse model

with a combination of Sitagliptin and cell therapy resulted in comparable

glucose tolerance levels to the low-fat diet control.181 While it is

acknowledged that T2D is a chronic disease resulting in a gradual dys-

function of β cells and the longer-term effects of T2D on this combina-

torial strategy are yet to be elucidated, this study demonstrates the

potential for β-cell replacement therapy to slow down, if not reverse,

the progression of T2D. As hPSC-based therapy for T1D becomes a

tangible reality, lessons learnt can also be used to make it a reality for

eventual T2D treatment.

Despite progression in clinical testing, we still foresee several

challenges ahead for widespread adoption of hiPSC-derived β cells for

diabetes treatment. The first pertains to the long-term preservation

and maintenance of hiPSC-derived β cells. To facilitate the develop-

ment of an off-the-shelf product, hiPSC-derived β cells must have the

capacity to be cryopreserved with no change in cell identity and no

loss of viability and functionality post-thaw.148 However, this can be

difficult to achieve due to the 3D architecture of hiPSC-derived β-cell

‘organoids’. During the freezing process, layers of cells within the

organoid structure with different intracellular water potential are

exposed to varying temperatures. This culminates in the formation of

damaging intracellular ice crystals.182,183 Hence, cryopreserved islets/

β-cell organoids generally show a decrease in viability and functional-

ity post-thaw.184 The lack of optimized cryopreservation methods

therefore hinders an on-demand availability of hiPSC-derived β cells.

To that end, research efforts have been geared towards the develop-

ment of less damaging cryopreservation processes, including dissocia-

tion of hiPSC-derived β cells to single cells for freezing before

reaggregation post-thawing,185 encapsulation of β-cell organoids with

cryoprotective hydrogel,186 and vitrification.187 However, these

methods of cryopreservation remain relatively untested, with a lack of

comprehensive data on the viability and functionality of these hiPSC-

derived β cells. Hence, with the current state-of-the-art, hiPSC-

derived β cells are likely to be made on demand, with an optimized

supply chain procedure in place for near-immediate transplantation.

The second challenge relates to the immunological rejection that

obstructs successful allogenic transplantation. Although immunosup-

pression drugs can be taken, these medications are life-long and poten-

tially toxic, which diminishes the benefits of hiPSC-derived β-cell

therapy.188,189 In lieu of that, encapsulation strategies are increasingly

being explored to protect the cells from the host immune system and to

prevent immune reactions against the encapsulated β cells.190–193 While

traditional implantable devices are typically constructed with materials

such as silicon and titanium, concerns with nutrient diffusion have

pushed researchers to adopt other capsule materials such as alginate

and polyethylene glycol.192,193 However, as exemplified by ViaCyte's

clinical trial, foreign body reactions may still occur, leading to fibrosis

around the devices and affecting the viability of the encapsulated

cells.191 In addition, besides functionality issues, other regulatory con-

cerns regarding biocompatibility, sterility and functionality of these

accompanying medical devices will need to be addressed during clinical

trials and in product release testing. Depending on the site of transplan-

tation, increasingly stringent regulations may also be imposed. Hence,

efforts geared towards the derivation of hypoimmunogenic hiPSC lines

for eventual directed differentiation, through deletion of HLA proteins

or overexpression of PDL1-CTLA4Ig molecules which can modulate T-

cell activation, may deliver greater promise for the transplantation of

hiPSC-derived β cells.194,195

In addition, given the novelty and complexity of cell therapy prod-

ucts for clinical treatment, regulatory authorities may also be hesitant

to define the potency testing(s) required and implement rules for QC

checkpoints. Here, we have attempted to outline suggested potency

and QC testing based on current standards. However, these proposed

tests will still be subjected to regulatory oversight. Without additional

clear guidelines, bench-to-clinic translation may be hindered. To facili-

tate the commercialisation of regenerative medicine products, collab-

orations with expert panels to establish guidelines for preclinical and

clinical testing will be helpful. Harmonization of standards will also be

useful to facilitate a wider adoption of hiPSC-based cell therapy.

Last but not least, for manufacturers focused on cell therapy, the

considerations for personnel involved may be different from that of

an academic setting, where diverse interdisciplinary collaboration will

be required early in the development of the product (Figure 1). For

instance, the expertise of process engineers will be needed for devel-

oping scale-up manufacturing and optimization of encapsulation

devices whereas stem cell biologists will be needed to scrutinize cell

culture reagents and growth factors used in the hiPSC culture, expan-

sion, and differentiation processes. In addition, individuals with the

legal and regulatory expertise will also be required to facilitate regula-

tory compliance with the jurisdiction of various countries. If encapsu-

lation devices are to be incorporated into the final product, under EU

regulations, a person responsible for regulatory compliance will also

need to be appointed.196 Close partnership with clinicians and hospi-

tals will certainly need to be established for widespread data collec-

tion on patient safety to conduct appropriate risk management and

monitoring. Hence, other than a regulatory framework that needs to

be established within the company, careful planning of the required

various job roles should be carried out as early as possible.

In conclusion, it is now possible to generate clinically compliant

hPSC-derived β cells with higher yield and better functionality in vitro.

Further harmonization of the regulation of hPSC-based cell products

and even optimisation of cryopreservation methods should be made

to pave the way for its upcoming clinical translation and
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commercialisation. For industries focused on hPSC-based cell therapy,

the establishment of a complete team that can address all the consid-

erations listed above will be necessary in order to progress towards

clinical trials. By surmounting these obstacles, it is highly probable that

hiPSC-derived β cells have a chance of being a curative treatment for

diabetes patients.
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