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Abstract: Type 2 Diabetes Mellitus (T2DM) is a metabolic disease associated with inflammation
widening the scope of immune-metabolism, linking the inflammation to insulin resistance and beta
cell dysfunction. New potential and prognostic biomarkers are urgently required to identify individ-
uals at high risk of β-cell dysfunction and pre-DM. The DNA-sensing stimulator of interferon genes
(STING) is an important component of innate immune signaling that governs inflammation-mediated
T2DM. NOD-like receptor (NLR) reduces STING-dependent innate immune activation in response
to cyclic di-GMP and DNA viruses by impeding STING-TBK1 interaction. We proposed exploring
novel blood-based mRNA signatures that are selective for components related to inflammatory,
immune, and metabolic stress which may reveal the landscape of T2DM progression for diagnosing
or treating patients in the pre-DM state. In this study, we used microarray data set to identify a group
of differentially expressed mRNAs related to the cGAS/STING, NODlike receptor pathways (NLR)
and T2DM. Then, we comparatively analyzed six mRNAs expression levels in healthy individuals,
prediabetes (pre-DM) and T2DM patients by real-time PCR. The expressions of ZBP1, DDX58, NFKB1
and CHUK were significantly higher in the pre-DM group compared to either healthy control or
T2DM patients. The expression of ZBP1 and NFKB1 mRNA could discriminate between good versus
poor glycemic control groups. HSPA1B mRNA showed a significant difference in its expression
regarding the insulin resistance. Linear regression analysis revealed that LDLc, HSPA1B and NFKB1
were significant variables for the prediction of pre-DM from the healthy control. Our study shed light
on a new finding that addresses the role of ZBP1 and HSPA1B in the early prediction and progression
of T2DM.
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1. Introduction

Type 2 Diabetes Mellitus (T2DM) is a metabolic disease associated with inflammation
widening the scope of immune-metabolism linking the inflammation to insulin resistance
and beta cell dysfunction. There is a worldwide increase in the prevalence of T2DM with its
complications including diabetic retinopathy, nephropathy, neuropathy and cardiovascular
strokes, which are the main causes of morbidity and mortality related to T2 DM [1]. The
prevalence of DM in Egypt in 2019 was almost around 9 million adult cases, occupying
second place in the Middle East and North Africa (MENA) region [2,3].

T2DM diagnostic criteria that were clarified by the American Diabetes Association
(ADA) include the following: A fasting plasma glucose (FPG) level of 126 mg/dL or higher,
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or A 2-h plasma glucose level of 200 mg/dL or higher, or A hemoglobin A1c (HbA1c)
level of 6.5 or higher [4]. Although there are some difficulties in distinguishing type 1 and
type 2 DM in all age groups at onset, the actual diagnosis becomes more obvious over
time using autoimmunity-specific tests [5]. The problem is that most of the patients with
type 2 DM do not have specific symptoms in the early stage and, once diagnosed, the
majority of the cases will have serious complications. Prediabetic-state current laboratory
methods show several limitations in the early prediction of pre-diabetes and T2DM. The
diagnosis of pre-DM relies on the oral glucose tolerance test as a gold standard, but this
test is time-consuming and complicated. Although fasting blood glucose is a convenient
tool for T2DM diagnosis, the rate of missing pre-DM diagnosis is relatively high. In
addition, HbA1c% is likely to be linked to other changes in red blood cell life rather than
glycation rates, e.g., haemoglobinopathies. That is why there is an urgent need to find future
potential biomarkers for pre-DM early detection [6]. During prediabetes (pre-DM), beta
islets undergo stress and release many mRNAs [7]. Several etiological factors have been
reported to have a role in the development of T2DM; one of them is the activation of the
immune response as a result of overnutrition, leading to low-grade chronic inflammation,
which may be a strong contributor to the development of T2DM [8].

The disbiosis of gut microbiota can lead to inflammatory changes with subsequent
activation of nuclear factor-kappa B (NF-κB), which may be triggered by activation of
cGAS/STING [9] or nucleotide-binding oligomerization domain-containing protein (NOD)
receptor signaling, resulting in decreased insulin sensitivity and beta cell function [10].

STING (The DNA-sensing stimulator of interferon genes) is an important mediator of
interferons inflammatory response, which can sense any foreign pathogen and activates
protective antimicrobial signals [11]. The cGAS–STING–IRF3 pathway plays a role in
metabolic stress-induced endothelial inflammation in obesity [12]. STING1 (TMEM173)
also can recognize self-DNA leaking from the nucleus to the cytoplasm. Recently, evidence
showed that STING plays an important role in many metabolic pathways as insulin resis-
tance due to obesity, fat metabolism in the liver leading to Non-Alcoholic Fatty Liver [13,14].
STING is a critical regulator for both glucose and lipid metabolism. STING knockout sig-
nificantly improved insulin resistance and glucose intolerance in rat on a high-fat diet [8].
Z-DNA-binding protein 1 (ZBP1) is a positive mediator of innate immunity through its
cooperation with the cGAS-STING pathway [15]. ZBP1 is a cytoplasmic sensor of DNA and
has an important role in the immune response activated by the introduction of different
viruses inside the body [16]. ZBP1 can lead to the production of type 1 interferon through
the activation of the interferon regulatory factor (IRF) and nuclear factor-kappa B (NF-
kappaB) transcription factors [17]. Thus, it can promote chronic inflammation in various
pathological conditions as insulin resistance [18]. DDX58 is an innate immune receptor that
can detect cytoplasmic DNA and activate the signaling pathway, leading to the production
of interferon 1 and different inflammatory cytokines [19]. A crosslink was found between
cGAS-STING1- and DDX58-MAVS-dependent innate immune response pathways.

NOD is an intracellular pattern recognition receptor that recognizes fragments of the
bacterial cell wall; when it is mutated, it loses the ability to respond properly to bacterial
cell wall fragments with dysregulation in NF-κB signaling. Acute stimulation of NOD
signaling by mimetics of bacterial PGNs causes insulin resistance [20]; NOD1 ligands lipid-
derived metabolites were produced during obesity and contribute to insulin resistance
development [21]. There is strong crosstalk between NOD signaling and the insulin receptor
pathway through NF-KB and MAPK intermediates [22]. Among NOD stimulators, HSP70
can aggravate the response of NOD2 to bacterial cell wall fragments, and increase NOD-like
receptor (NLR)-mediated NF-KB activation [23]. Heat shock proteins (HSPs) are proteins
responsible for cellular stress response that inhibit denaturation or protein unfolding in
response to stress. HSPs are linked to the modulation of several pathways in antigen-
presenting cells like tumor antigen uptake and processing through MHC Class I and class
II pathways. HSP60 showed a direct link between innate immunity and pancreatic islets
functions [24]. Heat shock protein is related to many inflammatory diseases such as diabetes



Biomolecules 2022, 12, 1230 3 of 17

mellitus, rheumatoid arthritis and atherosclerosis [25]. Another crucial player of NOD
signaling is conserved helix–loop–helix ubiquitous kinase (CHUK) encodes for Inhibitor-κB
kinase α (IKKα) that acts as a catalytic domain of the Serine/Threonine kinase, Inhibitor of
Nuclear Factor-KappaB Kinase (IKK). IKKα phosphorylate IκBα and inhibitors of NF-KB,
leading to their degradation, thus activating NF-KB [26].

A literature search shed light on the crucial role of the STING and NLR pathways
in development of inflammation-mediated insulin resistance. The DNA-sensing cGAS-
cGAMP-STING pathway mediates type I interferon inflammatory responses in immune
cells during infections. Recent studies showed that this pathway is also activated by host
DNA aberrantly localized in the cytosol, contributing to increased sterile inflammation;
insulin resistance via potential interactions of the cGAS-cGAMP-STING pathway with
mTORC1 signaling and apoptosis have been discussed, suggesting its critical role in obesity-
induced metabolic diseases [27]. STING trafficking and degradation are also regulated by a
variety of mechanisms; for example, Nod-like receptors NLR family domain-containing
protein 3 (NLRC3) interacts with STING to modulate its trafficking [28]. Moreover, obesity
causes significant changes in the skeletal muscles and adipose tissue with an increase
in the plasma free fatty acids (FFA). Also, obesity induces changing in gut microbiota
composition. Both FFA and lipopolysachrides (LPS) trigger the activation of the Nod-like
receptors (NLRs)-mediated inflammation, which further activates NF-kB with subsequent
development of inflammation-mediated insulin resistance [29].

We propose exploring novel blood-based mRNA signatures that are selective for
components related to inflammatory, immune and metabolic stress, which may reveal the
landscape of T2DM progression for diagnosing or treating patients in the pre-DM state. In
this study, we used a microarray data set to identify a group of differentially expressed
mRNAs related to the cGAS/STING, NOD-like receptor pathways (NLR) and T2DM.
Then, we comparatively analyzed six mRNAs expression levels in healthy individuals,
prediabetes (pre-DM) and T2DM patients. We also demonstrated that these mRNAs may
represent a multi-messenger RNA signature that can be used to effectively discriminate
between healthy and pre-DM individuals to identify T2DM susceptible ones.

2. Materials and Methods
2.1. Selection of mRNA Set Linked to cGAS/STING, NOD-like Receptor Pathways (NLR)
and T2DM

We have used several microarray databases including KEGG: Kyoto Encyclopedia of
Genes and Genomes (https://www.genome.jp/kegg (accessed on 22 May 2022))), Human
protein atlas (https://www.proteinatlas.org/ (accessed on 22 May 2022)) and GeneCards
Human Genes database (https://www.genecards.org/ (accessed on 22 May 2022)). We
have retrieved a set of mRNAs based on the following criteria: (a) Genes that are ex-
pressed and deregulated in T2DM; (b) Genes that are highly expressed in tissues of interest
in T2DM, e.g.,: skeletal muscle, adipose tissue and also expressed in Peripheral Blood
Mononuclear Cells (PBMCs) obtained from whole-blood samples for easiest extraction and
least invasiveness; (c) These genes are related to the cGAS-cGAMP-STING pathway and
NOD-like receptor signaling pathway, which are parts of the PAMPs and DAMPs pathways
of innate immunity and chronic sterile inflammation; (d) Linking these novel genes from
the 2 concerned pathways to previously known genes in T2DM through an interaction
network. We have selected 6 mRNAs, namely: ZBP1, Heat Shock Protein Family A (Hsp70)
Member 1B (HSPA1B), Stimulator of Interferon Response CGAMP Interactor 1(TMEM173),
DExD/H-Box Helicase 58 (DDX58), Nuclear Factor Kappa B Subunit 1(NFKB1) and CHUK
(Supplementary Figures S1–S6). The six selected 6 mRNAs were then imported into the
Search Tool for the Retrieval of Interacting Genes (STRING; version 11.0; Zurich, Switzer-
land http://stringdb.org (accessed on 22 May 2022)) online database for protein–protein
interaction (PPI) assessment (Supplementary Figure S7).

https://www.genome.jp/kegg
https://www.proteinatlas.org/
https://www.genecards.org/
http://stringdb.org
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2.2. Study Population and Blood Samples

This study was authorized by the medical research ethical committee, Ain Shams
University, Faculty of Medicine. All subjects included in the study provided informed
consent according to the Declaration of Helsinki. The study is formed of 44 individuals with
a pre-DM group (pre-DM), 61 T2DM patients and 45 healthy control individuals, age- and
sex-matched. The participants were selected from the Endocrinology Unit, Department of
Internal Medicine, Faculty of Medicine, Ain Shams University during the period between
February 2020 and March 2021. Patients were diagnosed according to the American
Diabetes Association (ADA) criteria 2021 for the diagnosis of T2DM [30]. All patients with
liver or kidney dysfunction, inflammatory diseases, cancer, autoimmune diseases and any
endocrine disease other than T2DM were excluded from our study.

All the participants gave a detailed past history of any chronic medical conditions
and full clinical examinations were done. Any participant with blood pressure above
139/89 mmHg was considered a hypertensive patient [31]. Anthropometric measures
were obtained, Body Mass Index (BMI) was calculated according to the WHO recommen-
dations [32]. After 8–10 h of overnight fasting, 10 mL of venous blood were taken from
every participant and divided into three samples: 4 mL of them were used for quantitative
colorimetric determination of glycated hemoglobin as a percent of total hemoglobin using
kits supplied by Sigma-Aldrich, St. Louis, MO, USA [33]. Then, another 1 mL of blood was
transferred into a sodium flouride tube, and another sample of blood was taken after 2 h
for determination of blood glucose by enzymatic colorimetric method using Thermofischer,
USA. The other 5 mL were transferred into a plain tube and samples were left to coagulate,
then centrifuged at 1300× g for 20 min. The sera samples were separated and kept at
−80 ◦C until biochemical analysis and RNA extraction.

Biochemical analyses were carried out, including: fasting blood glucose levels, gly-
cated hemoglobin (HbA1c%), lipid profile and Albumin/creatine ratio. HOMA-IR formula
was calculated to assess the degree of tissue resistance to insulin. (Serum fasting insulin
(SFI) in µmol/dL × Serum fasting glucose (SFG) in mmol/L) over 22.5. Insulin resistance
was determined when the score was above 2.5 [34]. HOMA-B was used to assess insulin
sensitivity. Serum total cholesterol (TC), Triglycerides (TG), HDL-c and LDL-c were es-
timated using a multifunctional biochemistry analyzer (AU680, Beckman Coulter Inc.,
Indianapolis, IN, USA).

2.3. Extraction of the mRNA

The total RNA was extracted from the serum samples using the miRNeasy Serum/Plasma
Kit extraction kits (Cat No. 217184, Qiagen, Hilden, Germany), according to the manufac-
turer’s protocol. The concentration and integrity of RNA in the different samples were
measured using a Nano-Drop instrument (Thermo Scientific, Waltham, MA, USA), using
samples with RNA: protein higher than 1.8–2.

RNA samples were stored at −80 ◦C till analysis. Then, reverse transcription was
performed using miScript II RT Kit (Qiagen, Hilden, Germany, Cat No. 218161) to obtain
cDNA following the instructions of the manufacturer. Four microliter 5 x miScript HiFlex
Buffer, two microliter 10 x miScript Nucleics Mix, one microliter miScript Reverse Tran-
scriptase Mix and RNase free water were added to 2 ug RNA extract, then incubated at
37 ◦C for 60 min, then 95 ◦C for 5 min using a Rotor gene Thermal cycler (Thermo Electron
Waltham, MA, USA).

2.4. Quantitation of the Selected Six-Based mRNA Signature Expression

The differential expression of ZBP1, HSPA1B, TMEM173, DDX58, NFKB1 and CHUK, the
6 chosen mRNAs, was determined using Quantitect SYBR Green Master Mix (Qiagen, Hilden,
Germany) and specific primers for (Hs_ZBP1_1_SG QuantiTect Primer Assay) (NM_00116041),
(Hs_HSPA1B_1_SG QuantiTect Primer Assay) (NM_005346), (Hs_TMEM173_1_SG Quanti-
Tect Primer Assay) (NM_198282), (Hs_DDX58_1_SG QuantiTect Primer Assay) (NM_014314),
(Hs_NFKB1_1_SG QuantiTect Primer Assay) (NM_001165412), and (Hs_CHUK_1_SG Quan-
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tiTect Primer Assay) (NM_001278); following the manufacturer’s protocol, alongside with
GAPDH (NM_002046) as the reference gene. The PCR program was as follows: initial activation
step at 95 ◦C for 15 min followed by 40 cycles of PCR were done under the following conditions:
at 94 ◦C for 15 s, at 55 ◦C for 30 s and at 72 ◦C for 30 s.

All the reactions were carried out in duplicate using The Rotor Gene real-time PCR
detection system (Qiagen, Hilden, Germany). The amplification plot curve and melting
curve were used to assess the specificities of the amplicons. If the threshold cycle exceeded
36, it was considered negative. Melting curves were used to identify the specificity of the
amplicons of the PCR. The relative expression of the mRNAs was estimated by 2−∆∆CT [35].
The results of the samples were compared to a control sample and reference gene.

2.5. Statistics

The Statistical Package for the Social Sciences 20th version (SPSS, Chicago, IL, USA)
was used to analyze all the statistical data. The Chi-square test, one-way ANOVA, and
Kruskal–Wallis test were performed for comparing the samples. The cutoff of the mRNA
as a predictor of T2DM was obtained using the receiver operating characteristic (ROC
curves). The correlation between mRNA levels and the different clinicopathological vari-
ables were assessed using Spearman correlations. A 2-tailed p value ≤ 0.05 is considered
statistically significant.

3. Results
3.1. The Study Groups’ Medical and Anthropometric Characters

The medical and anthropometric characters of all subjects are shown in Supplementary
Table S1. We found that the FSG levels and the HbA1c are significantly higher in the group
with T2DM compared to the healthy controls group and the group with impaired glucose
level (pre-DM). As for the blood pressure, serum cholesterol and LDL-c were significantly
higher in the T2DM group compared to the other 2 groups, and also higher in the group with
pre-DM in relation to the healthy controls. On the other hand, the BMI was significantly
higher in both the T2DM group and the pre-DM group in comparison with the healthy
controls, as shown in Supplementary Table S1.

3.2. Insulin Sensitivity and the Function of the Pancreatic Islet Cells

The HOMA-IR was calculated to determine the presence of insulin resistance; it was
significantly higher in the T2DM group in relation to the other 2 groups. Also, HOMA-IR
was significantly higher in the pre-DM group in comparison with the healthy controls.
Concerning the HOMA-B values, we found that it was significantly reduced in the T2DM
group compared to the group with the pre-DM group and the healthy controls, it was also
reduced in the group with pre-DM compared to its value in the healthy controls, as shown
in Supplementary Table S1.

3.3. The Expression of ZBP1, HSPA1B, TMEM173, DDX58, NFKB1 and CHUK
in the Sera Samples

The expression of ZBP1, HSPA1B, TMEM173, DDX58, NFKB1 and CHUK was esti-
mated in the sera of all the study groups (Table 1). A Mann–Whitney test was performed; it
was found that the 6 mRNAs were significantly highly expressed in the group with T2DM
compared to the pre-DM group and the healthy controls. They were also significantly
higher in the pre-DM group in relation to the healthy controls, as shown in Figure 1A–F. Of
note, there was a significant progressive increase in the expression levels of ZBP1, HSPA1B,
TMEM173, DDX58, NFKB1 and CHUK from healthy to pre-diabetic by 5, 3.5-, 40-, 84-, 14.3-
and 31-folds, respectively), and from the pre-DM group; T2DM individuals by 10.5-, 3.7-,
19.5-, 9.5-, 23- and 3.6-folds, respectively).
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Table 1. The relative expression of the ZBP1, HSPA1B, TMEM173, DDX58, NFKB1 and CHUK
mRNAs among all the studied groups.

mRNAs
Healthy Controls Impaired Glucose Level T2DM

χ2(c) p
Median Mean

Rank Median Mean
Rank Median Mean

Rank

RQ ZBP1 1 31.37 5.3 73.37 56 109.5 83.9 0.000 **

RQ
HSPA1B 1.3 32.3 4.6 68.0 17.1 112.8 90.9 0.000 **

RQ
TMEM173 0.1 27.3 4.0 69.6 78.0 115.3 107.5 0.000 **

RQ DDX58 0.1 28.4 8.4 71.0 80.0 113.5 99.9 0.000 **

RQ NFKB1 0.5 29.7 4.3 65.4 99.0 116.6 106.9 0.000 **

RQ CHUK 0.4 26.2 12.5 76.7 45.0 110.9 98.6 0.000 **

Kruskal–Wallis test, p: p value, ** p < 0.01: Highly Significant, RQ: Relative quantity (fold change) of
gene expression.
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Figure 1. Box plot representing the relative expression of ZBP1, HSPA1B, TMEM173, DDX58, NFKB1
and CHUK mRNAs among all the studied groups. (A–F): Boxplot showing the differential expression
of the 6 mRNAs among the 3 studied groups and Mann–Whitney test to analyze their expression
between each 2 groups. a: The expression of the 6 mRNAs was highly significantly different between
the group with pre-DM and the healthy controls. b: High significant difference in the expression of
the 6 mRNAs between the T2DM group and the pre-DM group. c: High significant difference in the
expression of the 6 mRNAs between the T2DM group and the healthy controls. ** highly significant
p < 0.01.

Patients with T2DM were further divided into 2 groups regarding their glycemic
control. HbA1c < 7% was considered good glycemic control, while HbA1c ≥ 7% was
considered poor glycemic control. There was significant upregulation in the expression
of (Zbp1 and DDX58) in the poor glycemic control group compared to individuals with
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good glycemic control (p = 0.0241 and 0.054, respectively). Interestingly, HSPA1B showed
higher expression in patients with HOMA-IR ≥ 2.5 compared to the other group (p = 0.05)
(Table 2).

Table 2. Relation between the expression of the 6 mRNAs and the glycemic control in the
T2DM group.

Bad Glycemic Control HbA1c ≥ 7 Good Glycemic Control HbA1c < 7
U(d) p

Median Mean Rank Median Mean Rank

Zbp1 88 33 29.5 17.4 351 0.0241 **

HSPA1B 18.2 32.59 15.03 28.18 367 0.352

TMEM173 69.01 31.45 83.5 30.20 411.5 0.793

DDX58 89 32.08 71.5 29.09 387 0.528

NFKB1 122.8 33.36 66.5 19.82 437 0.05 *

CHUK 44 30.79 110.9 31.36 421 0.904

Mann–Whitney test: p value, ** p < 0.01: Highly Significant, * p < 0.05: Significant, p > 0.05: non-Significant.

We examined the degree of insulin resistance that could affect the expression of the
mRNA panel, so, we divided the group with T2DM into two subgroups, one with insulin
resistance (HOMA-IR ≥ 2.5) and the other subgroup being insulin sensitive (HOMA-IR <
2.5). HSPA1B mRNA showed a significant difference in its expression regarding the insulin
resistance (Table 3).

Table 3. Relation between the expression of the 6 mRNAs and the insulin resistance in the
T2DM group.

Insulin Resistance HOMA-IR ≥ 2.5 Insulin Sensitive HOMA-IR < 2.5
U(d) p

Median Mean Rank Median Mean Rank

Zbp1 56 31.5 55.1 27.7 185.5 0.57

HSPA1B 88.2 32.5 12.4 17.3 134.5 0.05 *

TMEM173 78 30.5 105.5 34.3 185.5 0.57

DDX58 66.6 30.2 94 36.1 171 0.38

NFKB1 89 30.5 174.8 34.2 186.5 0.58

CHUK 45 30.2 138 36.1 171.5 0.39

Mann–Whitney test: p value, * p < 0.05: Significant, p > 0.05: non-Significant.

The optimum cutoff values of ZBP1, HSPA1B, TMEM173, DDX58, NFKB1 and CHUK
used for discriminating patients with T2DM and the control groups were calculated using
ROC curves. ZBP1 was 3.25, HSPA1B was 4.7817, TMEM173 was 4.005, DDX58 was 7.750,
NFKB1 was 6.525 and CHUK was 3.640 with sensitivity of 88.5%, 91.8%, 93.4%, 93.4%,
96.7%, 96.7%, respectively, as shown in Figure 2A–F.
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Figure 2. ROC curve analysis for the 6 mRNAs to discriminate between healthy controls and T2DM.
(A): ROC curve analysis for serum Zbp1 used to calculate the best cutoff point to discriminate between
T2DM and healthy controls. The best cutoff point for Zbp1 was ≥3.25 (sensitivity = 88.5%, specificity
= 97.8%). (B): ROC curve analysis for serum HSPA1B used to calculate the best cutoff point to
discriminate between the T2DM and healthy controls. The best cutoff point for HSPA1B was ≥4.7817
(sensitivity = 91.8%, specificity = 95.6%). (C): ROC curve analysis for serum TMEM173 used to
calculate the best cutoff point to discriminate between the T2DM and healthy controls. The best cutoff
point for TMEM173 was ≥4.005 (sensitivity = 93.4%, specificity = 97.8%). (D): ROC curve analysis
for serum DDX58 used to calculate the best cutoff point to discriminate between the T2DM and
healthy controls. The best cutoff point for DDX58 was ≥7.750 (sensitivity = 93.4%, specificity = 95.6%).
(E): ROC curve analysis for serum NFKB1 used to calculate the best cutoff point to discriminate
between the T2DM and healthy controls. The best cutoff point for NFKB1 was ≥6.525 (sensitivity =
96.7%, specificity = 95.6%) (F): ROC curve analysis for serum CHUK used to calculate the best cutoff
point to discriminate between the T2DM and healthy controls. The best cutoff point for CHUK was
≥3.640 (sensitivity = 96.7%, specificity = 97.8%). Green line represents diagonal random classifier.

ROC curve analysis was performed to discriminate between the groups with pre-DM
and T2DM; the optimum cutoff values of ZBP1, HSPA1B, TMEM173, DDX58, NFKB1 and
CHUK were 15.590, 6.898, 12.751, 26.5700, 17.350 and 17.740 with sensitivity of 75.4%,
85.2%, 90.2%, 85.2%, 90.2%, 73.8%, respectively, as shown in Figure 3A–F.
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Figure 3. Roc curve analysis for the 6 mRNAs to discriminate between the pre-DM group and
T2DM. (A): ROC curve analysis for serum Zbp1 used to calculate the best cutoff point to discriminate
between pre-DM and T2DM. The best cutoff point for Zbp1 was ≥15.590 (sensitivity = 75.4%,
specificity = 90.9%). (B): ROC curve analysis for serum HSPA1B used to calculate the best cutoff
point to discriminate between the pre-DM group and T2DM. The best cutoff point for HSPA1B was
≥6.898 (sensitivity = 85.2%, specificity = 77.3%). (C): ROC curve analysis for serum TMEM173 used to
calculate the best cutoff point to discriminate between the pre-DM group and T2DM. The best cutoff
point for TMEM173 was ≥12.751 (sensitivity = 90.2%, specificity = 88.6%. (D): ROC curve analysis
for serum DDX58 used to calculate the best cutoff point to discriminate between the pre-DM group
and T2DM. The best cutoff point for DDX58 was ≥26.5700 (sensitivity = 85.2%, specificity = 93.2%).
(E): ROC curve analysis for serum NFKB1 used to calculate the best cutoff point to discriminate
between the pre-DM group and T2DM. The best cutoff point for NFKB1 was ≥17.350 (sensitivity =
90.2%, specificity = 84.1%) (F): ROC curve analysis for serum CHUK used to calculate the best cutoff
point to discriminate between the pre-DM group and T2DM. The best cutoff point for CHUK was
≥17.740 (sensitivity = 73.8%, specificity = 77.3%). Green line represents diagonal random classifier.

ROC curve analysis has been also used to discriminate between the healthy con-
trol group and the group with pre-DM. The optimum cutoff values of ZBP1, HSPA1B,
TMEM173, DDX58, NFKB1 and CHUK were 1.600, 2.341, 1.800, 1.220, 1.580 and 2.050
with sensitivity of 88.6%, 81.8%, 95.5%, 97.7%, 88.6%, 93.2%, respectively, as shown in
Figure 4A–F.
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Figure 4. ROC curve analysis for the 6 mRNAs to discriminate healthy controls and the pre-DM group.
(A): ROC curve analysis for serum Zbp1 used to calculate the best cutoff point to discriminate healthy
controls from pre-DM. The best cutoff point for Zbp1 was ≥1.600 (sensitivity = 88.6%, specificity
= 71.7%). (B): ROC curve analysis for serum HSPA1B used to calculate the best cutoff point to
discriminate between healthy controls and the pre-DM group. The best cutoff point for HSPA1B was
≥2.341 (sensitivity = 81.8%, specificity = 77.8%). (C): ROC curve analysis for serum TMEM173 used
to calculate the best cutoff point to discriminate between healthy controls and the pre-DM group. The
best cutoff point for TMEM173 was ≥1.800 (sensitivity = 95.5%, specificity = 86.7%). (D): ROC curve
analysis for serum DDX58 used to calculate the best cutoff point to discriminate between healthy
controls and the pre-DM group. The best cutoff point for DDX58 was ≥1.220 (sensitivity = 97.7%,
specificity = 77.8%). (E): ROC curve analysis for serum NFKB1 used to calculate the best cutoff point
to discriminate between healthy controls and the pre-DM group. The best cutoff point for NFKB1
was ≥1.580 (sensitivity = 88.6%, specificity = 80%). (F): ROC curve analysis for serum CHUK used to
calculate the best cutoff point to discriminate between the healthy controls and pre-DM. The best
cutoff point for CHUK was ≥2.050 (sensitivity = 93.2%, specificity = 93.3%).

The best combination was that of ZBP1, TMEM173 and NFKB1 to discriminate between
pre-DM and the development of T2DM, with sensitivity of 100%, specificity of 68.2% and
accuracy of 86.6%. Linear regression analysis for prediction of pre-DM revealed that the
most significant variable for prediction of preDM was LDLc (p value 0.001), (Standardized
Coefficients Beta 0.429 followed by HSPA1B (p value 0.014), (Standardized Coefficients Beta
0.118); then NFKB1 (p value 0.031), (Standardized Coefficients Beta 0.113) (Supplementary
Table S2).
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3.4. Correlation Analysis

There was high significant positive correlation between the 6 chosen mRNAs among
all studied groups and also among the T2DM group and pre-DM group, as seen in Table 4.
Thus, we can hypothesize that the chosen RNA panel works in synergy to modulate STING
and NOD signaling with a crucial role in T2DM pathogenesis. Also, there was a significant
positive correlation between the 6 mRNAs and the important clinicopathological factors,
while with the HOMA-B, there was significant negative correlation, as shown in Table 5.
Also, we found a significant direct association between HOMA-IR with the chosen gene
expression levels, ensuring their role in the presence of inflammation in T2DM (Table 5).

Table 4. Correlation analysis between the 6 mRNAs among all the studied groups and also among
the group with pre-DM and the T2DM group.

Group RQ
(Zbp1)

RQ
(HSPA1B)

RQ
(TMEM173)

RQ
(DDX58)

RQ
(NFKB1)

RQ
(CHUK)

A
ll

gr
ou

ps

RQ (Zbp1)
Correlation
Coefficient 1 0.578 ** 0.606 ** 0.603 ** 0.642 ** 0.621 **

Sig. -------- 0.000 0.000 0.000 0.000 0.000

RQ
(HSPA1B)

Correlation
Coefficient 0.578 ** 1 0.626 ** 0.654 ** 0.616 ** 0.601 **

Sig. 0.000 -------- 0.000 0.000 0.000 0.000

RQ
(TMEM173)

Correlation
Coefficient 0.606 ** 0.626 ** 1 0.740 ** 0.730 ** 0.739 **

Sig. 0.000 0.000 -------- 0.000 0.000 0.000

RQ
(DDX58)

Correlation
Coefficient 0.603 ** 0.654 ** 0.740 ** 1 0.691 ** 0.652 **

Sig. 0.000 0.000 0.000 -------- 0.000 0.000

RQ
(NFKB1)

Correlation
Coefficient 0.642 ** 0.616 ** 0.730 ** 0.691 ** 1 0.751 **

Sig. 0.000 0.000 0.000 0.000 -------- 0.000

RQ
(CHUK)

Correlation
Coefficient 0.621 ** 0.601 ** 0.739 ** 0.652 ** 0.751 ** 1

Sig. 0.000 0.000 0.000 0.000 0.000 --------

Pr
e-

D
M

gr
ou

p
an

d
T

2D
M RQ (Zbp1)

Correlation
Coefficient 1 0.318 ** 0.374 ** 0.384 ** 0.463 ** 0.360 **

Sig. -------- 0.001 0.000 0.000 0.000 0.000

RQ
(HSPA1B)

Correlation
Coefficient 0.318 ** 1 0.368 ** 0.475 ** 0.403 ** 0.351 **

Sig. 0.001 -------- 0.000 0.000 0.000 0.000

RQ
(TMEM173)

Correlation
Coefficient 0.374 ** 0.368 ** 1 0.433 ** 0.539 ** 0.466 **

Sig. 0.000 0.000 -------- 0.000 0.000 0.000
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Table 4. Cont.

Group RQ
(Zbp1)

RQ
(HSPA1B)

RQ
(TMEM173)

RQ
(DDX58)

RQ
(NFKB1)

RQ
(CHUK)

Pr
e-

D
M

gr
ou

p
an

d
T

2D
M RQ

(DDX58)

Correlation
Coefficient 0.384 ** 0.475 ** 0.433 ** 1 0.499 ** 0.297 **

Sig. 0.000 0.000 0.000 -------- 0.000 0.002

RQ
(NFKB1)

Correlation
Coefficient 0.463 ** 0.403 ** 0.539 ** 0.499 ** 1 0.542 **

Sig. 0.000 0.000 0.000 0.000 -------- 0.000

RQ
(CHUK)

Correlation
Coefficient 0.360 ** 0.351 ** 0.466 ** 0.297 ** 0.542 ** 1

Sig. 0.000 0.000 0.000 0.002 0.000 --------

Spearman correlation. p value, ** p < 0.01: Highly Significant, p > 0.05: non-Significant, RQ: Relative quantity (fold
change) in gene expression.

Table 5. Correlation between the 6 mRNAs and the different clinicopathological factors.

RQ
(Zbp1)

RQ
(HSPA1B)

RQ
(TMEM173)

RQ
(DDX58)

RQ
(NFKB1)

RQ
(CHUK) FSG HbA1c HOMA_IR HOMA-

B BMI Total_Cholesterol

RQ (Zbp1)

RQ (HSPA1B) 0.578
**

RQ (TMEM173) 0.606
** 0.626 **

RQ (DDX58) 0.603
** 0.654 ** 0.740 **

RQ (NFKB1) 0.642
** 0.616 ** 0.730 ** 0.691 **

RQ (CHUK) 0.621
** 0.601 ** 0.739 ** 0.652 ** 0.751

**

FSG 0.571
** 0.604 ** 0.657 ** 0.638 ** 0.681

**
0.615

**

HbA1c 0.505
** 0.588 ** 0.567 ** 0.533 ** 0.652

**
0.484

**
0.671

**

HOMA_IR 0.555
** 0.572 ** 0.477 ** 0.489 ** 0.550

**
0.438

**
0.576

** 0.572 **

HOMA-B −0.655
**

−0.676
**

−0.701
**

−0.724
**

−0.734
**

−0.666
**

−0.739
**

−0.704
** −708 **

BMI 0.500
** 0.546 ** 0.578 ** 0.551 ** 0.512

**
0.543

**
0.491

** 0.420 ** 0.428 ** −0.495
**

Total_Cholesterol 0.569
** 0.606 ** 0.633 ** 0.590 ** 0.658

**
0.612

**
0.607

** 0.656 ** 0.673 ** −0.733
**

0.747
**

LDLc 0.575
** 0.669 ** 0.655 ** 0.640 ** 0.702

** 0.622 * 0.670
** 0.655 ** 0.678 ** −0.744

**
0.710
** 0.879 **

* p < 0.05, ** p < 0.01.

4. Discussion

T2DM is a very common form of DM characterized by high glucose level accompa-
nied by insulin resistance and impairment in insulin secretion. T2DM represents around
90% of all diabetic cases [36]. Prediabetes shows high probability to developing T2DM.
The different serious complications associated with chronic hyperglycemia as neuropathy,
coronary heart diseases, retinopathy and nephropathy could already be seen among predi-
abetic patients [37]. That is why there is a great need for new methods for early detection
of prediabetes.

Both the STING and NLRs pathways are mediated through different adaptor proteins,
commonly found to activate the NF-kB, which induces the expression of proinflammatory
cytokines. It has been suggested that STING and NLRs have a significant role in the patho-
genesis of inflammation-mediated insulin resistance, which further develops metabolic
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complications [38]. In light of these finding, we have selected a set of six mRNAs related to
STING and NLRs pathways and T2DM pathogenesis from public microarray databases.
Afterwards, we studied their expression profile in sera samples to investigate its role in
prediabetes and T2DM. We identified the level of expression of ZBP1, HSPA1B, TMEM173,
DDX58, NFKB1 and CHUK mRNAs among all the studied groups and they are highly
detected in the blood of pre-DM and T2DM patients. Raising the susceptibility of using this
network as a circulating biomarker for early detection and stratification of T2DM modes
may act as potential therapeutic targets.

The cGAS-cGAMP-STING pathway plays an important role in mediating inflamma-
tory responses and may have a significant role in insulin resistance in T2DM. Qiao, J. et al.
2022 found that TMEM173 (STING1) deficiency significantly improved glucose intolerance,
while neither the basal insulin level nor glucose-induced insulin secretion was increased
in STING−/− mice. They stated also that high-fat-diet (HFD)-fed mice (STING−/− mice)
showed lower levels of triacyl glycerol and cholesterol in comparison with the control
group [8]. These results went hand in hand with our study that TMEM173 (STING1) was
highly significant in patients with T2DM in comparison with the group with pre-DM and
healthy controls. A previous study by Jiao et al., in 2020, suggested that activation of ZBP1
may lead to necrosis and chronic inflammation through triggering receptor-interacting
serine/threonine-protein kinase 3 (RIPK3) [39]. A study made by Lei, Y. et al., in 2022,
stated that ZBP1 can be considered a new regulator of IFN-1-mediated disease progression,
acting on the cGAS-STING pathway to sense mitochondrial DNA (mtDNA) instability and
sustain IFN-1 signaling, which has a role in heart failure and cardiac cell remodeling [15].
Previous studies found that single-point mutations in genes responsible for innate immu-
nity as DDX58 might have a role in the risk of developing T1DM [40]. Consistent with our
results, An.,T. et al., in 2020, performed a whole exons sequencing for obese patients with
T2DM, and the DDX58 gene was one of the mutated genes that was differentially expressed
in the T2DM patients [41]. On the other hand, another study found that DDX58 (RIG1)
deficiency promotes insulin resistance induced by a high-fat diet in mice [42].

NLR signaling acts as critical regulator of inflammatory response triggered by the
STING pathway [43]. NLRs are pathogen recognition receptors, which play a crucial role
in the innate immune system that could activate the NF-kB, stimulating the expression
of proinflammatory cytokines highlighting their crosstalk inflammation-mediated insulin
resistance [44]. Mir et al. stated that HSP 70 gene polymorphism, the HSPA1B genotype, has
been related to the severity of diabetic foot ulcers and the outcome of surgical treatment [45].
Polymorphisms in the HSPA1B and HSPA1L genes are associated with higher circulating
concentrations of the inflammatory cytokines TNF-α and interleukin (IL) 6 [46]. The
CHUK gene is an inhibitor of nuclear factor kappa-B kinase subunit alpha, which plays
a significant role in the regulation of immune response, epidermal differentiation and
keratinocyte migration [47]. Suppression of IκB kinase (IKK) and IKK-related kinases has
been assessed as a potential therapeutic option for inflammatory diseases and tumors [48].

NF-κB is the core terminal effector in the pathogenesis of inflammation-mediated
insulin resistance and muscle loss in diabetic patients [49,50]. Stimuli such as hyper-
glycemia, FFAs and reactive oxygen species could activate IκB kinase (IKK), leading to
IκB ubiquitination and proteasomal degradation that can inhibit NF-κB [51]. Increased
IKK/NF-κB signaling may inhibit insulin signaling through the insulin receptor, through
NF-κB-mediated inflammatory proteins expression [52].

In the current pilot study, the expressions of ZBP1, DDX58, NFKB1 and CHUK were
significantly higher in the T2DM group compared to either healthy control or pre-DM
patients, which may give us new predictive markers for the development of T2DM in
prediabetes patients. The expression of ZBP1 and NFKB1 mRNA could discriminate
between the good and the poor glycemic control groups. HSPA1B mRNA showed a
significant difference in its expression regarding the insulin resistance. Linear regression
analysis revealed that LDLc, HSPA1B and NFKB1 were significant variables for prediction
of pre-DM. To the best of our knowledge, it is a new finding that addresses the role of ZBP1,
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HSPA1B in the progression of T2DM. The study was limited by a relatively small sample
size from a single center in Egypt. More in vitro and in vivo functional studies are needed
to verify the mechanisms of RNA–RNA crosstalk in T2DM different modes.

5. Conclusions

In the current pilot study, we have estimated the expression of different mRNAs
implicated in the cGAS-STING pathway as ZBP1, DDX58 and TMEM173 (STING1) and
mRNAs involved with a NOD-like receptor pathway as HSPA1B and CHUK; all the
investigated mRNA eventually affect NFKB expression, which was also measured. The
mRNA panel was highly expressed in the sera of patients with T2DM in comparison with
the pre-DM patients (Figure 4). These findings may have a promising impact in predicting
the risk of T2DM individuals.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12091230/s1, Figure S1. Showing the retrieval of NFKB1 as an
important effector in the pathway of type 2 DM development, Figure S2. showing the retrieval of STING1
(TMEM173) as an important intermediate in cGAS/CGAMP/STING pathway, Figure S3. Showing the
retrieval of ZBP1 as an important intermediate in Cgas/CGAMP/STING pathway, Figure S4. showing
the retrieval of DDX58 as an important intermediate in cGAS/CGAMP/STING pathway, Figure S5.
showing the retrieval of CHUK as an important intermediate in cGAS/CGAMP/STING pathway,
Figure S6. showing the retrieval of HSPA1B as an important intermediate in NOD like receptor pathway,
Figure S7. showing the STRING interaction between the 6 chosen mRNAs (TMEM173, DDX58, ZBP1,
CHUK, NFKB1 and HSPA1B) obtained from Gene Cards data base, Table S1. The research group’s
medical and physical characteristics.
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T2DM Type 2 Diabetes Mellitus
STING DNA-sensing stimulator of interferon genes
NLR NOD-like receptor
MENA Middle East and North Africa
mRNA messenger ribonucleic acid
NF-κB nuclear factor-kappa beta
cGAS cyclic GMP AMP synthase
NOD nucleotide-binding oligomerization domain-containing protein
TMEM173 transmembrane protein 173
ZBP1 Z-DNA-binding protein 1
IRF interferon regulatory factor
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RIG-I retinoic acid inducible gene 1
HSP Heat shock protein
PGN peptidoglycans
DDX58 DexD/H-Box Helicase 58
MAVs mitochondrial antiviral signaling
MHC Major histocompatibility complex
CHUK conserved helix–loop–helix ubiquitous kinase
IKK α Inhibitor-κB kinase α

mTORC1 mammalian target of rapamycin complex 1
NLRC3 NLR family domain-containing protein 3
FFA free fatty acids
LPS lipopolysachrides
KEGG Kyoto Encyclopedia of Genes and Genomes
PBMCs Peripheral Blood Mononuclear Cells
PAMPs Pathogen-associated molecular pattern
DAMPs Damage-associated molecular pattern
HSPA1B Heat Shock Protein Family A (Hsp70) Member 1B
PPI Protein–protein interaction
ADA The American Diabetes Association
BMI Body Mass Index
HOMA-IR Homeostatic Model Assessment of Insulin Resistance
FSI fasting serum Insulin
FSG fasting serum glucose
HOMA-B Homeostatic Model Assessment of beta cell function
TC total cholesterol
TG triglyceride
HDL-c high density lipoprotein- cholesterol
LDL-c low density lipoprotein- cholesterol
GAPDH glyceraldehyde 3 phosphate dehydrogenase
PCR polymerase chain reaction
CT cycle threshold
SPSS The Statistical Package for the Social Sciences
ANOVA Analysis of Variance
ROC curve Receiver operating characteristic
HFD High-fat diet
RIPK3 Receptor-interacting serine/threonine-protein kinase 3
mtDNA mitochondrial DNA
TNF-α Tumor necrosis factor alpha
IL interleukin
IKK IκB kinase
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