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Abstract: Nowadays, cervical cancer (CC) is treated as the leading cancer among women throughout
the world. Despite effective vaccination and improved surgery and treatment, CC retains its fatality
rate of about half of the infected population globally. The major screening biomarkers and therapeutic
target identification have now become a global concern. In the present study, we have employed
systems biology approaches to retrieve the potential biomarkers and pathways from transcriptomic
profiling. Initially, we have identified 76 of each up-regulated and down-regulated gene from a total
of 4643 differentially expressed genes. The up-regulatory genes mainly concentrate on immune-
inflammatory responses, and the down-regulatory genes are on receptor binding and gamma-
glutamyltransferase. The involved pathways associated with these genes were also assessed through
pathway enrichment, and we mainly focused on different cancer pathways, immunoresponse, and
cell cycle pathways. After the subsequent enrichment of these genes, we have identified 12 hub
genes, which play a crucial role in CC and are verified by expression profile analysis. From our study,
we have found that genes LILRB2 and CYBB play crucial roles in CC, as reported here for the first
time. Furthermore, the survivability of the hub genes was also assessed, and among them, finally,
CXCR4 has been identified as one of the most potential differentially expressed genes that might
play a vital role in the survival of CC patients. Thus, CXCR4 could be used as a prognostic and/or
diagnostic biomarker and a drug target for CC.

Keywords: systems biology; cervical cancer; prognostic biomarker; differentially expressed genes

1. Introduction

Cervical cancer (CC), classified as the second most prominent cancer, is one of the
most recurrently diagnosed cancers in terms of prevalence and sources of cancer-related
deaths in women worldwide [1]. According to World Health Organization (WHO), cervical
cancer represents almost 6.6% of all cancers of females, with an estimated 570,000 new
cases in 2018 where low- and middle-income countries experienced an average of 90%
deaths [2–4]. Developed countries have also experienced the fatality of this cancer; for
instance, only the USA accounted for almost 13,170 newly diagnosed cervical cancer cases
and 4250 deaths in 2019 [5].

J. Pers. Med. 2021, 11, 363. https://doi.org/10.3390/jpm11050363 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-2228-457X
https://orcid.org/0000-0002-0651-039X
https://orcid.org/0000-0002-5507-9399
https://orcid.org/0000-0003-0756-1006
https://doi.org/10.3390/jpm11050363
https://doi.org/10.3390/jpm11050363
https://doi.org/10.3390/jpm11050363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11050363
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11050363?type=check_update&version=1


J. Pers. Med. 2021, 11, 363 2 of 16

Human papillomavirus (HPV) infection suggested as the first and foremost cause
of cervical cancer pathogenesis [6–8], and studies reported that HPV is responsible for
genome aberrations and increases specific target-wise gene expression [9]. Apart from
mutations in P53, PIK3CA, PTEN genes, an altered number of oncogenes copies have been
reported as the core factor of cervical carcinoma progression [10–12]. Other risk factors
such as smoking, pregnancy history, and long-term use of oral contraceptives have also
been conveyed [13].

The available treatment strategies such as surgery, radiotherapy, and chemotherapy
are thought of as the prodigious hope for cervical cancer patients, however about 75% of pa-
tients develop further progression and/or recurrent tumors [14,15]. Disease heterogeneity
of patients is another challenge to apply a specific treatment method [5].

Nevertheless, there are some available diagnostic and prognostic methods of cervical
carcinoma specific to the time of onset, including HPV test, Pap test, and visual inspection
with acetic acid (VIA), according to which cervical cancer may be suspected. Since several
Pap smears are non-diagnostic or incorrectly negative throughout the case of invasive
cancer, a histopathology examination might be obtained from any suspected lesion [16].
With cervical biopsies lacking an estimated 33–50% of high-grade cervical lesions, more
sensitive and specific screening tests are needed, which may be possible in the form
of screening biomarkers and tumor antigens [17]. There are several clear clinical signs
in the early stage of some patients with cervical cancer, but they can be easily ignored
by patients. Therefore, some patients lose better treatment opportunities. Accordingly,
there is a requirement to elucidate the molecular mechanisms underlying cervical cancer
development and progression, providing a basis for finding potential drug targets and
diagnosing biomarkers of CC [18,19]. Therefore, there is a pressing need to identify
new suitable molecular markers or models to predict the diagnosis/prognosis of cervical
cancer [20].

A series of studies have already been conducted by relying on gene expression patterns
to sort out auspicious molecular gene signatures to use as a recurrence prediction tool. A
signature of 7-gene series was identified in the early stage, [21] and a predictive prognostic
model for recurrent tumor had been constructed, which is composed of a 12-gene series [22].
Through the analysis of long non-coding RNA (lnc-RNA), it was revealed that nine-gene
signature sets were used to predict patients’ chance to develop recurrent tumors [23].
However, searching for an effective series of gene sets is to be under investigation that can
be used as a promising prognosis and/ diagnosis purpose to mitigate the disease outcome
at the very early stage.

Nowadays, an integrative systems biology approach is a promising technique, which
has been applied to predict novel molecular oncogenes and gene signatures using existing
gene expression profiles from Gene Expression Omnibus (GEO) [24–31].

In the current research, we have employed systems biology approaches to explore the
differentially expressed genes (DEGs), gene network, pathways, and protein–protein inter-
actions unique to CC to retrieve potential biomarkers and pathways of cervical carcinoma.

2. Materials and Methods

The entire procedure of the integrative systems biology analytical approach to identify
novel molecular gene signatures and pathways of cervical cancer is shown in Figure 1
through the schematic diagram.
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Figure 1. Flow diagram of integrative bioinformatics analytical approach applied in this study.

2.1. Data Retrieval

The gene expression profile (GSE148747) of primary fibroblasts from the normal re-
gion vs. tumorous region of the human uterine cervix, based on the platform of GPL4133
(Agilent-014850 Whole Human Genome Microarray 4x44K G4112F), were collected from
the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/ accessed on
17 April 2020) database, a public repository that provides free access to a full set of microar-
ray, next-generation sequencing and other forms of high-throughput functional genome
data submitted by the different research group [32]. A total of eight samples were used in
this dataset (GSE148747). The GSM4478163, GSM4478166, GSM4478167 GSM4478168, and
GSM4478170 were used as normal primary fibroblast, and the GSM4478164, GSM4478165,
and GSM4478169 were used as tumor-associated fibroblast.

2.2. Screening of Differentially Expressed Genes (DEGs)

We utilized the GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/ accessed on
17 April 2020) statistical tool to calculate and assess the genes that were expressed differ-
ently between the primary fibroblasts from the normal region and tumorous region of the
human uterine cervix [33]. The Benjamini and Hochberg (false discovery rate) and t-test
methods were utilized with the GEO2R tool to calculate the FDR and p-values, respectively,
to identify the DEGs [34]. We considered p-value p < 0.05 and a logFC (large-scale fold
changes) > 1 to be statistically significant for the DEGs, and a logFC ≥ 1, logFC ≤ −1 were
considered to indicate up-regulated and down-regulated DEGs, respectively [35–37]. The
resultant DEG dataset was collected and used for further analysis. Including all of the
DEGs identified in the samples, we constructed a volcano plot by using the pheatmap
package in R language.

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
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2.3. Functional Enrichment of Gene Sets

The initial ontology of gene (GO) and KEGG pathway enrichment analyses of the
DEGs were annotated (p < 0.05) using the online bioinformatics tool DAVID v6.8 [38].
The human genome was selected as the background parameter, and Affymetrix based
identification was selected as identifier. The KEGG pathway enrichment analyses of the
DEGs were cross-checked using the NetworkAnalyst online tool [39]. Gene Ontology (GO)
study is a frequently used approach for the functional studies of large-scale transcription
or genomic data [40,41]. Similarly, the Kyoto encyclopedia of genes and genomes (KEGG)
is generally used to understand metabolic pathways for gene annotation [42,43].

2.4. PPI Network Construction

The online database STRING (v11.0, http://www.string-db.org/ accessed on 17 April
2020) was used to construct the PPI network of the proteins encoded by DEGs. The
String is an online repository with 24,584,628 proteins from 5090 organisms to predict the
relationship between genes [44]. The combined score was set at less than 0.75 (medium
confidence score) to be considered significant.

2.5. Selection of Central Hub Proteins from the PPI Network

The obtained PPI networks were visualized by Cytoscape (http://www.cytoscape.
org/ accessed on 17 April 2020) [45]. The Cytoscape plug-in Molecular Complex Detection
(MCODE) [46] was applied to obtain significant modules with an established score of
greater than 3 and nodes of greater than 4. In the PPI network, the number of edges
involved determines the degree value of the nodes; nodes with high degree values were
considered to be hub genes. We mapped the hub genes to evaluate their PPI information.
We use cytoHubba [47] (a Cytoscape plugin) to evaluate hub genes from the constructed
PPI network. The cytoHubba is a tool that uses 11 specific methods to calculate hub genes
from the PPI network; in this study, we use degree score to identify hub genes.

2.6. Hub Gene Survival and Expression Profile Analysis

A comprehensive online platform called Gene Expression Profiling Interactive Analy-
sis (GEPIA2) [48] provides fast and customized delivery of functionalities based on TCGA
(The Cancer Genome Atlas) and genotype-tissue expression (GTEx) data. GEPIA2 evalu-
ates the survival effect and the expression profile analysis of differentially expressed genes
in a given cancer sample. The overall survival effect of hub genes in CC was estimated
by calculating the log-rank p-value and the HR (hazard ratio—95% confidence interval)
using GEPIA2 single-gene analysis. On the other hand, the relative expression levels of the
hub genes were selected based on the Log2FC cutoff value of <1 and the q-value Cutoff
was <0.01.

3. Results and Analysis
3.1. DEG Identification

The expression profiling was performed on the CC gene dataset GSE148747, which
was retrieved from GEO and the overall patients’ information is shown in Table 1. To
identify the DEGs from these two groups, we conducted a GEO2R web-server to calculate
the p-values and log2FC values. The resulting genes that met the cutoff criteria (logFC ≥ 1,
logFC ≤ −1, and p-value p < 0.05) were considered as DEGs. Overall, 4643 genes were
identified from the GEO dataset using the GEO2R tool. The volcano plot was constructed
by comparing the two groups and is depicted in Figure 2. Finally, among them, a total
of 152 DEGs were identified based on the cutoff criteria (logFC ≥ 1, logFC ≤ −1 and
an adjusted p-value p < 0.05), where 76 and 76 were up-regulated and down-regulated,
respectively (Tables S1 and S2).

http://www.string-db.org/
http://www.cytoscape.org/
http://www.cytoscape.org/
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Table 1. Patients’ information in GSE148747 derived from the GEO database.

Group Accession Organism Disease State Cell Type

Normal

GSM4478163 Homo sapiens Normal Normal fibroblast

GSM4478166 Homo sapiens Normal Normal fibroblast

GSM4478167 Homo sapiens Normal Normal fibroblast

GSM4478168 Homo sapiens Normal Normal fibroblast

GSM4478170 Homo sapiens Normal Normal fibroblast

Tumor
GSM4478164 Homo sapiens Cervical Cancer Tumor-associated cervix fibroblasts

GSM4478165 Homo sapiens Cervical Cancer Tumor-associated cervix fibroblasts

GSM4478169 Homo sapiens Cervical Cancer Tumor-associated cervix fibroblasts
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Figure 2. Volcano plot of the DEGs from the GSE148747 dataset. X-axis: logFC, large-scale fold
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the up-regulated genes while red points are for the down-regulated genes.

3.2. Functional Analysis of DEGs

By using the DAVID database, the top 10 enrichment analysis outcomes were screened
for the up-regulated and down-regulated DEGs of the GO analysis. The biological process
(BP), cellular component (CC), and molecular function (MF) enrichment analysis outcomes
are displayed in Figure 3A,B. DAVID and NetworkAnalyst analysis of KEGG pathway
outcomes for the significantly enriched DEGs are depicted in Figure 4. The overlapped gene
lists of up- and down-regulated genes that were involved in GO are shown in supplemen-
tary Tables S3 and S4, and the gene-lists of the KEGG pathway are shown in supplementary
Table S5, respectively.
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3.3. PPI Network Construction

To evaluate the PPIs between the DEGs, we used the STRING tool to identify the PPI
networks for both the up- and down-regulated genes. Thereafter, the resulting PPI network
from STRING was exported as a “.txt” file and imported as a.csv file into Cytoscape v3.8.0
software for visualization. After subsequent enrichment of each of the networks, we have
generated a merged network of PPI consisting of 152 nodes and 1206 edges (Figure S1).
The PPI network for up-regulated DEGs had 76 nodes with 656 edges (Figure 5A) and the
PPI network for down-regulated DEGs had 76 nodes with 151 edges between the nodes
(Figure 5B).

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 

3.3. PPI Network Construction 
To evaluate the PPIs between the DEGs, we used the STRING tool to identify the PPI 

networks for both the up- and down-regulated genes. Thereafter, the resulting PPI net-
work from STRING was exported as a “.txt” file and imported as a.csv file into Cytoscape 
v3.8.0 software for visualization. After subsequent enrichment of each of the networks, 
we have generated a merged network of PPI consisting of 152 nodes and 1206 edges (Fig-
ure S1). The PPI network for up-regulated DEGs had 76 nodes with 656 edges (Figure 5A) 
and the PPI network for down-regulated DEGs had 76 nodes with 151 edges between the 
nodes (Figure 5B). 

 

 
Figure 5. Visualization of the protein–protein interaction network of CC. In figure (A), the PPI 
network for up-regulated genes with 76 nodes and 656 edges and in figure (B) the PPI network for 
down-regulated genes with 76 nodes and 151 edges. 

(A) 

(B) 

Figure 5. Visualization of the protein–protein interaction network of CC. In figure (A), the PPI
network for up-regulated genes with 76 nodes and 656 edges and in figure (B) the PPI network for
down-regulated genes with 76 nodes and 151 edges.



J. Pers. Med. 2021, 11, 363 8 of 16

3.4. Modules and Hub Proteins Identification

We identified three significant modules from the merged PPI network by using the
Cytoscape plugin MCODE. Module 1 had 30 nodes with 187 edges (Figure 6A); on the other
hand, Module 2 and 3 had 29 and 24 nodes with 166 and 57 edges, respectively (Figure 6B,C).
The DEGs of the modules had an important role to enrich significant GO terms ‘protein
binding’ and ‘cytoplasm’. We also identified the top 12 hub genes (Table 2) from the PPI
network using the cytoHubba tool and are depicted in Figure 7. The topological parameters
of the twelve molecular hub genes of the PPI network are also shown in Table 2, including
the clustering coefficient, degree, the betweenness centrality, and the closeness centrality for
the individual gene.
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Table 2. Topological parameters for the twelve potential hub genes of the PPI network.

Gene Signature
Name Degree Betweenness

Centrality
Clustering
Coefficient

Closeness
Centrality Stress

PTPRC 80 18,133.72223 0.23196 244.0667 167,664

ITGAM 79 14,447.28068 0.23337 242.4833 140,924

IL10 70 15,227.82113 0.18841 234.9833 145,074

TYROBP 69 6407.99793 0.29113 227.9833 78,988

ITGB2 66 9280.28036 0.28858 226.5595 95,454
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Table 2. Cont.

Gene Signature
Name Degree Betweenness

Centrality
Clustering
Coefficient

Closeness
Centrality Stress

CCR5 61 8309.33294 0.29836 225.8 98,026

ITGAX 60 4722.34853 0.29492 222.35 59,082

CSF1R 55 7708.90149 0.32727 221.5333 87,030

LILRB2 55 5622.88217 0.34007 217.1333 57,172

CXCR4 55 10,433.80294 0.24108 225.8333 95,538

STAT3 53 15,091.4144 0.20682 225.2833 126,744

CYBB 50 4529.93215 0.37469 218.95 54,562
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Figure 7. PPI network with identifying hub genes. The highlighted 12 nodes represent the hub
genes. The degree score method of cytoHubba considers 94 nodes in this network from the merged
PPI network.

3.5. Survival and Expression Level of the Hub Genes

GEPIA survival assessment was used to inspect the overall association with survival
of 12 hub genes from both the up- and down-regulated DEGs and is depicted in Figure 8.
Among all the twelve genes, only CXCR4 showed lower overall survival in the higher
expression group and had the Hazard Ratio (HR) of 2.6. On the other hand, from the
expression level of the hub genes we have identified that the four hub genes ITGAM,
ITGAX, PTPRC and STAT3 were up-regulated in the normal cells and the other eight hub
genes were up-regulated in the tumor cells (Figure 9).



J. Pers. Med. 2021, 11, 363 10 of 16

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 9 of 16 
 

 

PTPRC and STAT3 were up-regulated in the normal cells and the other eight hub genes 
were up-regulated in the tumor cells (Figure 9). 

TYROBP CCR5 CSF1R 

   
CXCR4 CYBB IL10 

   
ITGAM ITGAX ITGB2 

   
LILRB2 PTPRC STAT3 

   

Figure 8. Kaplan–Meier overall survival analysis of the hub genes expressed in CC. Curves were generated using Gene
Expression Profiling Interactive Analysis based on The Cancer Genome Atlas database (p ≤ 0.01).



J. Pers. Med. 2021, 11, 363 11 of 16

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 10 of 16 
 

 

Figure 8. Kaplan–Meier overall survival analysis of the hub genes expressed in CC. Curves were generated using Gene 
Expression Profiling Interactive Analysis based on The Cancer Genome Atlas database (p ≤ 0.01). 

   TYROBP     CCR5   CSF1R 

   
   CXCR4      CYBB   IL10 

    
   ITGAM     ITGAX      ITGB2 

   
     LILRB2    PTPRC     STAT3 

   

Figure 9. Relative expression levels of hub genes expressed in CC. Red and black boxes represent the relative expression
levels of genes in the tumor and normal samples, respectively. The y-axis represents the relative expression levels of genes
in terms of log2 (TPM + 1) (tumor samples, 57; normal samples, 78 from GEPIA; p ≤ 0.01). TPM, transcripts per million.
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4. Discussion

The detection of early-stage CC has an admirable prognosis compared to advanced-
stage. The early-stage cases were cured significantly through surgery, chemo-radiation,
or a blend of treatment approaches where the advanced level CC patients suffered most
because of the frequent recurrences and incurable nature of CC [1].

The patterns of the DEGs, from both tumor and control, were visualized by the volcano
plot (Figure 2). The green points represent the up-regulated genes, and the red points are
the down-regulated genes.

After subsequent enrichment of all the DEGs, we have found some significant up-
regulatory GOs such as immune response, inflammatory response, chemokine-mediated
signaling pathway, positive regulation of ERK1 and ERK2 cascade, and chemotaxis in
the biological process. For the cellular component, the plasma membrane and integral
module of the plasma membrane are enriched significantly. The major molecular function
up-regulated in the DEGs were immune response and inflammatory response.

On the other hand, down-regulatory GOs such as retinal metabolic process, activation
of MAPK activity, and leukotriene biosynthetic process were found in the biological process.
The major molecular function down-regulated in the DEGs were receptor binding, gamma-
glutamyltransferase activity, and indanol dehydrogenase activity.

From the pathway analysis, we have found that most of the pathways were mainly
concentrated in different cancer pathways, immunoresponse, and cell cycle pathways
(Figure 4 and Table S5).

We identified 12 hub genes based on degree value, clustering coefficient, betweenness
centrality, and closeness centrality from the merged PPI analysis; these 12 genes PTPRC,
ITGAM, IL10, TYROBP, ITGB2, CCR5, ITGAX, CSF1R, LILRB2, CXCR4, STAT3, and CYBB
had the diagnostic value which distinguishes CC from normal individuals (Table 2). A
higher percentage of cervical tumors occupied by PTPRC+ cells were strongly associated
with enhanced tumor-infiltration by Tbet+ cells and Foxp3+ cells. Longer disease-free
and disease-specific survival were reported in the type I-oriented PTPRC+ cell to infiltrate
occupied tumor areas [49]. ITGAM, ITGB2 genes play a pivotal role in cell adhesion in
multiple myeloma and are reported as potential diagnostic markers [50]. Type-2 cytokine,
IL-10 shows immunosuppressive functions and is capable of stimulating tumor growth,
and cervical tumor biopsies showed increased presence for mRNA for IL-10 [51]. The
chemotactic receptors, CCR5 expressed in CD8+ T cells which preferentially proliferated in
cervical cancer [52], and the proliferation and invasion of cervical cancer can be arrested by
down-regulating the expression of CCR5 [53]. Similarly, the reduced level of CSF1R protein
significantly contributes to suppressing cervical cancer cell proliferation and motility, and
induces apoptotic cell death [53]. Therefore, CCR5 and CSF1R might be the new targets for
cervical cancer treatment.

STAT3 accumulation was observed in specific sites, especially in basal and suprabasal
layers of HPV16-positive early pre-cancer lesions, and STAT3 expression and activity
were distinctively higher in poorly differentiated lesions [54]. Thus, it suggests that the
STAT3 gene might be used as a prognostic marker in cervical cancer prognosis at a very
primary stage.

On the other hand, the two genes—LILRB2 and CYBB—have not been previously
reported to be associated with cervical cancer. These genes need to be independently
validated before they can be useful for evaluating the prognosis and/or diagnosis of
CC patients.

A cervical tumor invades in adjacent tissues and subsequently into distant organs
initiated by the expression of CXCR4 through the link of another factor CXCL12 [55].
Additionally, CXCR4-deficient cells had lower expression of the proliferation marker Ki-67
and decreased ability to engraft into lungs and spleen [56,57].

The CXCR4 down-regulation and silencing impairs cell adhesion, preventing metas-
tasis. MMP-9 levels are substantially lower in CXCR4-deficient cells, and CXCR4 down-
regulation reduces tumor development in vivo [56]. The epigenetically silenced CXCR4
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gene prevents cells from responding to the paracrine source of SDF-1, resulting in cell
adhesion failure, which is one of the primary events in cervical carcinogenesis metastasis
and development [57,58]. CXCR4 receptor silencing by RNA interference, on the other
hand, resulted in a reduction in the cells’ ability to signal, cause migration, and form
holoclone-like colonies while having little effect on their viability or multiplication [56].
Smith et al. have reported that the initiation of cell proliferation and/or survival of cervical
cancer cells is not possible without the CXCR4 receptor [59]. From the Kaplan–Meier
overall survival analysis, the level of only CXCR4 expression was significantly related to
the overall survival of patients with cervical cancer, while the rest of the hub genes’ surviv-
ability was lower in the high expression group (Figure 8). According to our analysis from
DEGs, among the identified key 12 hub genes, only STAT3 showed the down-regulatory
expression patterns whilst all the remaining genes were up-regulated. For the validation of
this analysis, the GEPIA expression level of the hub genes were also employed and gene-
ITGAM, ITGAX, PTPRC along with STAT3 were found in lower expression levels in tumor
cells (Figure 9).

With the development of integrative systems biology approaches, researchers are
evaluating the significance of gene biomarkers to improve the worsening condition of
cancer diseases, e.g., cervical cancer. The microarray dataset of mRNA and miRNA analysis
revealed RhoB and STMN1 genes as potential targets for cervical cancer diagnosis and
treatment [60]. Recently, X Li et al. suggested a distinct pathway related to DNA replication
and MCM5 as an independent prognostic gene biomarker [20]. An analysis was conducted
to build a PPI network between down-regulated and up-regulated genes to reveal the
interactions and functional activities of them where the top 5 genes—ITGAM, PTPRC,
ITGAX, TYROBP, and C3AR1—were reported as the most important genes. However, only
PTPRC showed overall survival in cervical cancer [61]. To our best knowledge, this is the
first study ever conducted with the abovementioned microarray datasets (GSE148747) to
identify the potential gene biomarker in cervical cancer.

Finally, from the overall analysis and discussion we proposed that CXCR4 could be a
novel target for the prevention of cervical carcinoma growth and metastasis.

5. Conclusions

To summarize, our analysis from the current study provides evidence that candidate
genes such as PTPRC, CXCR4, CCR5, and CSF1R and their enriched pathways, like the
plasma membrane, inflammatory response, and chemokine-mediated signaling pathways
might be involved in the pathogenesis of CC. Additionally, the genes LILRB2 and CYBB
could be novel targets for CC prognosis or diagnosis. Moreover, from our analysis, we
emphasized that CXCR4 might play a significant role in the metastasis of CC. Finally, we
believe that the results obtained above can provide theoretical guidelines for future works
in the laboratory. Further wet lab investigation is required to validate our findings to be
used as a prognostic, diagnostic, and unique target to support the treatment management
of CC.
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Author Contributions: A.R.O. conceived, designed, and guided the study, drafted the manuscript,
and analyzed the data. M.M. carried out the analysis and drafted the manuscript. T.P. drafted the
manuscript and helped in analysis. S.A.A. and M.A.M. participated in coordination, performed
critical revision, and helped in drafting the manuscript. All authors have read and agreed to the
published version of the manuscript.

https://www.mdpi.com/article/10.3390/jpm11050363/s1
https://www.mdpi.com/article/10.3390/jpm11050363/s1


J. Pers. Med. 2021, 11, 363 14 of 16

Funding: No funding was received.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this article are publicly available as described in
Section 2 (Materials and Methods).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
2. Organization WHO. UN Joint Global Programme on Cervical Cancer Prevention and Control; WHO: Geneva, Switzerland, 2017.
3. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global cancer Observatory:

Cancer today. Lyon, France: International agency for research on cancer. Cancer Today 2018.
4. WHO. Available online: https://wwwwhoint/cancer/prevention/diagnosis-screening/cervical-cancer/en/ (accessed on

17 April 2020).
5. Zhao, M.; Huang, W.; Zou, S.; Shen, Q.; Zhu, X. A Five-Genes-Based Prognostic Signature for Cervical Cancer Overall Survival

Prediction. Int. J. Genom. 2020. [CrossRef] [PubMed]
6. Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N.

Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [CrossRef]
7. Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet 2013, 382, 889–899.

[CrossRef]
8. Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2007,

370, 890–907. [CrossRef]
9. Network CGAR. Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [CrossRef]

[PubMed]
10. Crook, T.; Wrede, D.; Tidy, J.; Vousden, K.; Tidy, J.; Mason, W.; Evans, D. Clonal p53 mutation in primary cervical cancer:

Association with human-papillomavirus-negative tumours. Lancet 1992, 339, 1070–1073. [CrossRef]
11. McIntyre, J.B.; Wu, J.S.; Craighead, P.S.; Phan, T.; Köbel, M.; Lees-Miller, S.P.; Ghatage, P.; Magliocco, A.M.; Doll, C.M. PIK3CA

mutational status and overall survival in patients with cervical cancer treated with radical chemoradiotherapy. Gynecol. Oncol.
2013, 128, 409–414. [CrossRef] [PubMed]

12. Lee, M.-S.; Jeong, M.-H.; Lee, H.-W.; Han, H.-J.; Ko, A.; Hewitt, S.M.; Kim, J.-H.; Chun, K.-H.; Chung, J.-Y.; Lee, C. PI3K/AKT
activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat. Commun. 2015, 6, 7769. [CrossRef]
[PubMed]

13. Gadducci, A.; Barsotti, C.; Cosio, S.; Domenici, L.; Riccardo Genazzani, A. Smoking habit, immune suppression, oral contraceptive
use, and hormone replacement therapy use and cervical carcinogenesis: A review of the literature. Gynecol. Endocrinol. 2011, 27,
597–604. [CrossRef]

14. Kim, S.-W.; Chun, M.; Ryu, H.-S.; Chang, S.-J.; Kong, T.W.; Lee, E.J.; Lee, Y.H.; Oh, Y.-T. Salvage radiotherapy with or without
concurrent chemotherapy for pelvic recurrence after hysterectomy alone for early-stage uterine cervical cancer. Strahlenther.
Onkol. 2017, 193, 534–542. [CrossRef]

15. Fuller, C.D.; Wang, S.J.; Thomas, C.R., Jr.; Hoffman, H.T.; Weber, R.S.; Rosenthal, D.I. Conditional survival in head and neck
squamous cell carcinoma: Results from the SEER dataset 1973–1998. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2007, 109, 1331–1343.
[CrossRef] [PubMed]

16. Waggoner, S.E.J.T.L. Cervical Cancer. Lancet 2003, 361, 2217–2225. [CrossRef]
17. Dehn, D.; Torkko, K.C.; Shroyer, K.R. Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma.

Cancer Cytopathol. Interdiscip. Int. J. Am. Cancer Soc. 2007, 111, 1–14. [CrossRef] [PubMed]
18. Baiocchi, G.; de Brot, L.; Faloppa, C.C.; Mantoan, H.; Duque, M.R.; Badiglian-Filho, L.; da Costa, A.A.B.A.; Kumagai, L.Y. Is

parametrectomy always necessary in early-stage cervical cancer? Gynecol. Oncol. 2017, 146, 16–19. [CrossRef]
19. Chen, A.-H.; Qin, Y.-E.; Tang, W.-F.; Tao, J.; Song, H.M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in

cervical cancer. Cancer Cell Int. 2017, 17, 1–9. [CrossRef]
20. Li, X.; Tian, R.; Gao, H.; Yan, F.; Ying, L.; Yang, Y.; Yang, P.; Gao, Y.E. Identification of significant gene signatures and prognostic

biomarkers for patients with cervical cancer by integrated bioinformatic methods. J. Technol. Cancer Res. Treat. 2018, 17,
1533033818767455. [CrossRef]

21. Huang, L.; Zheng, M.; Zhou, Q.-M.; Zhang, M.-Y.; Yu, Y.-H.; Yun, J.-P.; Wang, H.-Y. Identification of a 7-gene signature that
predicts relapse and survival for early stage patients with cervical carcinoma. Med. Oncol. 2012, 29, 2911–2918. [CrossRef]

22. Lee, Y.-Y.; Kim, T.-J.; Kim, J.-Y.; Choi, C.H.; Do, I.-G.; Song, S.Y.; Sohn, I.; Jung, S.-H.; Bae, D.-S.; Lee, J.-W. Genetic profiling to
predict recurrence of early cervical cancer. Gynecol. Oncol. 2013, 131, 650–654. [CrossRef]

http://doi.org/10.3322/caac.21492
https://wwwwhoint/cancer/prevention/diagnosis-screening/cervical-cancer/en/
http://doi.org/10.1155/2020/8347639
http://www.ncbi.nlm.nih.gov/pubmed/32300605
http://doi.org/10.1002/(SICI)1096-9896(199909)189:1&lt;12::AID-PATH431&gt;3.0.CO;2-F
http://doi.org/10.1016/S0140-6736(13)60022-7
http://doi.org/10.1016/S0140-6736(07)61416-0
http://doi.org/10.1038/nature21386
http://www.ncbi.nlm.nih.gov/pubmed/28112728
http://doi.org/10.1016/0140-6736(92)90662-M
http://doi.org/10.1016/j.ygyno.2012.12.019
http://www.ncbi.nlm.nih.gov/pubmed/23266353
http://doi.org/10.1038/ncomms8769
http://www.ncbi.nlm.nih.gov/pubmed/26183061
http://doi.org/10.3109/09513590.2011.558953
http://doi.org/10.1007/s00066-017-1122-0
http://doi.org/10.1002/cncr.22563
http://www.ncbi.nlm.nih.gov/pubmed/17326199
http://doi.org/10.1016/S0140-6736(03)13778-6
http://doi.org/10.1002/cncr.22425
http://www.ncbi.nlm.nih.gov/pubmed/17219448
http://doi.org/10.1016/j.ygyno.2017.03.514
http://doi.org/10.1186/s12935-017-0431-9
http://doi.org/10.1177/1533033818767455
http://doi.org/10.1007/s12032-012-0166-3
http://doi.org/10.1016/j.ygyno.2013.10.003


J. Pers. Med. 2021, 11, 363 15 of 16

23. Mao, Y.; Dong, L.; Zheng, Y.; Dong, J.; Li, X. Prediction of recurrence in cervical cancer using a nine-lncRNA signature. Front.
Genet. 2019, 10, 284. [CrossRef]

24. Leite, G.G.F.; Scicluna, B.P.; van Der Poll, T.; Salomão, R. Genetic signature related to heme-hemoglobin metabolism pathway in
sepsis secondary to pneumonia. NPJ Syst. Biol. Appl. 2019, 5, 1–9. [CrossRef] [PubMed]

25. Rahman, M.R.; Islam, T.; Zaman, T.; Shahjaman, M.; Karim, M.R.; Huq, F.; Quinn, J.M.; Holsinger, R.D.; Gov, E.; Moni, M.A.
Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a
systems biomedicine perspective. Genomics 2020, 112, 1290–1299. [CrossRef] [PubMed]

26. Oany, A.R.; Jyoti, T.P.; Ahmad, S.A.I. An in silico approach for characterization of an aminoglycoside antibiotic-resistant
methyltransferase protein from Pyrococcus furiosus (DSM 3638). Bioinform. Biol. Insights 2014, 8, 65–72. [CrossRef]

27. Oany, A.R.; Pervin, T.; Mia, M.; Hossain, M.; Shahnaij, M.; Mahmud, S.; Kibria, K. Vaccinomics approach for designing potential
peptide vaccine by targeting Shigella spp. serine protease autotransporter subfamily protein SigA. J. Immunol. Res. 2017, 2017,
1–14. [CrossRef] [PubMed]

28. Oany, A.R.; Mia, M.; Pervin, T.; Hasan, M.N.; Hirashima, A. Identification of potential drug targets and inhibitor of the pathogenic
bacteria Shigella flexneri 2a through the subtractive genomic approach. Silico Pharmacol. 2018, 6, 11. [CrossRef] [PubMed]

29. Oany, A.R.; Mia, M.; Pervin, T.; Junaid, M.; Hosen, S.Z.; Moni, M.A. Design of novel viral attachment inhibitors of the spike
glycoprotein (S) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) through virtual screening and dynamics. Int. J.
Antimicrob. Agents 2020, 56, 106177. [CrossRef] [PubMed]

30. Oany, A.R.; Pervin, T.; Moni, M.A. Pharmacoinformatics based elucidation and designing of potential inhibitors against
Plasmodium falciparum to target importin α/β mediated nuclear importation. Infection Genet. Evol. 2020, 104699. [CrossRef]

31. Pervin, T.; Oany, A.R. Vaccinomics approach for scheming potential epitope-based peptide vaccine by targeting l-protein of
Marburg virus. In Silico Pharmacol. 2020, 9, 1–18.

32. Clough, E.; Barrett, T. The gene expression omnibus database. In Statistical Genomics; Springer: Berlin/Heidelberg, Germany,
2016; pp. 93–110.

33. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

34. Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29,
1165–1188. [CrossRef]

35. Aubert, J.; Bar-Hen, A.; Daudin, J.-J.; Robin, S. Determination of the differentially expressed genes in microarray experiments
using local FDR. BMC Bioinform. 2004, 5, 125. [CrossRef] [PubMed]

36. Pawitan, Y.; Michiels, S.; Koscielny, S.; Gusnanto, A.; Ploner, A. False discovery rate, sensitivity and sample size for microarray
studies. Bioinformatics 2005, 21, 3017–3024. [CrossRef]

37. Islam, M.R.; Ahmed, M.L.; Paul, B.K.; Bhuiyan, T.; Ahmed, K.; Moni, M.A. Identification of the core ontologies and signature
genes of polycystic ovary syndrome (PCOS): A bioinformatics analysis. Inform. Med. Unlocked 2020, 100304. [CrossRef]

38. Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service
to facilitate gene/protein list analysis. Bioinformatics 2012, 28, 1805–1806. [CrossRef]

39. Xia, J.; Gill, E.E.; Hancock, R.E. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data.
Nat. Protoc. 2015, 10, 823. [CrossRef]

40. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene
ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef]

41. Hulsegge, I.; Kommadath, A.; Smits, M.A. Globaltest and GOEAST: Two different approaches for Gene Ontology analysis.
In BMC Proceedings; Springer: Berlin/Heidelberg, Germany, 2009.

42. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
43. Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation.

Nucleic Acids Res. 2016, 44, D457–D462. [CrossRef]
44. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.;

Tsafou, K.P. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43,
D447–D452. [CrossRef]

45. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

46. Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC
Bioinform. 2003, 4, 2. [CrossRef] [PubMed]

47. Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst. Biol. 2014, 8, S11. [CrossRef] [PubMed]

48. Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and
interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [CrossRef]

49. Gorter, A.; Prins, F.; van Diepen, M.; Punt, S.; van der Burg, S.H. The tumor area occupied by Tbet+ cells in deeply invading
cervical cancer predicts clinical outcome. J. Transl. Med. 2015, 13, 1–10. [CrossRef]

http://doi.org/10.3389/fgene.2019.00284
http://doi.org/10.1038/s41540-019-0105-4
http://www.ncbi.nlm.nih.gov/pubmed/31396396
http://doi.org/10.1016/j.ygeno.2019.07.018
http://www.ncbi.nlm.nih.gov/pubmed/31377428
http://doi.org/10.4137/BBI.S14620
http://doi.org/10.1155/2017/6412353
http://www.ncbi.nlm.nih.gov/pubmed/29082265
http://doi.org/10.1007/s40203-018-0048-2
http://www.ncbi.nlm.nih.gov/pubmed/30607324
http://doi.org/10.1016/j.ijantimicag.2020.106177
http://www.ncbi.nlm.nih.gov/pubmed/32987103
http://doi.org/10.1016/j.meegid.2020.104699
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.1214/aos/1013699998
http://doi.org/10.1186/1471-2105-5-125
http://www.ncbi.nlm.nih.gov/pubmed/15350197
http://doi.org/10.1093/bioinformatics/bti448
http://doi.org/10.1016/j.imu.2020.100304
http://doi.org/10.1093/bioinformatics/bts251
http://doi.org/10.1038/nprot.2015.052
http://doi.org/10.1038/75556
http://doi.org/10.1093/nar/28.1.27
http://doi.org/10.1093/nar/gkv1070
http://doi.org/10.1093/nar/gku1003
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1186/1471-2105-4-2
http://www.ncbi.nlm.nih.gov/pubmed/12525261
http://doi.org/10.1186/1752-0509-8-S4-S11
http://www.ncbi.nlm.nih.gov/pubmed/25521941
http://doi.org/10.1093/nar/gkx247
http://doi.org/10.1186/s12967-015-0664-0


J. Pers. Med. 2021, 11, 363 16 of 16

50. Peng, Y.; Wu, D.; Li, F.; Zhang, P.; Feng, Y.; He, A. Identification of key biomarkers associated with cell adhesion in multiple
myeloma by integrated bioinformatics analysis. Cancer Cell Int. 2020, 20, 1–16. [CrossRef] [PubMed]

51. Bhairavabhotla, R.K.; Verma, V.; Tongaonkar, H.; Shastri, S.; Dinshaw, K.; Chiplunkar, S. Role of IL-10 in Immune Suppression in
Cervical Cancer; CSIR: New Delhi, India, 2007.

52. Domingos-Pereira, S.; Decrausaz, L.; Derré, L.; Bobst, M.; Romero, P.; Schiller, J.T.; Jichlinski, P.; Nardelli-Haefliger, D. Intravaginal
TLR agonists increase local vaccine-specific CD8 T cells and human papillomavirus-associated genital-tumor regression in mice.
Mucosal Immunol. 2013, 6, 393–404. [CrossRef] [PubMed]

53. Che, L.-F.; Shao, S.F.; Wang, L. Downregulation of CCR5 inhibits the proliferation and invasion of cervical cancer cells and is
regulated by microRNA-107. Exp. Ther. Med. 2016, 11, 503–509. [CrossRef]

54. Chen, C.-L.; Hsieh, F.-C.; Lieblein, J.; Brown, J.; Chan, C.; Wallace, J.; Cheng, G.; Hall, B.; Lin, J. Stat3 activation in human
endometrial and cervical cancers. Br. J. Cancer 2007, 96, 591–599. [CrossRef]

55. Huang, Y.; Zhang, J.; Cui, Z.-M.; Zhao, J.; Zheng, Y. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical
intraepithelial neoplasia and cervical cancer. Chin. J. Cancer 2013, 32, 289. [CrossRef]

56. Sekuła, M.; Miekus, K.; Majka, M. Downregulation of the CXCR4 receptor inhibits cervical carcinoma metastatic behavior in vitro
and in vivo. Int. J. Oncol. 2014, 44, 1853–1860. [CrossRef] [PubMed]

57. Yadav, S.S.; Prasad, S.B.; Das, M.; Kumari, S.; Pandey, L.K.; Singh, S.; Pradhan, S.; Narayan, G. Epigenetic silencing of CXCR4
promotes loss of cell adhesion in cervical cancer. BioMed Res. Int. 2014, 2014. [CrossRef] [PubMed]

58. Zhang, J.-P.; Lu, W.-G.; Ye, F.; Chen, H.-Z.; Zhou, C.-Y.; Xie, X. Study on CXCR4/SDF-1α axis in lymph node metastasis of cervical
squamous cell carcinoma. Int. J. Gynecol. Cancer 2007, 17. [CrossRef] [PubMed]

59. Smith, M.C.; Luker, K.E.; Garbow, J.R.; Prior, J.L.; Jackson, E.; Piwnica-Worms, D.; Luker, G.D. CXCR4 regulates growth of both
primary and metastatic breast cancer. Cancer Res. 2004, 64, 8604–8612. [CrossRef]

60. Wang, S.; Chen, X. Identification of potential biomarkers in cervical cancer with combined public mRNA and miRNA expression
microarray data analysis. Oncol. Lett. 2018, 16, 5200–5208. [CrossRef]

61. Pan, X.-B.; Lu, Y.; Huang, J.-L.; Long, Y.; Yao, D.-S.J.A. Prognostic genes in the tumor microenvironment in cervical squamous cell
carcinoma. Aging 2019, 11, 10154. [CrossRef]

http://doi.org/10.1186/s12935-020-01355-z
http://www.ncbi.nlm.nih.gov/pubmed/32581652
http://doi.org/10.1038/mi.2012.83
http://www.ncbi.nlm.nih.gov/pubmed/22968420
http://doi.org/10.3892/etm.2015.2911
http://doi.org/10.1038/sj.bjc.6603597
http://doi.org/10.5732/cjc.012.10063
http://doi.org/10.3892/ijo.2014.2383
http://www.ncbi.nlm.nih.gov/pubmed/24728301
http://doi.org/10.1155/2014/581403
http://www.ncbi.nlm.nih.gov/pubmed/25114911
http://doi.org/10.1111/j.1525-1438.2007.00786.x
http://www.ncbi.nlm.nih.gov/pubmed/17362322
http://doi.org/10.1158/0008-5472.CAN-04-1844
http://doi.org/10.3892/ol.2018.9323
http://doi.org/10.18632/aging.102429

	Introduction 
	Materials and Methods 
	Data Retrieval 
	Screening of Differentially Expressed Genes (DEGs) 
	Functional Enrichment of Gene Sets 
	PPI Network Construction 
	Selection of Central Hub Proteins from the PPI Network 
	Hub Gene Survival and Expression Profile Analysis 

	Results and Analysis 
	DEG Identification 
	Functional Analysis of DEGs 
	PPI Network Construction 
	Modules and Hub Proteins Identification 
	Survival and Expression Level of the Hub Genes 

	Discussion 
	Conclusions 
	References

