
Effectiveness of genomic selection for improving
provitamin A carotenoid content and associated traits in
cassava

Williams Esuma ,1,* Alfred Ozimati ,1 Peter Kulakow ,2 Michael A. Gore ,3 Marnin D. Wolfe ,3

Ephraim Nuwamanya,1 Chiedozie Egesi,2,3 and Robert S. Kawuki1

1National Crops Resources Research Institute, Kampala, Uganda,
2International Institute for Tropical Agriculture, Ibadan, Nigeria, and
3Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA

*Corresponding author: National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda. Email: esumawilliams@yahoo.co.uk

Abstract

Global efforts are underway to develop cassava with enhanced levels of provitamin A carotenoids to sustainably meet increasing
demands for food and nutrition where the crop is a major staple. Herein, we tested the effectiveness of genomic selection (GS) for
rapid improvement of cassava for total carotenoids content and associated traits. We evaluated 632 clones from Uganda’s provitamin
A cassava breeding pipeline and 648 West African introductions. At harvest, each clone was assessed for level of total carotenoids,
dry matter content, and resistance to cassava brown streak disease (CBSD). All clones were genotyped with diversity array technology
and imputed to a set of 23,431 single nucleotide polymorphic markers. We assessed predictive ability of four genomic prediction
methods in scenarios of cross-validation, across population prediction, and inclusion of quantitative trait loci markers. Cross-valida-
tions produced the highest mean prediction ability for total carotenoids content (0.52) and the lowest for CBSD resistance (0.20), with
G-BLUP outperforming other models tested. Across population, predictions showed low ability of Ugandan population to predict the
performance of West African clones, with the highest predictive ability recorded for total carotenoids content (0.34) and the lowest
for CBSD resistance (0.12) using G-BLUP. By incorporating chromosome 1 markers associated with carotenoids content as indepen-
dent kernel in the G-BLUP model of a cross-validation scenario, prediction ability slightly improved from 0.52 to 0.58. These results
reinforce ongoing efforts aimed at integrating GS into cassava breeding and demonstrate the utility of this tool for rapid genetic im-
provement.
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Introduction
Cassava (Manihot esculenta Crantz), grown on approximately 18

million hectares in Africa, offers great potential to end extreme
hunger, achieve food security and improve nutrition, if proven va-
rieties are unconditionally accessed by producers and consumers
(Kolawole et al. 2010). However, nutritionally cassava is deficient in
essential micronutrients such as provitamin A carotenoids
(Montagnac et al. 2009), which renders diets that heavily depend
on the crop vulnerable to vitamin A deficiency (VAD). Indeed, VAD
is a widespread nutritional challenge in sub-Saharan Africa, with
women and children being the most affected (Gegios et al. 2010;
Stephenson et al. 2010). For this reason, cassava varieties with ele-
vated levels of provitamin A carotenoids are being developed and
promoted (Pfeiffer and McClafferty 2007) as a cost-effective and
sustainable approach to help communities burdened by VAD
(Bouis et al. 2011; Talsma et al. 2013). The significant variation for
total carotenoid content (TCC) (ranging from 1.02 to 10.4mg g�1), of
which >90% is constituted by ß-carotene, a provitamin A

carotenoid, reported in large collection (>2400 clones) of cassava
accessions (Chávez et al. 2005; Nassar et al. 2007) could facilitate
the effective breeding of nutrition-sensitive varieties.

A major drawback in our endeavors to breed cassava varieties
with elevated provitamin A carotenoids has been the undesirable
tendency of low dry matter content (DMC) in most provitamin A cas-
sava clones (Njoku et al. 2015; Esuma et al. 2016a). Another worrisome
and unique challenge to cassava breeding in East Africa is the men-
ace of cassava brown streak disease (CBSD) caused by two
Ipomoviruses: Ugandan cassava brown streak virus and Cassava brown
streak virus (Alicai et al. 2016; Kawuki et al. 2016). Collectively, these
conundrums of low DMC and CBSD that directly affect root quality
hamper speedy development and dissemination of provitamin A cas-
sava clones in eastern Africa. It is for such situations that tools for
implementing efficient crop improvement programs to address intri-
cate breeding obstacles are being optimized (Ahmar et al. 2020).

For example, the rapid advances in next generation sequenc-
ing (NGS) technologies have enabled the use of genome-wide
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markers for implementing genomic selection (GS), a tool that can
significantly enhance the efficiency of crop breeding (Bhat et al.
2016). Essentially, GS aims to increase the speed and accuracy of
selection in breeding programs by predicting the genetic value of
individuals or lines at an early selection stage, or for individuals
that cannot be directly phenotyped (Crossa et al. 2017). One of the
salient features of GS is the use of high-density markers for pre-
diction, which relies on genotyping at a high marker density to
ensure most causal loci are in linkage disequilibrium (LD) with at
least one marker (Jannink et al. 2010). By using dense markers to
quantify Mendelian sampling, GS avoids the need for extensive
progeny phenotyping, which saves cost and time by reducing the
length of a breeding cycle, while enhancing genetic gain per
selection cycle (Desta and Ortiz 2014). Consequently, GS can facil-
itate rapid crop improvement for relevant agronomic and end-
user traits, as witnessed in different crops (Xu et al. 2018, 2020).

A broad review of GS in plant breeding, detailing requirements
for training population and features of prediction models, has
been elegantly provided by Desta and Ortiz (2014). In fact, re-
sponse of GS in crop improvement may be affected by factors
such as model performance, sample size and relatedness, marker
density, heritability and genetic architecture of traits, and the ex-
tent and distribution of LD between markers and quantitative
trait loci (QTL) on the accuracy of genomic estimated breeding
values (GEBVs) (Zhong et al. 2009). Thus, predictive accuracy
varies among GS models depending on their assumptions and
treatments of marker effects (Ornella et al. 2012).

Indeed, results from both simulation and empirical studies
have illustrated the efficacy and limitations of GS for several
crops, including maize (Bernardo and Yu 2007), rice (Xu et al.
2018), barley (Nielsen et al. 2016), and wheat (Kristensen et al.
2018). Wolfe et al. (2017) reported some promising results depict-
ing prospects for GS in cassava, with higher prediction accuracies
for DMC (0.36–0.48) and cassava mosaic disease (CMD) (0.26–0.40)
than those for fresh root yield attributes (<0.1). Relatedly,
Kayondo et al. (2018) evaluated the accuracy of seven genomic
prediction models using empirical data from 1301 cassava clones
and reported predictive ability of 0.31–0.42 for CBSD severity in
roots, indicating GS as a useful tool for CBSD resistance breeding.
Furthermore, Ozimati et al. (2018) reported increased genomic
prediction accuracies for CBSD resistance arising from optimized
training populations and the prospect of East African training
sets to predict CBSD in West African cassava germplasm.

Motivated by these promising results from the pioneering
efforts on the application and use of GS in cassava breeding, our
study was aimed at exploring genomic prediction as a strategy
for the rapid development of carotene-rich cassava product pro-
files suited for the growing conditions in East Africa. Broadly, this
study was part of an ongoing effort to optimize and integrate GS
into the provitamin A cassava breeding scheme in Uganda for
rapid genetic improvement. The provitamin a cassava breeding
pipeline currently utilizes locally adapted germplasm (Esuma
et al. 2016a), with occasional introductions and introgression
from the West African germplasm, where remarkable success
has been achieved in cassava biofortification. Thus, we evaluated
genomic prediction ability within the base population for provita-
min A carotenoids and assessed the effectiveness of this popula-
tion to predict performance of subsequent breeding cycles and
that of West African germplasm. Specifically, we tested (i) the
predictive ability for TCC, DMC, and CBSD across different statis-
tical models and (ii) the utility of QTL markers in genomic predic-
tion for TCC.

Materials and methods
Plant materials
Three sets of germplasm were used in this study. First, a panel of
280 clones segregating for root quality and agronomic attributes
were selected from a cassava breeding population at National
Crops Resources Research Institute (NaCRRI), Uganda. This panel
constituted the training population, hereafter referred to as Cycle
0. Second, a subset of 50 Cycle 0 clones with the highest breeding
values for carotenoid content was identified (through cross-vali-
dation described hereafter) as progenitors and planted in a cross-
ing nursery at Namulonge to generate cycle one (Cycle 1)
population, during the period 2016/2017. Following seed germina-
tion and preliminary screening at nursery and seedling stages,
352 Cycle 1 genotypes were cloned and evaluated in 2018. Third
was a set of 648 clones derived from 80 progenitors introduced
from West Africa (WA) through International Institute for
Tropical Agriculture (IITA); this population segregated for carote-
noids and DMC.

Field trials and phenotypic data collection
The Cycle 0 population was evaluated at two locations,
Namulonge (0.52166458�N, 32.608997564�E) and at Serere
(1.4994�N, 33.5490�E) during the 2017/2018 cropping season in
Uganda. Both locations are characterized by high prevalence of
CBSD causing viruses and high whitefly vector populations
(Alicai et al. 2019) known to transmit such viruses. Cycle 1 and
WA populations were evaluated at one location (Namulonge),
due to the limitation of planting material. Trials were laid out in
augmented design with �25–30 plots per block and four checks.
Each plot was represented by a single row of 10 plants spaced at
1 � 1 m. In all trials, CBSD susceptible cultivar TME 204 was
planted as spreader rows to provide source of virus inoculum.

At harvest (12 months after planting), all plants in a plot were
uprooted. Total carotenoid content was assessed by visually scor-
ing the intensity of pigmentation of the root parenchyma on a
qualitative scale of 1–8 (Sánchez et al. 2006). We used the visual
color scale for carotenoids content as it was the available high
throughput phenotyping method the time of data collection and
previous reports have indicated a strong positive correlation be-
tween carotenoid content assessed visually and quantitatively
(Esuma et al. 2016a). Furthermore, all roots harvested per plot
were pooled and screened for CBSD necrosis severity using a
scale of 1–5 described by Hillocks and Thresh (2000), where:
1¼no necrosis, 2 ¼ �5% of the root is necrotic, 3¼ 6–10% of the
root is necrotic, 4¼ 11–25% of the root is necrotic and mild root
constriction and 5 ¼ >25% of the root necrotic and severe root
constriction. DMC was estimated from approximately 200 g of
fresh root samples that were oven-dried into a constant weight at
105�C for 24 hours. Subsequently, DMC was computed using the
formula:

DMC %ð Þ ¼ DSW
FSW

� 100

where DSW ¼ dry sample weight and FSW ¼ fresh sample weight.

Genotyping of samples using DArTseq
technology
Leaf tissues were collected from all test clones evaluated and
sent to Intertek and Diversity Array Technology Pty Ltd. (http://
www.diversityarrays.com/) for DNA extraction and genotyping,
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respectively. Briefly, DArTseq technology relies on a complexity re-
duction method to enrich genomic representations with single copy
sequences and subsequently perform next-generation sequencing
using HiSeq 2500 (Illumina, USA). Further detail of the DArTseq gen-
otyping process has been described by Kilian et al. (2012).

In our case, sequences of the genomic representations were
aligned to cassava reference genome v6.1. Eventually, 13,675
high-quality single nucleotide polymorphism (SNP) markers were
selected using the following quality control parameters (Kilian
et al. 2012): (i) the reproducibility of 100%, (ii) the overall call rate
over 95%, and (iii) the polymorphic information content between
0.3 and 0.5. Genotypes were coded as 0 (homozygous for refer-
ence allele), 1 (heterozygous), and 2 (homozygous SNP). Genotype
data were imputed to a panel of 23,431 SNPs using the Beagle 5.0
algorithm (Browning et al. 2018) and a reference panel of 20,733
mostly East African cassava haplotypes, derived from a combina-
tion of genotyping-by-sequencing and DArTseq-LD. The data
are available here: ftp://ftp.cassavabase.org/marnin_datasets/
nextgenImputattion2019/.

Statistical analyses
Estimates of variance components and heritability:
Phenotypic dataset for each trial was considered independent
and analyzed separately using a two-step genomic prediction ap-
proach. In the first step, we fitted linear mixed models account-
ing for each trial’s design and extracted the best linear unbiased
predictions (BLUPs) of the clone effects for TCC, DMC, and CBSD
root necrosis using the lme4 package for R statistical software
(Bates et al. 2015). For Cycle 0 that was evaluated in two locations,
we fitted a model y ¼ Xbþ Zgc þ ZblockðlÞb þ Zg:ll þ e, where vector b

was the fixed effect for grand mean and location, with the corre-
sponding incidence matrix X; vector c and corresponding inci-
dence matrix Zg was the random effect for clones (g) such
thatc � N 0; Ir2

c

� �
; vector b with its corresponding incidence ma-

trix Zblock(l) represented random effect for blocks nested in loca-
tions (l) such that b � N 0; Ir2

b

� �
; vector l and incidence matrix Zg.l

represented random effect of genotype-environment interaction;
and ewas the residual such thate � N 0; Ir2

e

� �
. For Cycle 1 clones

and the West African introductions, each evaluated in one loca-
tion, we fitted a linear mixed model y ¼ Xbþ Zgc þ Zblockb þ e

wherey was the vector of raw phenotypes, b was a fixed effect of
grand mean, and Zblockb represented the random effect for blocks.

Variance components were extracted from the models for esti-
mation plot-based heritability (H) as:

H ¼ r2
c

ðr2
cþr2

cl þ r2
eÞ

where r2
cwas the clone variance, r2

cl was the variance attributed
to genotype by location interaction (excluded for trials conducted
in one location) and r2

ewas the model residual variance.
Furthermore, we used the mixed.solve function in R to fit a single-
stage genomic best linear unbiased prediction (G-BLUP) model,
with the grand mean and location as fixed effects and clone
effects treated randomly. Eventually, SNP-based heritability
(h2Þwas computed as:

h2 ¼ r2
a

ðr2
a þ r2

eÞ

where r2
aclone was the additive genetic variance and r2

ewas the
residual variance.

The total genetic value of each individual was estimated as
BLUP extracted from the mixed linear models following the pro-
cedure described by Garrick et al. (2009). To avoid applying shrink-
age to the same data twice (at the first step and subsequent
genomic prediction step), the BLUPs were de-regressed as:

de� regressedBLUP ¼ BLUP
1� PEV

r2
c

where PEV represented the prediction error variance for the
BLUPs and r2

c was the clone variance. The de-regressed BLUPs
were used in subsequent genomic prediction analyses.

Population structure:
To assess population structure, we used 23,431 polymorphic
DArTSeq markers filtered to keep only SNPs with minor allele fre-
quency (MAF) � 0.01. Using the A.mat function built in the rrBLUP
R package (Endelman 2011), we constructed a realized genomic
relationship matrix (K) from SNP data. Finally, principal compo-
nent analysis (PCA) was done on the genomic relationship ma-
trix, using the prcomp function in R. The first two principal
components (PC1 and PC2) were used to visualize population
structure.

Estimating the ability of genomic prediction models through
cross-validation:
We used the BLUPs in a fivefold cross-validation scheme, with 10
replications, to evaluate prediction ability for TCC, DMC, and
CBSDrs across four parametric GS models: (i) genomic BLUP (G-
BLUP), (ii) BayesA, (iii) BayesB, and (iv) Bayesian Lasso. The main
features of these genome-wide prediction models have been
reviewed by Desta and Ortiz (2014). To perform cross-validation
with G-BLUP, the A.mat function in the R package rrBLUP was ini-
tially used to construct a genomic realized relationship matrix
from SNP marker dosages and GEBVs obtained after fitting a lin-
ear mixed model using the mixed.solve function in the same pack-
age. Cross-validations for Bayesian models were computed with
the BGLR package (Perez and de los Campos 2014), with model
parameters nIter and burnIn fixed at 10,000 and 1000, respectively.

To achieve cross-validation for each fold in a replication, the
total number of genotypes in a population was divided into five
equal proportions such that four groups at a time formed the
training set to build the prediction model, while the fifth group
was the test set. For example, when cross-validation was per-
formed for Cycle 0 (n¼ 280), 224 genotypes were used as training
set while the remaining 56 individuals were used as validation
set. This process was repeated for each of the five folds across 10
replications. Prediction abilities were computed as Pearson’s cor-
relation coefficients (r) between GEBVs predicted for the test set
and the corresponding BLUPs obtained from the first step of the
analysis.

GWAS-based cross-validation:
The purpose of GWAS analysis was to identify chromosome
markers associated with each phenotype and use such informa-
tion to design kernel-based cross-validation schemes. Thus, we
surveyed for QTL for all the three traits using genome-wide asso-
ciation study (GWAS), using 632 individuals (constituted by Cycle
0 and Cycle 1) and 23,431 polymorphic markers filtered at MAF
>0.05. To avoid any potential upward bias of prediction abilities,
we performed GWAS in the training set of each fold across 10 rep-
lications of the cross-validation scheme, such that kernel-based
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predictions were done in the test set of the respective fold. For ex-
ample, for each fold, �506 genotypes (training set) representing
80% of the 632 individuals were used for GWAS and the remain-
ing �126 (test set) used for kernel-based predictions.

Specifically, GWAS was implemented using a linear mixed
model in the R package rrBLUP following the modified methodol-
ogy described by Isidro-Sánchez et al. (2017). The linear mixed
model fitted included a kinship matrix and the first three princi-
pal components to account for population structure. We gener-
ated quantile-quantile and Manhattan plots generated with the R
package qqman (Turner 2014) and used them to evaluate the as-
sociation mapping model and chromosome-wise association sig-
nals such that SNPs with P-values less than the 5% Bonferroni
threshold were considered to be significantly associated with
phenotypes.

Based on DArTseq markers used in this study, GWAS results
for DMC and CBSD did not show significant association signals.
However, we identified one QTL for TCC on chromosome 1, which
was consistently the same for each of the five folds across the
10 replications, with �49 markers meeting the Bonferroni thresh-
old of association significance (Supplementary Figure S1).
Subsequently, we designed four GWAS-guided cross-validation
schemes for TCC: (a) single-kernel with significant QTL markers
on chromosome 1, (b) single-kernel with all chromosome 1
markers, (c) single-kernel excluding all markers on chromosome
1, and (d) multi-kernel model that included the significant QTL
markers and the rest of the markers fitted as independent ker-
nels in G-BLUP model (Morota and Gianola 2014). Finally, we per-
formed GWAS with all the 632 individuals and used the output to
predicted TCC in the West African population along the four pre-
diction scenarios.

Data availability
All the raw phenotypic and genotypic data are available at the
link provided for references. Supplementary material is available
at figshare: https://doi.org/10.6084/m9.figshare.12752405.

Results
Heritability estimates and population structure
Total carotenoids content had the highest broad-sense, varying
between 0.68 and 0.73, while CBSDrs had the lowest estimates
(0.36–0.50) (Table 1). We did not record DMC in Cycle 1 clones due
to insufficient quantity of roots arising from small plot sizes.
Similar trends were observed for narrow-sense (SNP-based) heri-
tability estimates, with the highest values (0.61–0.71) recorded for
TCC and lowest (0.29–0.40) for CBSDrs (Table 1).

PCA was used to describe population structure in the genetic
materials analyzed. Grouping clones by the first two PCs (PC1 and
PC2) showed no clear-cut differentiation among the three popula-
tions (Figure 1), with the PCs explaining 28.2 and 15% of the total
genetic variation, respectively. Nonetheless, some WA clones
tended to drift from other populations along PC2 (Figure 1).

Cross-validation prediction accuracies for TCC,
DMC, and CBSDrs
We performed cross-validation under three scenarios: within (a)
Cycle 0 (n¼ 280 genotypes), (b) Cycle 0 combined with Cycle 1
(n¼ 632 genotypes), and (c) the West African population (n¼ 648
genotypes). Distribution of predictive abilities across the five folds
and ten replications is presented in Figure 2, with an overall trend
showing the highest predictive ability for TCC and the lowest for
CBSDrs. For the cross-validation performed within Cycle 0, we

recorded the highest mean prediction ability for TCC across all
models, varying from 0.35 for BayesB and Bayesian Lasso to 0.44
for G-BLUP (Supplementary Table S1). Across all traits, G-BLUP
had the highest mean predictive ability compared to the rest of
the models tested across all three traits.

In the second cross-validation scenario that combined Cycle 0
combined with Cycle 1 clones, mean increase of 12.1% in predic-
tive ability was recorded for TCC, with the highest increase (20%)
recorded for Bayesian Lasso (Supplementary Table S1). In this
scenario, the highest mean prediction ability of 0.52 was recorded
for TCC with G-BLUP while the lowest value of 0.39 was noted for
the trait with BayesB. Similarly, increase in training population
size resulted into an increase of prediction ability for CBSDrs, ex-
cept for BayesB that had no appreciable (0%) change.

Cross validation within the West African population showed
similar trend, with the highest predictive ability 0.47 recorded for
TCC with G-BLUP. For this population, predictive abilities for
CBSDrs were remarkably low compared to values recorded in
Cycle 0 and with Cycle 1.

Across population prediction accuracies for TCC,
DMC, and CBSDrs
We predicted each of the three traits across the four models un-
der the following scenarios: Cycle 0 to predict performance of
Cycle 1 and West African (WA) clones and a combination of Cycle
0 and with Cycle 1 to predict WA clones. First, we noted generally
higher cross-population predictive ability for TCC than for other
traits across all models, with the highest values recorded with G-

Table 1 Heritability estimates for traits measured at the clonal
evaluation stage

Population Numbera Hb h2c

TCC DMC CBSDrs TCC DMC CBSDrs

C0_pVAC 280 0.68 0.58 0.46 0.64 0.55 0.40
C1_pVAC 352 0.73 — 0.50 0.61 — 0.29
WA 648 0.73 0.56 0.36 0.69 0.54 0.34

a Number of clones evaluated.
b Broad sense heritability.
c Narrow sense heritability; TCC, total carotenoid content; DMC, dry matter

content; CBSDrs, cassava brown streak disease severity in roots. We did not
analyze DMC in C1 due to insufficient quantity of roots arising from small plot
sizes and high CBSD root necrosis.

Figure 1 Plot of PC1 against PC2 for eigenvalue decomposition of
DArTSeq marker genotypes for three sets of clones evaluated in this
study.
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BLUP. For example, the highest predictive ability of 0.43 was
recorded for TCC when using the Cycle 0 to predict the perfor-
mance of Cycle 1 (Table 2). However, when the Cycle 0 and Cycle
1 were combined to predict TCC in WA population, the predictive
ability was relatively low (0.27) compared to the value of 0.34
obtained when the prediction was performed with Cycle 0 alone.
A similar trend of low predictive ability in the WA population was
noted for TCC across the other three models, with the lowest
value (0.16) recorded with Bayesian Lasso in the scenario.

Predictive abilities for CBSDrs were particularly low in all sce-
narios. For instance, the highest predictive ability (0.12) was only
recorded when Cycle 0 was used to predict CBSDrs in Cycle 1 with
G-BLUP; other models had negligible predictions for CBSDrs
(Table 2). In fact, when Cycle 0 was used to predict CBSDrs in WA,

all results were close to zero, with the highest predictive ability
recorded was 0.05 for G-BLUP (Table 2). Lastly, we only tested the
scenario of Cycle 0 predicting DMC in WA, as this trait was not
assessed in Cycle 1. In this case, the highest predictive ability was
0.34 with G-BLUP and the lowest was 0.25 from Bayesian Lasso
(Table 2).

GWAS-guided genomic prediction
All marker-trait associations for DMC and CBSDrs were nonsig-
nificant (data not shown). GWAS for each training set per fold
consistently revealed one QTL for TCC on chromosome 1, with
�49 markers meeting the Bonferroni threshold for genome-wide
association signal (Figure 3 and Supplementary Figure S1).
Subsequently, GWAS-based prediction for TCC was performed in
the respective test sets for each fold using cross-validation
scheme with G-BLUP, which presented the highest prediction
abilities compared to other models tested. The mean predictive
abilities for the four scenarios of GWAS-guided cross-validation
were 0.56 for single-kernel containing all chromosome 1 markers,
0.54 for single-kernel with significant chromosome 1 markers,
0.48 for single-kernel excluding all markers on chromosome 1,
and 0.63 for the multi-kernel model that included the significant
QTL markers and the rest of the markers fitted as independent
kernels (Figure 4 and Supplementary Table S2). These scenarios
led to better predictions than the case with naive model i.e., with-
out segmentation of chromosome markers, with the exception
where single kernel excluding all chromosome 1 markers was

Figure 2 Prediction accuracies of five folds across 10 replications for all models evaluated in cross-validation schemes.

Table 2 Mean prediction abilities for across population
predictions for TCC, DMC, and CBSDrs

hba Testing set Trait G-BLUP BayesA BayesB BL

Cycle 0 Cycle 1 TCC 0.431 0.392 0.411 0.401
Cycle 0 Cycle 1 CBSDrs 0.117 0.052 0.031 0.052
Cycle 0 WA TCC 0.401 0.216 0.223 0.247
Cycle 0 WA DMC 0.342 0.282 0.274 0.251
Cycle 0 WA CBSDrs 0.045 0.019 0.014 0.009
Cycle 0þCycle 1 WA TCC 0.274 0.162 0.161 0.159
Cycle 0þCycle 1 WA CBSDrs 0.001 �0.123 �0.107 �0.103

DMC ¼ of provitamin A cassava breeding population; dry matter content;
CBSDrs, cassava brown streak disease severity in roots; BL, Bayesian Lasso.
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used. Narrow-sense heritability estimates were proportionately
higher for scenarios of predicting with markers on chromosome 1
and the multi-kernel approach than for the case of excluding
chromosome 1 (Figure 4). When the GWAS-guided approach was
used to predict TCC in WA, we noted similar pattern of the high-
est predictive ability (0.64) with multi-kernel scenario and the
least (0.25) for single-kernel excluding chromosome 1 markers
(Supplementary Table S2).

Discussions
The rapid increase in the global human population, predicted to
reach 10 billion by 2050 (Bongaarts 2009; Henderson and Loreau
2019), highlights the urgent need for deployment of high yielding,
resilient and nutritious crop varieties to vulnerable societies (Ray
et al. 2013; Hickey et al. 2019). The nutritional impacts of biofortifi-
cation evidenced through staples like orange-fleshed sweet po-
tato (Jenkins et al. 2015) provide motivation for development of
cassava enriched with provitamin A carotenoids as nutritious
staple in sub-Saharan Africa. Collectively, TCC, DMC, and CBSD
resistance are must-have traits for product profiles targeting de-
ployment of provitamin A cassava varieties in eastern Africa.

Breeding efforts, including our current results, have indicated
moderate to high broad-sense heritability (0.56–0.73) for TCC and
DMC, implying the possibility of making meaningful genetic gains
for both traits through phenotypic recurrent selection (Ceballos
et al. 2013; Esuma et al. 2016b). Indeed, the high heritability for
TCC has already facilitated the identification of cassava cultivars
with high levels of ß-carotene, which constitutes the bulk of caro-
tenoids in cassava, with some varieties released for on-farm

production in West Africa (Ayinde et al. 2017; Eyinla et al. 2019).
However, the high costs and drudgery associated with phenotyp-
ing cassava roots for TCC and DMC (Ceballos et al. 2013), the ap-
parent negative correlation between TCC and DMC (Njoku et al.
2015; Esuma et al. 2016b), and the unique challenge of CBSD in
eastern and southern Africa (Alicai et al. 2016, 2019) were a major
motivation for testing the prospects for GS as a tool for improving
these traits in our provitamin A cassava breeding pipeline.

We found relatively low broad-sense heritability (0.36–0.50) for
severity of CBSD root necrosis, which relates to the trait’s quanti-
tative nature (Kulembeka et al. 2012; Masumba et al. 2017)
strongly influenced by environmental factors, which complicates
selection (Pariyo et al. 2015). However, heritability estimates
above 0.5 have been reported by Kayondo et al. (2018) and
Ozimati et al. (2019) for CBSD necrosis in populations evaluated
for GWAS (1300 clones) and GS (922 clones), respectively. As
expected, we noted lower estimates of SNP-based heritability for
the three traits compared to the respective broad-sense heritabil-
ity (Table 1). This could be attributable to under-tagging of causal
loci by markers in our analysis (de los Campos and Toro 2017).
Ozimati et al. (2019) observed similar trends for SNP-based herita-
bility for several agronomic traits in a panel of >1000 clones eval-
uated for GS.

Based on the cross-validation results, predictive abilities were
largely consistent across traits and prediction models. First, we
noted a downward pattern for predictive ability TCC > DMC >

CBSDrs across all models, and for both scenarios of small and in-
creased size of training set. TCC is largely a qualitative trait
(Welsch et al. 2010) for which genomic prediction is expected to
be an effective tool (Zhang et al. 2019). Mean predictive abilities

Figure 3 Manhattan plot for GWAS for total carotenoids content performed with 632 clones (constituted by Cycle 0 and Cycle 1). The horizontal blue line
is the genome-wide significance (Bonferroni threshold); inset is the Q-Q plot for total carotenoid content.
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for DMC were generally low, ranging between 0.21 and 0.33, simi-
lar to the range of 0.29–0.34 reported by Wolfe et al. (2017) and
Ozimati et al. (2018). Interestingly, in the same report, Wolfe et al.
(2017) showed high predictive ability for DMC (0.63–0.67) in a cas-
sava breeding population of IITA. The discrepancies in predictive
abilities for DMC across breeding populations may relate to varia-
tion in heritability arising from differences in phenotyping meth-
ods of using specific gravity and oven-drying method and/or
genetic differences of clones evaluated. Subsequently, efforts are
being made to optimize high throughput methods like near infra-
red spectroscopy for efficient phenotyping of root quality traits
(Belalcazar et al. 2016; Ikeogu et al. 2017), which could improve re-
liability of GS for improving such traits.

Predictive abilities for CBSD resistance were generally low for
all models tested in our analyses (mean of 0.20 for G-BLUP).
Kayondo et al. (2018) highlighted GS as a promising tool to in-
crease genetic gains for CBSD resistance in cassava, especially for
nonparametric models like Random Forest and reproducing ker-
nel Hilbert spaces regression, which capture both additive and
nonadditive effects. It should be noted that Kayondo et al. (2018)
used 1301 clones from NaCRRI’s white-fleshed cassava breeding
population phenotyped in at least three environments, which
probably presented robust data for genomic prediction.
Nonetheless, introgressing CBSD resistance into the provitamin A

cassava breeding population could increase the genetic merit of
these clones for CBSD resistance and their use in developing vari-
eties relevant for production in farmer’s fields.

When we explored prospects of cross-population predictions,
we noted higher predictive ability across Uganda’s populations
than in situations of predicting performance of WA clones. In
evaluating the potential of East African training populations for
genomic prediction of CBSD resistance in West African cassava
germplasm, Ozimati et al. (2019) reported low predictive ability
for the trait. Previous studies have indicated higher reliability of
genomic predictions in populations that share ancestry with
training sets than in situations of diverged genetic backgrounds
where marker effects are likely to be different (De Roos et al. 2009;
Lee et al. 2017). Indeed, a diagnosis of the second axis of PCA plot
presented in Figure 1 shows an apparent drift of WA clones from
the Ugandan clones, which is a manifestation of genetic differ-
ence. Nonetheless, this study revealed some possibility of pre-
dicting TCC and DMC in WA population using our cassava
breeding population, with mean of 0.4 and 0.34, respectively,
with G-BLUP. In this case, it would be possible to identify WA
clones with superior GEBVs for TCC and DMC for further recom-
bination with provitamin A cassava clones, which is a clever
strategy to update a training set with useful alleles from external
gene pools without disrupting genetic gain (Berro et al. 2019).

Figure 4 Prediction abilities for GWAS-guided scenarios for total carotenoids content for within-sub population cross-validation scheme. SM ¼ scenario
of predicting with significant QTL markers on chromosome 1 as single-kernel; CHR1¼ scenario of predicting with all chromosome 1 markers as single-
kernel; CHR2-18¼ scenario of predicting with markers on chromosomes 2–18 only; WK ¼ scenario of predicting with significant QTL markers on
chromosome 1 and the rest of the markers as independent kernels.
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However, the low-predictive ability for CBSDrs in the WA popula-
tion could indicate low genetic merit of using WA cassava germ-
plasm for CBSD resistance breeding, which reinforces the need
for CBSD pre-emptive breeding as a precautionary measure for
the accidental introduction and spread of CBSD in WA.

Motivated by success attained by selection programs that ex-
ploit GWAS-aided prediction (Li et al. 2019), we assessed the suit-
ability of this method for our GS scheme for provitamin A
cassava. In this case, we noted increased predictive ability for
TCC by incorporating its QTL as an independent kernel in the ge-
nomic prediction model. The QTL for TCC identified in this study
is within the genomic vicinity of Manes.01G124200.1, a gene which
encodes enzyme phytoene synthase known to catalyze accumu-
lation of ß-carotene in plant tissues (Welsch et al. 2010; Kandianis
et al. 2013). In our study, the QTL represented biological informa-
tion in the form of large-effect SNPs, which can enhance genomic
prediction when fitted as an independent kernel. In this case,
partitioning genomic markers into two relationship matrices, one
kernel comprising the QTL markers associated with TCC on chro-
mosomes 1 and the rest of the markers as the second kernel, led
to better estimation of GEBVs (Morota and Gianola 2014). Li et al.
(2019) reported increase in prediction accuracies of GS models
resulting from increase in the number of most significant SNPs
fitted as fixed effects in a maize breeding population. The appar-
ent increase in predictive ability in our scenario of fitting effects
of significant QTL markers on chromosome 1 and the rest of
markers as independent kernels signifies the advantage of GS
over traditional marker-assisted selection in utilizing whole-ge-
nome markers to account for phenotypic variance unexplainable
by markers linked to QTL.

Taken together, the moderate to high predictive ability
achieved for DMC and TCC in this study underpin the transfor-
mative ability of GS when adapted and integrated as a cassava
breeding tool. We remark that GS offers a promise for rapid im-
provement of cassava for provitamin A carotenoids and DMC, es-
pecially when prediction models are properly chosen and tuned.
In parallel, concerted efforts are required for further enrichment
of provitamin A cassava breeding population with CBSD resis-
tance alleles to make genomic prediction an effective tool for in-
creasing gains for the trait. Results presented in this study
complement ongoing efforts aimed at integrating the use of GS in
cassava breeding programs.
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