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Male infertility is a widespread health problem affecting approximately 6%–8% of the
male population, and hypoxia may be a causative factor. In mammals, two types of
hypoxia are known, including environmental and pathological hypoxia. Studies looking
at the effects of hypoxia on male infertility have linked both types of hypoxia to poor
sperm quality and pregnancy outcomes. Hypoxia damages testicular seminiferous
tubule directly, leading to the disorder of seminiferous epithelium and shedding
of spermatogenic cells. Hypoxia can also disrupt the balance between oxidative
phosphorylation and glycolysis of spermatogenic cells, resulting in impaired self-renewal
and differentiation of spermatogonia, and failure of meiosis. In addition, hypoxia disrupts
the secretion of reproductive hormones, causing spermatogenic arrest and erectile
dysfunction. The possible mechanisms involved in hypoxia on male reproductive toxicity
mainly include excessive ROS mediated oxidative stress, HIF-1α mediated germ cell
apoptosis and proliferation inhibition, systematic inflammation and epigenetic changes.
In this review, we discuss the correlations between hypoxia and male infertility based on
epidemiological, clinical and animal studies and enumerate the hypoxic factors causing
male infertility in detail. Demonstration of the causal association between hypoxia and
male infertility will provide more options for the treatment of male infertility
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INTRODUCTION

The clinical definition of infertility is described as the failure of couples to conceive after more
than 1 year of regular unprotected intercourse (Zegers-Hochschild et al., 2009). According to the
World Health Organization statistics, infertility has become a global public health issue, affecting
approximately 12%–15% of couples worldwide (Practice Committee of the American Society for
Reproductive Medicine, 2015). Male factors are responsible for 50% of the cases of infertility, among
which 20%–30% occur solely due to male factors, and 20%–30% are due to factors affecting both
partners (Tournaye et al., 2017). Data from a global burden of disease (GBD survey suggested that
the prevalence of male infertility increased by 0.291% per year from 1990 to 2017 globally (Sun
et al., 2019), and may approach the 50% limit. Currently, male infertility is not just a quality-of-
life problem, but a political theme with considerable social distress, and it imposes a substantial
financial burden on couples and health-care systems (Agarwal et al., 2021).
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The causes of male infertility are wide-ranging, including
obesity, psychological stress and environmental pollutants, and
hypoxia is one of the predominant reasons (Gat et al., 2006,
2005). Hypoxia is defined as a transient or sustained condition
of decreased arterial oxygen partial pressure resulting in tissue
oxygen deficiency, which is characterized by a decrease in arterial
oxygen partial pressure and oxygen content (Reyes et al., 2012).
In humans, the arterial oxygen partial pressure (PaO2) is 12–
13.3Kpa (90–100 mmHg) and the arterial oxygen saturation
(SaO2) is 92–96% during normal conditions at sea level. Hypoxia
occurs when SaO2 drops below 90% (Bomhard and Gelbke,
2013). In mammals, two types of hypoxia are known, including
environmental hypoxia and pathological hypoxia. The former
mainly refers to low partial pressure of inhaled oxygen caused
by high altitude, while the latter is impaired testicular oxygen
delivery or utilization caused by pathological factors, including
varicocele (Jensen et al., 2017), chronic lung disease (Semple
et al., 1983), sleep apnea (Mesarwi et al., 2019) and sickle cell
disease (Torres et al., 2014). Both environmental and pathological
hypoxia have been shown to negatively affect male fertility in
animals and humans, which can lead to a reduced sperm count,
low sperm motility and abnormal sperm morphology on sperm
output (Ata-Abadi et al., 2020; Wang J. et al., 2020). However,
the adverse consequences of hypoxia on male fertility have
been established in some studies, but it is difficult to make
a firm conclusion without enough evidence. In this review,
we summarize the effects of hypoxia on various aspects of
fertility based on basic and clinical evidence in great detail, and
discuss the potential mechanisms. Finally, we enumerate the
environmental and pathological hypoxic factors causing male
infertility. A correct understanding of the relationship between
hypoxia and male infertility will provide more ideas about
the etiological diagnosis of male infertility and more options
for its treatment.

OVERVIEW OF HYPOXIA

Oxygen began to accumulate in the atmosphere approximately
2.5 billion years ago and reached its present level (∼21%) about
350 million years ago (Bekker et al., 2004). The crucial function
of oxygen is to act as a terminal electron acceptor to participate
in aerobic respiration, which converts the chemical energy in
cells into the active chemical energy in ATP through oxidative
phosphorylation. Energy produced by aerobic respiration is
sufficient to support physicochemical reactions in living cells and
is incapable being sustained by glycolysis alone under hypoxic
conditions (Semenza, 2012).

The evolution of the respiratory system and cardiovascular
system allowed atmospheric oxygen to be transported to tissues
directly through the bloodstream in more complex metazoans,
such as Homo sapiens. When environmental oxygen content
is low or respiratory or cardiovascular systems are impaired,
hypoxia occurs (MacIntyre, 2014). Most mammals show little
tolerance to hypoxia and their response involves the activation
of regulatory mechanisms at systemic, tissue and cellular levels.
The key factor in oxygen adaptation is hypoxia inducible factor

(HIF) (Choudhry and Harris, 2018). Structurally, HIF is a
heterodimer comprised of α and β subunits, and each subunit
contains basic helix-loop helix PAS domains for DNA binding
(Wang et al., 1995). Under normal oxygen conditions, the
proline hydroxylases (PhDs) family (also known as the Egin
or HPH family) hydroxylates one or both highly conserved
proline residues near NTAD, which generates a binding site
for the von Hippel Lindau (pVHL) tumor suppressor protein,
a component of the ubiquitin ligase complex, leading to
ubiquitination degradation of HIF-α (Choudhry and Harris,
2018). The PHD is inactive when oxygen is not available, allowing
HIF-α to stabilize and accumulate gradually, dimerizing with
HIF-β (Semenza, 2012). Upon dimerization, HIF translocates to
the nucleus and binds to hypoxia response elements (HREs) to
play a transcriptional regulatory role in target genes (Figure 1)
(Majmundar et al., 2010).

HIF-1α mRNA is expressed equally in all male reproductive
systems, including the testis, all segments of the epididymis,
ductus deferens, accessory sex glands, and penis (Powell
et al., 2002). In the testes of rats, immunoblot and
immunohistochemical analysis revealed that HIF-1α protein
was expressed in almost every epididymal epithelium and was
significantly higher in hypoxic testes than in normoxic testes
(Liang et al., 2015; Zhang et al., 2016). In humans, the expression
of HIF-1α protein was 7 times higher in patients with varicocele
(testicular hypoxia) than in normal volunteers (Lee et al.,
2006). Widespread expression of HIF-1α is the basis of hypoxic
adaptation in the male reproductive system.

REPRODUCTIVE CONSEQUENCES OF
HYPOXIA

Reduced Sperm Quality
The sperm quality outcome measures are the sperm
concentration, motility, morphology, semen volume, viability
and DNA fragmentation, which are the parameters most
frequently used in clinical settings (Schisterman et al., 2020).
Growing evidence has shown that hypoxia has adverse effects
on sperm quality in several species, including rodents, livestock,
Drosophila, fish, and humans (Wang et al., 2016; Cofre et al.,
2018; Wang J. et al., 2020). In rats and mice, acute, intermittent
and chronic hypoxia reduced the total sperm concentration
and sperm motility while increasing the rates of sperm DNA
fragmentation and abnormal sperm morphology (Vargas et al.,
2011; Torres et al., 2014; Bai et al., 2018; Wang J. et al., 2020;
Ma et al., 2021). Hypoxia in rams led to a lower sperm count,
sperm progressive motility and viability than in normoxic rams
(Cofre et al., 2018). In humans, male soldiers exposed to hypoxia
at high altitude (5380 m) for 12 months showed a poor sperm
concentration, sperm motility, sperm density, and survival
rate compared with those at 1 month before exposure (He
et al., 2015). Similar observations were made among mountain
trekkers, expeditions and specimens (Donayre et al., 1968;
Okumura et al., 2003; Verratti et al., 2008). Furthermore, hypoxia
mediated transgenerational impairments in sperm quality.
Studies from hypoxic fish proved that exposing the Fo generation
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FIGURE 1 | Schematic overview of the pathways involved in germ cell damage caused by HIF-1α. In the presence of oxygen, prolyl hydroxylases (PHDs) hydroxylate
the HIF-1α, which generates a binding site for the von Hippel Lindau (VHL) protein, a component of the ubiquitin ligase complex, leading to proteasomal degradation
of HIF-α. During hypoxia, the enzymatic activity of PHDs is inhibited, leading to stabilization of HIF-1α subunits. After translocation to the nucleus, they complex with
their β subunit and bind to hypoxia responsive elements (HREs). The genes activated by HIF perform the following functions in germ cells: apoptosis, which is
caused by VEGF/PI3K/AKT signaling pathway, mitochondrial pathway, death receptor pathway and miR210/KLF7 pathway; Proliferation inhibition, which is caused
by activating VEGF transcription. Hypoxia can also upregulate the expression of Beclin-1 and LC3II/LC3I, and downregulate the expression of P62 to promote germ
cell autophagy.

to hypoxia led to a decrease in sperm count and motility in the
F1 and F2 generations that had never been previously exposed to
hypoxia (Wang et al., 2016; Lai et al., 2018).

It is worth noting that patients or animals with pathological
hypoxia such as sickle cell disease (Friedman et al., 1974; Nahoum
et al., 1980; Osegbe et al., 1981; Agbaraji et al., 1988; Modebe and
Ezeh, 1995; Berthaut et al., 2008), thalassemia (De Sanctis et al.,
2008; Safarinejad, 2008a), lung diseases (Charpin et al., 1985) and
obstructive sleep apnea hypopnea syndrome (Torres et al., 2014)
also showed decreased sperm parameters of sperm output. Taking
sickle cell disease as an example, D N Osegbe et al. measured
different semen parameters including sperm motility, density,
morphology, semen, viscosity, volume, pH and liquefaction time
produced by 40 male patients aged 20.56 years with sick cell
disease, and found that the semen parameters of all sickle cell
subjects did not meet the minimum requirements for fertility
(Osegbe et al., 1981). Subfertility seems to be a great problem
among these patients with sickle cell disease, because they have
rarely fathered children (Akinla, 1972).

Impaired Spermatogenesis
Successful fertility requires a large amount of normal sperm.
In order to meet the minimum fertility standard, the sperm
concentration is greater than 15 million per ml, of which at
least 40% should be motility and at least 4% with a normal

morphology according to the new criteria for the laboratory
examination of human sperm parameters of WHO [World
Health Organization (WHO), 2010]. The generation of sperm
is depended on a highly dynamic cellular differentiation process
in the seminiferous tubules of the testis, called spermatogenesis
(Griswold, 2016). This process begins with the self-renewal
and differentiation of spermatogonial stem cells (SSCs) (Yeh
et al., 2011). Self-renewal and differentiation of spermatogonial
stem cells must be able to self-renew to maintain stem cell
populations and undergo differentiation to form sperm, and
this relationship between proliferation and differentiation rates
is a parameter highly influenced by oxygen availability (Yeh
et al., 2011). It is well established that cells mainly undergo
oxidative phosphorylation to produce ATP in the presence
of sufficient oxygen supply, while in the absence of oxygen,
ATP is produced by glycolysis. However, stem cells, as well
as SSCs, rely more on glycolysis for ATP production to
avoid DNA damage caused by excessive ROS produced by
oxidative phosphorylation, but oxidative phosphorylation and
oxidative phosphorylation are also essential, since ROS are
also required for SSC self-renewal (Morimoto et al., 2013;
Ryall et al., 2015). This is a bioenergenic balance between
glycolysis and oxidative phosphorylation, which can be disrupted
in the absence of oxygen. Recent research has found that
the inhibition of mitochondrial respiration and glycolysis
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in undifferentiated spermatogonia cells results in decreased
spermatogonial colony size, and reduced expression of SSC
marker genes, such as Plzf, Id4, Gfrα1, Etv5, and Sall4,
suggesting that hypoxia may affect spermatogonia differentiation
(Chen et al., 2020).

Following self-renewal and differentiation, SSCs transform
into primary spermatocytes, which undergo two meiotic divisions
to reduce the chromosome number from diploid to haploid and
diversify the genetic material to form round spermatids (Lloyd
and Bomblies, 2016); Considering that the seminiferous tube is
thicker in diameter and lacks a vascular supply, oxygen reaches
the lumen only by diffusion. Due to the limited diffusion distance
and the high oxygen consumption of spermatogenesis, luminal
PO2 is likely to be very low (Wenger and Katschinski, 2005).
Therefore, spermatocytes appear to have less access to oxygen
than SSCs (Cross and Silver, 1962; Wenger and Katschinski,
2005). Although few studies have focused on oxygen and
energy metabolism in spermatocyte meiosis, it is undeniable that
hypoxia is bound to increase the energy burden of meiosis, since
meiosis is an extremely energy-intensive process. Thus it is not
surprising that the apoptosis rate of spermatocytes is much higher
than that of other germ cells under most hypoxic conditions
(Liao et al., 2010).

Hypoxia affects not only germ cells but also the seminiferous
tubule. Findings from hypoxic rats confirmed that exposing
rats to hypoxic conditions arrested spermatogenic development,
misshaped the arrays of spermatids (Bai et al., 2018), atrophied
and thinned the seminiferous tubule lumen (Wang J. et al.,
2020), decreased the cellularity of the seminiferous epithelium
(Cikutovic et al., 2009; Liao et al., 2010), and disturbed the
stages of the seminiferous epithelium (Gasco et al., 2003;
Gonzales et al., 2004). Similar phenotypes pertaining to other
animals such as mice (Kastelic et al., 2019) and rhesus monkeys
(Saxena, 1995), have also been reported. In addition, Sertoli
cells, the only type of somatic cells in the seminiferous
epithelium of the testis that are essential for the maintenance
of cell junctions, nutrient supply, and germ cells mitosis and
meiosis (Ni et al., 2019), are also affected by hypoxia. A study
using a hypobaric chamber simulating hypoxic condition at
an altitude of 5000 m showed that 3 weeks of persistent
hypoxic exposure resulted in a decrease in the number of Sertoli
cells in rats (Bai et al., 2018). The number of Sertoli cells
were also decreased under acute hypobaric hypoxia conditions
(Shevantaeva and Kosyuga, 2006).

Reproductive Hormone Disorders
As part of the body’s adaptation to hypoxia, the hypothalamic–
adrenal–adrenal (HPA) axis regulates the functions of the
hypothalamic–adrenal–gonadal (HPG) axis, which is necessary
to ensure successful reproduction of males. The HPG axis
influences the function of the reproductive system through
the endocrine pathway, originating from the secretion of
gonadotropin-releasing hormone (GnRH) in the hypothalamus.
GnRH stimulates the pituitary gland to synthesize and secrete
follicle-stimulating hormone (FSH) and luteinizing hormone
(LH) (Neto et al., 2016). In turn, FSH and LH act on the testes
to promote androgen (main testosterone) synthesis. GnRH, FSH,

LH and testosterone are the major reproductive hormones that
affect male reproductive functions.

The functions of FSH, LH and testosterone are mediated
by their specific receptors, FSH receptor (FSHR), LH receptor
(LHR), and androgen receptor (AR) respectively (Oduwole
et al., 2018). FSH receptor is mainly expressed on Sertoli cells,
which affects the maturation, proliferation, and function of
Sertoli cells (Griswold, 1998; Abel et al., 2008). Mutations of
FSH or FSHR have been associated with a decreased Sertoli
cell number and sperm count, but have no effect on fertility
(Tapanainen et al., 1997). LH receptor is expressed on Leydig
cells to stimulate testosterone production (Narayan, 2015). The
functions of testosterone are mediated by the androgen receptor
(AR). Androgen receptor is generally expressed on Sertoli cells,
Leydig cells and arteriole smooth muscle in the testis, but not in
germ cells (Sar et al., 1990; Bremner et al., 1994; Wang et al., 2009;
Smith and Walker, 2014). Findings from cell specific AR ablation
or overexpression models showed that testosterone is crucial
for spermatogonia number maintenance, blood-testis barrier
integrity, completion of meiosis and the adhesion of spermatids
and spermiation (Wang et al., 2009; Smith and Walker, 2014;
O’Hara and Smith, 2015).

Through the years, although researches on hypoxia and
reproductive hormones has made great progress, many
contradictory reports still exist in both hypoxic animals and
humans. Most studies have suggested that both environmental
and pathological hypoxia decrease the levels of FSH and LH in
the blood circulation (Dada and Nduka, 1980; el-Hazmi et al.,
1992; Farias et al., 2008), while few studies have shown no
effect or increased FSH or LH levels (He et al., 2015; Verratti
et al., 2016). In addition, studies on the effects of hypoxia on
testosterone secretion were also widely divergent. Several studies
in humans and animals suggested that hypoxia stimulates
testosterone production (Boksa and Zhang, 2008; Ma et al.,
2018; Cho et al., 2019), while others suggested the opposite
(Wang et al., 2017, 2019; Bai et al., 2018; Raff et al., 2018; Kim
and Cho, 2019). Interestingly, similar findings were observed
in cell models. One study in mouse Leydig cell line TM3 cells
in a hypoxic incubator chamber showed increased testosterone
release, and these effects were mediated by increased vascular
endothelial growth factor (VEGF) production (Hwang et al.,
2007); Another study in which rat primary Leydig cells or TM3
cells were exposed to hypoxia (1% O2) indicated a negative
regulation of testosterone synthesis under hypoxia. This decline
may be related to HIF-1α mediated transcriptional suppression
of steroidogenic acute regulatory protein (Star), a rate-limiting
enzyme for testosterone synthesis (Wang et al., 2018).

Actually, most of these conflicting reports are to be expected
since testosterone is both a hypoventilatory and an erythropoietic
hormone (Molinari, 1982; Guo et al., 2014; Marques et al., 2020).
In the early stage of hypoxia (or acute hypoxia exposure), an
increased in serum testosterone prevents respiratory alkalosis
caused by exaggerated respiratory response of the organism
(Gonzales, 2013). An increase in serum testosterone may also
enhance erythropoiesis, supporting acclimatization (Gonzales,
2013). With the prolongation of hypoxia, ROS gradually
accumulates in testicular cells leading to the damage of Leydig
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cells, which causes the decrease of testosterone. Thus it is not
surprising that Madrid et al. observed an increased in testosterone
during the first 24 h followed by a decrease on the 5th day in
normobaric hypoxic murine model (Madrid et al., 2013).

Erectile Dysfunction
Erectile dysfunction is a common male sexual dysfunction
that is defined as the inability of the penis to attain or
maintain a sufficient erection to achieve satisfactory sexual
intercourse (Hatzimouratidis et al., 2010). Erectile dysfunction
affects physical and psychosocial health, and has been identified
as a common medical disorder over the past 20 years (Rathore
et al., 2019). Causes of erectile dysfunction can be divided into
2 types: psychogenic disorders and an organic etiology. Current
studies have suggested that psychogenic disorders contribute to
only 20% of patients, and more than 80% of sufferers have an
organic etiology (Yafi et al., 2016). There are two causes of organic
etiology: endocrine and non-endocrine. Of the edocrinological
erectile dysfunctions, testosterone plays important roles in
enhancing sexual desire and erections (Shamloul and Ghanem,
2013); In terms of non-edocrinological erectile dysfunction,
vasculogenic factors including arterial inflow disorders and
corporeal veno-occlusion are the most common (Yafi et al.,
2016). Notably, hypoxia can affect both types of ED mentioned
above simultaneously. Hypoxia can lead to a disturbance (mostly
reduction) of testosterone secretion, as described in the previous
section “Reproductive hormone disorders,” which is the main
cause of edocrinological erectile dysfunctions. Hypoxia from
decreased corpora cavernosal oxygenation results in a decrease
in prostaglandin E1 levels, which play a role in inhibiting
pro-fibrotic cytokines, including transforming growth factor
β1 (TGFβ1). These pro-fibrotic cytokines promote collagen
deposition, replacing the smooth muscle and resulting in
decreased elasticity of the penis. As the smooth muscle to collagen
ratio decreases and collagen content increases, the ability of the
cavernosa to compress the subtunical veins decreases, leading to
corporal veno-occlusive dysfunction (Yafi et al., 2016).

Findings from several animal models of disease and clinical
reports suggested that hypoxia impairs NO synthesis, which in
turn decreases the functional integrity of penile smooth muscles
(Moreland, 1998; Saenz de Tejada et al., 2004). A murine model
of chronic intermittent hypoxia showed that 1 weeks of chronic
intermittent hypoxia exposure resulted in a 55% decline in daily
spontaneous erections. After 5 weeks of exposure, non-contact
sexual activity was significantly suppressed, latencies for mounts
and intromissions increased by 60- and 40-fold, respectively,
and the sexual activity index decreased 6-fold (Soukhova-O’Hare
et al., 2008). Another study performed in rats found that chronic
intermittent hypoxia exposure significantly decreased the ratio
of intracavernous pressure(ICP) to mean arterial blood pressure
(MAP), an indicator of penile erectile response, at all levels (2.5,
5.0, and 7.5 volts) compared with normoxic rats. Furthermore,
higher of apoptotic index and lower smooth muscle/collagen of
corpus cavernosum were observed in hypoxic rats than normoxic
(Moreland, 1998; Zhu et al., 2015). In humans, a study of
hypoxia associated with idiopathic pulmonary fibrosis showed
that the severity of hypoxia was closely associated with degree

of testosterone suppression, which led to erectile dysfunction
(Semple P. D. et al., 1984).

POTENTIAL MECHANISMS BY WHICH
HYPOXIA CAUSES MALE INFERTILITY

Excessive ROS Mediates Oxidative
Stress
Reactive oxygen species (ROS), including superoxide anions
(O2•), hydrogen peroxide (H2O2), peroxyl (ROO•), and
hydroxyl (OH•) radicals, participate in almost all cell
physiological processes as signaling molecules (Boveris
and Chance, 1973; Du Plessis et al., 2015). In the testis,
the physiological level of ROS is beneficial for SSCs self-
renewal, germ cell proliferation, maturation and sperm
capacitation, acrosome reaction, hyperactivation, and the fusion
of spermatozoa with the oocyte (Ford, 2004; Agarwal et al.,
2012; Morimoto et al., 2013; Bejarano et al., 2014; Aitken, 2017).
However, excessive levels of ROS can promote the cell reductive-
oxidative balance to an oxidative state, leading to oxidative
stress, and thereby damaging the physiological functions of
proteins, lipids and DNA.

Although conventional wisdom holds that exposure of cells
to excess oxygen leads to the generation of ROS, studies
have shown that exposure of cells to hypoxic conditions also
leads to increased excessive ROS generation (Kim et al., 2006;
Yadav et al., 2019; Zhao et al., 2020). As early as 1943, John
Macleod discovered that increased production of H2O2 led
to a decrease in sperm motility, this was a breakthrough
that opened a pathway for research on the role of ROS in
sperm function. In sperm, the sources of ROS are mainly
the sperm mitochondria, cytosolic L-amino acid oxidases, and
plasma membrane nicotinamide adenine dinucleotide phosphate
oxidases (Aitken, 2017) (Figure 2). Findings from past studies
have linked excessive ROS to poor sperm quality and male
infertility (Ford, 2004; Tremellen, 2008), and up to 30%–80% of
the pathology of infertility is attributed to ROS-mediated sperm
damage (Aitken and Fisher, 1994; Agarwal et al., 2006, 2019).
Reactive oxygen species causes infertility in two principal ways.
First, ROS causes membrane lipid peroxidation, that disturbs
its fluidity, resulting in damage to the sperm membrane and
thus affecting sperm motility and its ability to fuse with the
vitelline membrane of oocytes due to the resulting damage to
the sperm membrane. Second, ROS acts directly on sperm DNA,
causing DNA double or single-strand breaks, which weakens
the paternal genomic contribution to the embryo (Tremellen,
2008). Data from numerous studies have highlighted that ROS
had significant negative effects on spermatogenesis (Liu B. et al.,
2019; Sharma et al., 2019), steroidogenesis (Chen et al., 2010; Tai
and Ascoli, 2011), and epididymal sperm maturation (Arenas-
Rios et al., 2016; Schneider et al., 2020). Furthermore, ROS can
also mediate germ cell apoptosis by activating mitochondrial
and death receptor apoptotic pathways, which may be the main
cause of sperm count reductions (Ghosh and Mukherjee, 2018;
Liu T. et al., 2019) (Figure 2).
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FIGURE 2 | Schematic diagram of the generations and functions of ROS. Hypoxic exposure stimulates the generation of excess ROS from sperm mitochondria,
cytosolic L-amino acid oxidases, and plasma membrane nicotinamide adenine dinucleotide phosphate oxidases, leading to sperm lipid peroxidation, sperm DNA
damage and germ cell apoptosis.

HIF-1α Mediates Germ Cell Apoptosis
and Proliferation Inhibition
Programmed cell death, which we call apoptosis, is a critical
biological process for regulating both the size and the quality
of male germ cells and controlling the sperm output. In fact,
only 25% of germ cells achieve maturity during spermatogenesis,
and more than 75% of the sperm yield were lost through
apoptosis in any phase of spermatogenesis (Aitken et al., 2011).
Under physiological conditions, apoptosis plays an important
role in the elimination of damaged germ cells, avoiding the
passage of defects to future generations (Shaha et al., 2010).
However, dysregulated apoptosis of germ cells was indicated in
the etiology of male infertility, since increased apoptosis of cells
has been observed in the testes of infertile men or animal models
(Lin et al., 1997; Fouchecourt et al., 2016; Liu P. et al., 2018;
Mu et al., 2018).

Previous studies have shown that hypoxia is a powerful
initiator of apoptosis (Guven et al., 2014; Zhang et al., 2016),
however, the mechanism by which hypoxia induces apoptosis
in germ cells has yet to be defined. HIF-1α may be a key
factor in mediating apoptosis. In rat models, silencing the
HIF-1α gene in varicocele testes using the CRISPR/Cas9 gene
editing technique significantly reduced the rate of apoptosis of
spermatogenic cells and improved spermatogenic function by
downregulating the VEGF/PI3K/AKT signaling pathway (Wang
D. et al., 2020). Another study revealed that silencing HIF-1α

significantly downregulated the expression of Bax and cleaved
caspase-3 in the testes of varicocele rats (Zhao et al., 2019). In
cell models, HIF-1α induced GC-2 cell apoptosis by activating
the mitochondrial pathway and death receptor pathway under
hypoxic conditions (Yin et al., 2018a). In addition, miR-210,
a robust target of HIF-1α, also plays a crucial role in the
apoptosis of germ cells (Lv et al., 2019). A study using a hypoxia
workstation found that hypoxia induced miR-210 expression
triggers apoptosis of mouse spermatocyte GC-2 cells by targeting
Kruppel-like factor 7(KLF7), a transcription factor involved in
cell proliferation (Gupta et al., 2020) (Figure 1).

Autophagy has been shown to play an important role in
testicular damage under hypoxic conditions. In rats, varicocele
testes cells showed increased expression of autophagy marker
Beclin 1 and microtubule associated protein 1 light chain
3α (LC3) II/LC3I (Zhu et al., 2017); Exposure of GC-2 cells
to hypoxia conditions reduced P62 protein expression and
increased the expression of LC3 II and Beclin-1 (Yin et al., 2018b;
Zhou et al., 2018). In varicocele rats, short-term hypoxia
exposure promoted autophagy to stimulate testosterone secretion
by degrading intracellular lipid droplets/total cholesterol. The
change could be abolished by blocking autophagy (Ma et al.,
2018) (Figure 1).

Notably, as a downstream target gene of HIF-1α, VEGF is
upregulated under hypoxia, which is essential for endothelial
growth and permeability (Apte et al., 2019). In addition
to the well-known effects of VEGF, Korpelainen et al.
observed that the VEGF transgene has non-endothelial
target cells in the testis, leading to spermatogenic arrest and
increased capillary density, which may regulate male fertility
(Korpelainen et al., 1998). Another study reported that the
VEGF upregulation in the testis under hypoxia suppresses
the spermatogenesis by inhibiting germ cell proliferation,
leading to aspermatogenesis and infertility (Nalbandian et al.,
2003) (Figure 1).

Systematic Inflammation
Findings from several studies have linked increased levels of
proinflammatory cytokines to spermatogenesis disorder, poor
sperm quality and infertility (Zhao et al., 2017; Beigi Harchegani
et al., 2020; Cao et al., 2020). Numerous studies have shown
that hypoxia is a powerful cause of inflammation. In humans,
exposure to intermittent hypoxia or acute hypoxia increased the
serum levels of inflammatory markers, including interleukin 1
receptor antagonist (IL-1ra), interleukin 6 (IL-6) and C-reactive
protein (CRP) (Hartmann et al., 2000; Gangwar et al., 2019).
Other studies on obstructive sleep apnea syndrome suggested
that patients with obstructive sleep apnea syndrome showed high

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2021 | Volume 9 | Article 725933

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-725933 September 8, 2021 Time: 9:56 # 7

Li et al. Hypoxia and Male Infertility

serum levels of tumor necrosis factor-α (TNF-α), IL-6, CRP, and
spontaneous production of IL-6 by monocytes compared with
obese control subjects (Vgontzas et al., 2000; Yokoe et al., 2003).
Hypoxia has also been shown to be positively correlated with
these proinflammatory markers in animal studies (Ren and Hu,
2017; Alshanwani et al., 2020).

Hypoxic exposure was suggested to promote the activity of
numerous transcription factors, including nuclear factor-κB (NF-
κB), a known target gene of HIF-1α (Figure 3). NF-κB is a
heterodimer consisting of p50 and p65 subunits, which acts
as a central transcriptional regulator of the immune response
and immune cell function (Rius et al., 2008). Activation of NF-
κB requires phosphorylation-induced proteasomal degradation
of inhibitory IκB proteins, which is mediated by IκB kinases
(IκKs) (Rius et al., 2008). Two IκKs are known, IκKα and
IκKβ, in which IκKβ plays a major role in phosphorylation
of IκB inhibitors. Interestingly, the evidence showed that
NF-κB was activated in hypoxia through PHD-dependent
hydroxylation of IκK-β (Cummins et al., 2006) (Figure 3).
Furthermore, findings in animals and humans found that
hypoxia -induced inflammation is characterized by elevated
levels of NF-κB and the proinflammatory biomarkers IL-6, IL-
1, and TNF-α (Mazzeo, 2005; de Gonzalo-Calvo et al., 2010;
S et al., 2012).

Epigenetic Changes
Epigenetic modifications, including histone modifications,
DNA/RNA methylation and non-coding RNAs, affect the
phenotype by regulating gene expression without altering the
coding sequence of DNA. DNA methylation is one of the
most pervasive epigenetic modification types and it remains
stable during spermatogenesis (Liu Y. et al., 2019). Changing
in sperm DNA methylation patterns are closely related to DNA
fragmentation, reduced telomere length and male infertility
(Khezri et al., 2019; Santana et al., 2019). A meta analytic
study showed that the proportion of aberrant sperm DNA
methylation in infertile men was 9.91 times higher than that in
matched fertile men (Santi et al., 2017). Aberrant sperm DNA
methylation was also found in asthenospermia or other types of
male infertility (Kobayashi et al., 2007). Furthermore, reduced
sperm concentration, motility and abnormal morphology
were related to broad DNA hypermethylation across a
number of loci (Rajender et al., 2011). Oxidative stress, an
important pathological consequence of hypoxia, is a known
stressor of DNA methylation (Niu et al., 2015), thus people or
animals suffering from hypoxia have a higher risk of aberrant
sperm DNA methylation. In this regard, Bahreinian et al.
demonstrated a negative correlation between methylation
and DNA fragmentation. They found that infertile men with
varicocele showed lower DNA methylation as well as lower
sperm parameters (sperm concentration, sperm motility,
percentage abnormal morphology) and higher sperm DNA
fragmentation compared with fertile men (Bahreinian et al.,
2015). Interestingly, most of the differentially methylated CpG
sites were hypomethylated in the varicocele group, and these
regions show associations with male reproductive pathways
such as semen quality, gamete generation, and meiotic and

meiosis cell cycle based on gene ontology analysis (Santana et al.,
2020) (Figure 4).

Notably, more powerful evidence is reflected in animal
models. Wang et al. found that hypoxic treatment of F0
generation fish resulted in sperm DNA hypermethylation in the
F0 and F2 generation, which was responsible for the aberrant
sperm motility (Wang et al., 2016). Specifically, the exonic region
of forkheadbox P2 (FOXP2), a conserved transcription factor
involved in germ-cell development and spermatogenesis, was
hypomethylated after hypoxic exposure (Figure 4).

Hypoxia can also affect male reproduction by regulating
non-coding RNAs expression, including miR210. Mir210, also
known as hypoxamiR, is a robust target of HIF and plays
instrumental roles in hypoxic cell metabolism, survival, redox
balance and angiogenesis (Cicchillitti et al., 2012). A study
using hypoxic GC-2 cells showed that hypoxia increased miR-
210 expression triggered apoptosis of GC-2 cell via activation
of the apoptosis signaling pathway (Lv et al., 2019). Another
study found that miR-210 was negatively correlated with the
sperm count and seminal inhibin-B expression and may be an
invasive biomarker of Sertoli cell damage in varicocoele (Ma
et al., 2021). In addition, findings from 25 infertile patients with
varicocele and 14 fertile men found that hypoxia related lncRNAs,
including MLLT4-AS1 and MIR210HG, showed significantly
negative correlations with sperm count and sperm motility
(Ata-Abadi et al., 2020) (Figure 4).

HYPOXIC FACTORS CAUSING MALE
INFERTILITY

Environmental Factors
The Earth’s surface is surrounded by a layer of air approximately
200 km thick, called the atmosphere. The atmosphere is a mixture
of various gases, of which O2 accounts for 21%, CO2 accounts
for 0.027%, and N2 accounts for 78%, and these proportions
remain balanced regardless of altitude. Dalton’s law establishes
that in any given combination of gases, the total pressure is
equal to the sum of the partial pressures of the gases in the
mixture, so the partial pressure of oxygen(PO2) depends largely
on the atmospheric pressure. At sea level, atmospheric pressure
is about 100 Kpa. According to the Dalton’s Law, the PO2 can be
calculated as follows:

AtmPO2 = 0.21∗100Kpa = 21Kpa

Within the atmosphere, atmospheric pressure decreases with
altitude, as does the PO2 (Figure 5). As the altitude increases,
the partial pressure of inhaled oxygen decreases and hence the
driving pressure of pulmonary gas exchange. Since atmospheric
pressure is the sum of the partial pressure of the constituent gases,
oxygen and nitrogen, and the partial pressure of water vapor (6.3
kpa at 37◦C). Thus the partial pressure of inspired oxygen(PiO2)
at sea level can be calculated as follows:

PiO2 = 0.21∗(100Kpa− 6.3Kpa) = 19.6 Kpa.
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FIGURE 3 | Schematic diagram of the NF-kB activation pathways. (A) Under hypoxia, HIF-1α is stabilized and translocate to the nucleus, dimerizing with the β

subunit and binds to HREs in the promoters of NF-κB to initiate its transcription. (B) Under normoxia, PHDs and factor inhibiting hypoxia-inducible factor (FIH)
prevent the activation of IκBβ. During hypoxia, IκKβ phosphorylate the NF-κB inhibitor IκBα, which results in its ubiquitylation and subsequent proteasomal
degradation. Dissociation of IκBα allows the nuclear translocation of the NF-κB heterodimer and the transcription of its target genes.

The partial pressure of inspired oxygen is reduced to about
13.3 kpa at 3000 m altitude, at this inspired oxygen pressure,
the alveolar oxygen pressure is about 8 kPa (Peacock, 1998). At
an altitude of 5500 m, the PO2 and PiO2 directly drop to 50%
of the sea level, and to 30% at 8900 m (Peacock, 1998; Grocott
et al., 2009) PaO2 dropped from 100 mmHg to 50 mmHg at
5300 m and to 24.6 mmHg at 8400 m (Grocott et al., 2009). SaO2
showed a decreased from 98 to 88% compared to the sea level
(Bian et al., 2013).

As early as 1945, Dr. Monge found that reproduction rates
among European soldiers in the Andean highlands decreased
significantly, which led him to propose that hypoxia reduces
fertility (Monge, 1945). In a follow-up study, He et al. found
that male soldiers exposure to hypoxia at high altitude(5380 m)
for 6 months causes a significantly reduction in total sperm
count, sperm density, motility, survival rate and a significant
prolongation of liquefaction time in young male soldiers.
12 months after hypoxic exposure, total sperm count and
sperm density increased, whereas sperm motility, survival rate,
and the liquefaction time further decreased. Sperm velocities,
progression ratios, and lateral head displacements were also
decreased (He et al., 2015). Another study of the mountain
trekkers showed that 26 days of exposure at an altitude of
2000 m-5600 m resulted in lower sperm counts. Sperm motility
showed no reduction immediately after returning to sea level,
but decreased significantly after 1 month. Mature, normal
and motile sperm in the ejaculate decreased immediately after

returning to sea level and then again after 1 month (Verratti
et al., 2008). Other studies involving workers, mountaineers,
volunteers and border also showed significant decreases in
semen quality (sperm density, motility, morphology, survival
rate) after high altitude hypoxic exposure (Okumura et al.,
2003; Verratti et al., 2008; He et al., 2015; Verratti et al.,
2016). In addition, high altitude hypoxia also causes disorders
in reproductive hormones, such as GnRH, LH, FSH, PRL and
testosterone. A Finding from high altitude hypoxic male adults
showed that serum levels of LH, PRL and testosterone were
significantly decreased after 6 months of exposure (He et al.,
2015). Another study of high altitude mountaineers revealed
slightly decreased testosterone in the blood after 1 month
of hypoxic exposure, which had decreased still further after
3 months (Okumura et al., 2003).

In animal models, male mice were exposed to simulated
continuous or intermittent hypoxia of 4,200 m in a chamber for
33.2 days. Reproductive parameters analysis showed that there
were decreased sperm count and increased teratozoospermia,
sperm DNA fragmentation and the instability of DNA after
hypoxic exposure (Vargas et al., 2011). Several hypoxia studies
in rats exposed to high altitude have shown decreased semen
parameters, reduced testis weight, degeneration of the germinal
epithelium, sloughing of germ cells and Leydig cells, impairment
of spermatogenesis and steroidogenesis (Gosney, 1984; Biswas
et al., 1985; Gasco et al., 2003; Farias et al., 2005, 2008; Grocott
et al., 2009). Similar phenotypes pertaining to other animals such
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FIGURE 4 | Influence of hypoxia on epigenetic changes in sperm. Hypoxia causes oxidative stress, which changes DNA methylation in sperm, resulting in sperm
DNA fragmentation, reduced sperm quality, sperm telomere length and affected gamate generation and affected meiotic and meiosis cell cycle; Hypoxia related
lncRNAs show negative correlations with sperm count and sperm motility; Hypoxia activates miR210, leading to germ cell apoptosis, Sertoli cell damage and
reduced sperm count.

FIGURE 5 | Plots of oxygen partial pressure(PO2) and inspired oxygen
pressure(PiO2) at different altitudes.

as ram (Cofre et al., 2018), toad (Biswas et al., 1985) and rhesus
monkeys (Saxena, 1995), have also been reported. (A summary of
the studies in the last 20 years is shown in Table 1).

Pathological Factors
Varicocele
Testicular varicocele is a kind of vascular disease that refers
to the abnormal expansion, elongation and tortuousness of the
variegated venous plexus within the spermatic cord. During the
occurrence of varicocele, the blood flow system of the testicular
spermatic vein is damaged, leading to venous blood stasis, which
increases the hydrostatic pressure in the testis and exceeds the
microcirculation pressure of the testicular artery, resulting in
testicular hypoxia (Gat et al., 2010a).Approximately 15% of men
worldwide have varicocele (Thomason and Fariss, 1979), and
19%–41% of them show primary infertility and 45%–81% show
secondary infertility (Jarow et al., 1996). More than 50 years of
studies have found that varicocele has a negative impact on sperm
parameters, semen function, reproductive endocrine factors and
testicular function in men.

Hypoxia is one of the most pathological processes of varicocele
(Gat et al., 2010b). In patients with varicocele, testicular
venous blood flow is blocked, resulting in a local hypoxia.
This process is accompanied by the accumulation of HIF-1α

(Zhang et al., 2016; Goren et al., 2017). A study involving
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TABLE 1 | Summary of the studies reporting the reproductive consequences of high altitude.

Altitude Subjects Reproductive consequences References

7821 m Human Decreased sperm count; increased abnormally shaped sperm; decreased testosterone
levels

Okumura et al., 2003

4340 m Rat Decreased epididymal sperm count; disorder of spermatogenesis Gasco et al., 2003

4340 m Rat Reduced spermiation (stage VIII) to half and the onset of spermatogenesis (stages IX-XI) to
a quarter; decreased sperm count

Gonzales et al., 2004

3400 m Rat Decreased epididymal spermatozoa count; reduced diameter of the seminiferous tubule
and the height of the spermatogenic epithelium

Cikutovic et al., 2009

5000 m Rat Decrease of cellularity of seminiferous epithelium; degeneration and sloughing of
seminiferous epithelial cells occasionally.

Liao et al., 2010

5300 m Human Decreased sperm mtDNA copy numbers; lower nuclear DNA integrity Luo et al., 2011

5900 m Human Reduced sperm concentration Pelliccione et al., 2011

4200 m Mouse Testicular damage Vargas et al., 2011

5380 m Human Decreased sperm parameters; decreased LH, PRL and testosterone levels He et al., 2015

3600 m Ram Decreased sperm concentration, progressive motility and viability Cofre et al., 2018

3600 m Human Decreased sperm concentration; increased the occurrence and frequency of sperm with
excessive head size, neck crimp, and tailless

Zheng et al., 2019

5500 m Rat Decreased sperm count and motility; increased sperm deformity rate; decreased
testosterone levels

Liu et al., 2020

TABLE 2 | Summary of the studies reporting the reproductive consequence of varicocele.

Subjects Reproductive consequences References

Human Poorer semen quality; higher serum levels of FSH; lower inhibin B; higher levels of LH Damsgaard et al., 2016

Human Sperm DNA damage Ni et al., 2016

Human Smaller testis; higher frequency of abnormal epididymis Zhang et al., 2017

Human A reduction in the concentration/mL and the total sperm number Pallotti et al., 2018

Human Lower sperm production and motility; increased percentage of abnormal sperm morphology Oliva and Multigner,
2018

Rat lower sperm count and survival rate; disordered seminiferous epithelium Zhao et al., 2019

Human Lower sperm parameters, sperm and leukocyte telomere length; higher DNA fragmentation, protamine deficiency,
and lipid peroxidation

Tahamtan et al., 2019

Human Higher sperm DNA fragmentation index Nguyen et al., 2019

Human Lower total and total motile sperm counts; slightly higher testosterone levels Redmon et al., 2019

Human Non-obstructive azoospermia Kavoussi et al., 2019

Human Decreased sperm quality Santana et al., 2020

Human Higher DNA fragmentation index; decreased all semen characteristics; an abnormality of at least one of the
spermatic parameters

Jellad et al., 2021

Human Higher sperm DNA fragmentation and apoptosis rate Ammar et al., 2021

Human Reduced semen parameters; increased sperm DNA fragmentation Finelli et al., 2021

Human Lower sperm concentration, motility and total sperm count;higher serum FSH levels, and higher seminal
oxidation-reduction potential and sperm DNA fragmentation index

Tanaka et al., 2020

20 infertile men with varicocele and 20 fertile men showed
that the sperm concentration, motility, morphology and sperm
DNA integrity of varicocele men were significantly lower than
those of fertile men, and molecular markers associated with the
hypoxia pathway were significantly higher than those associated
with the inflammation pathway, suggesting that hypoxia may
be the main cause of infertility (Ghandehari-Alavijeh et al.,
2019). Subsequent studies showed that hypoxia-related lncRNA
expression is significantly elevated in semen from varicocele
patients (Ata-Abadi et al., 2020). Mechanistically, oxidative and
heat stress caused by hypoxia or hypoxia-ischemia and HIF-
1α mediated germ cell apoptosis or sperm damage may be
the main reasons (Zhang et al., 2016; Goren et al., 2017;

Zhu et al., 2017; Samanta et al., 2018; Zhao et al., 2019).
(A summary of the studies in the last 5 years is shown in
Table 2).

Chronic Lung Diseases
Chronic lung disease, such as chronic obstructive pulmonary
disease(COPD), interstitial lung disease, asthma, emphysema,
lung cancer and sleep apnea, can reduce ventilation-perfusion
which may lead to clinically relevant hypoxemia. Hypoxemia
can disturb the functions of the hypoventilation-pituitary-
gonadal axis, resulting in sex hormone suppression and sexual
dysfunction (Semple et al., 1981; Semple P. A. et al., 1984; Semple
P. D. et al., 1984).
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TABLE 3 | Summary of the studies reporting the reproductive consequences of chronic lung diseases.

Types of diseases Subjects Reproductive consequences References

COPD Human Hypogonadism Van Vliet et al., 2005

COPD Human Hypogonadism Laghi et al., 2005

COPD Human Erectile dysfunction Karadag et al., 2007

Pulmonary obstruction Human Reduced total and free testosterone levels Svartberg et al., 2007

COPD Human Lower testosterone levels Akbas et al., 2010

COPD Human Sexual dysfunctions Collins et al., 2012

COPD Human Hypogonadism Balasubramanian and
Naing, 2012

COPD Human Lower testosterone levels Atlantis et al., 2013

COPD Human Significant reduction in total and free testosterone levels Karakou et al., 2013

COPD Rat Decreased testosterone levels Wang et al., 2019

COPD Human Serum testosterone depression Rubinsztajn et al., 2019

Pulmonary emphysema Mesocricetus auratus Decreased sperm quality; increased abnormal seminiferous tubules; decreased
seminiferous epithelium height; decreased sertoli cells; increased unclear
volume of leydig cells

Vieira et al., 2020

TABLE 4 | Summary of the studies reporting the reproductive
consequence of sleep apnea.

Subjects Reproductive
consequences

References

Human Reduced testosterone
levels

Gambineri et al., 2003

Human Decrease in erectile
function

Margel et al., 2004

Human Erection problems;
decreased overall sexual
satisfaction

Stannek et al., 2009

Human Erectile dysfunction Budweiser et al., 2009

Human Erectile dysfunction; low
testosterone levels

Andersen et al., 2010

Human Reduced free testosterone
and sexual quality

Hammoud et al., 2011

Mouse Decreased testosterone
levels

Wang et al., 2019

Mouse Reduced progressive
sperm motility;
downregulate fertility rate
and fetuses number

Torres et al., 2014

Rat Reduced sperm count and
sperm motility; impaired
spermatogenesis

Wang J. et al., 2020

Human Higher infertility rate Chen et al., 2021

An autopsy study involving 10 men with hypoxia associated
with bronchitis and emphysema lasting at least 15 years found
that the total volume of Leydig cells in testis was significantly
less than the volume in the matched control group. This atrophy
may be a consequence of hypoxic inhibition of pituitary synthesis
or the release of LH (Gosney, 1987). Another epidemiological
study of 35 patients (24 males, 11 females) with primary
bronchiectasis and 71 patients (54 males, 17 females) with
secondary bronchiectasis showed a strong association between
primary bronchiectasis and male infertility (Charpin et al., 1985).
Other studies also demonstrated that testosterone deficiency is

common in patients with COPD (Baillargeon et al., 2019). (A
summary of the studies in the last 20 years is shown in Table 3).

Obstructive Sleep Apnea Syndrome
Obstructive sleep apnea syndrome (OSAS) is a common clinical
condition that is characterized by recurrent closure of the upper
airway during sleep (Levy et al., 2015). Chronic intermittent
hypoxia is a hallmark of OSAS, and is an important pathogenic
factor for male infertility (Kiernan et al., 2016). One study
looking at the effects of obstructive sleep apnea on male
sexual function investigated 24 men referred for sleep research.
Significantly reduced serum testosterone levels were documented
in 15 men with obstructive sleep apnea (34.5 apneas/h) and
9 non-obstructive sleep apnea snorers(< 5 apneas/h), and this
decrease was associated with lower min SaO2 but not with other
demographic, respiratory or sleep parameters (Santamaria et al.,
1988). In another study with 5 OSA patients and 5 healthy
middle-aged controls, Luboshitzky et al. found that patients with
OSA had significantly higher PaO2 < 90% values compared with
the control groups. As expected, OSA patients had significantly
lower testosterone values than in matched controls (Luboshitzky
et al., 2005). In addition, a prospective cross-sectional analysis
of 401 OSA patients showed that erectile dysfunction was found
in 69% of patients with OSA. Stepwise multiple regression
analysis revealed that mean SaO2 was independently associated
with erectile dysfunction (Budweiser et al., 2009). Another
study investigating the correlation between OSAS and erectile
dysfunction showed that the prevalence of erectile dysfunction
in patients with OSAS (19 of 32, 59.3%) was significantly
higher than in the matched control group (8 of 27, 29.6%).
Erectile dysfunction was significantly associated with the lowest
oxygen saturation decreased but not apnea–hypopnea index
(Shin et al., 2008).

In animal models, male mice were subjected to chronic
intermittent hypoxia (20 s at 5% O2 followed by 40 s of
room air, 6 h/day) in a gas controlled box with a frequency
equivalent to sixty apneas per hour to simulate severe OSA. As
expected, the male mice treated with OSA model experienced
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TABLE 5 | Summary of the studies reporting the reproductive consequences of hematological diseases.

Types of diseases Subjects Reproductive consequences References

Sickle cell disease Human Priapism Adeyoju et al., 2002

Sickle cell disease Human Priapism or erectile dysfunction Madu et al., 2014

Sickle cell disease Human Lower testicular volume; shorter penis length Martins et al., 2015

Sickle cell disease Human Impaired sperm parameters Joseph et al., 2021

Sickle cell disease Human Repeated testicular infarction Li et al., 2003

Sickle cell disease Human Decreased semen parameters Berthaut et al.,
2008

Thalassemia Human Lower total sperm count, sperm motility and percent normal sperm morphology; lower serum LH,
FSH and testosterone levels

Safarinejad, 2008b

Sickle cell disease Human Hypogonadism Taddesse et al.,
2012

Sickle cell disease Human Hypogonadism Morrison et al.,
2013

Thalassemia Human Increased sperm DNA damage; reduced sperm motility Perera et al., 2002

Hemolytic anemia Mouse Reduced sperm count, sperm natural morphology, sperm motility and viability and serum
testosterone concentration, increased DNA injury

Mozafari et al.,
2016

Thalassemia Human Lower testis values; lower sperm concentrations and abnormal morphology Chen et al., 2018

Hemolytic anemia Mouse Testicular tubular atrophy and edema in the interstitial tissue; decreased sperm count, diminished
sperm motility and viability, diminished fertilizing potential

Anbara et al., 2018

cyclic changes in SaO2 ranging from maxima of 95.4 ± 0.1%
(similar to baseline values) to minima of 62.3± 3.5% (P < 0.001),
After 60 days of treatment, Torres et al. found that chronic
intermittent hypoxia significantly decreased progressive sperm
motility, the proportion of pregnant females and the number of
fetuses per mating. Testicular oxidative stress levels were also
increased compared with those of normoxic controls (Torres
et al., 2014). In rats, Wang et al. found that male rats treated
with obstructive sleep apnea hypopnea syndrome model (20–
21% O2 to 6–7% O2 for 30 s; 6–7% O2 to 20–21% O2 within
20 s; 20–21% O2 for 60s, 8h/day, 6 weeks) showed a decreased
total sperm count and sperm motility and more structurally
abnormal spermatogenic tubules (Wang J. et al., 2020). Thinned,
arranged unevenly and atrophied spermatogenic tubules lumen,
and the increased gap between the tubules was also observed in
the obstructive sleep apnea hypopnea syndrome group (Wang
J. et al., 2020).(A summary of the studies in the last 20 years is
shown in Table 4).

Hematological Diseases
In humans, oxygen is exchanged in the alveoli of the lungs. More
than 95% of oxygen is delivered into the capillary vessels via
the alveolar–capillary exchange system and binds to hemoglobin.
The heart pumps oxygenated blood to the periphery, which is
crucial for organs and cells to function and perform oxidative
phosphorylation. Cardiovascular and hematological disorders
can cause a decrease in blood oxygen carrying capacity or blood
circulation capacity, resulting in hypoxia (Joseph et al., 2021).

Sickle cell disease (SCD) is one of the most common,
inherited hematological diseases caused by a single amino acid
substitution (GTG for GAG) in the gene encoding hemoglobin
β (Papageorgiou et al., 2018). This substitution results in an
abnormal oxygen-carrying protein, called sickle hemoglobin.
Abnormal polymerization of sickle hemoglobin is responsible for

vasoocclusion of testicular blood vessels, which affects oxygen
delivery to the tissues and causes tissue hypoxia. A cross-
sectional study of 34 male patients with sick cell disease
showed that 8 men (24%) developed hypogonadal disease,
characterized by decreased levels of testosterone, FSH and LH
(Taddesse et al., 2012). Similar details have been found in
the clinical laboratory (Dada and Nduka, 1980). Interestingly,
a case report indicated that sickle cell disease caused repeat
testicular infarction (Li et al., 2003). In addition, several
studies have reported that hypogonadism and poor sperm
parameters including low sperm counts, impaired motility
of spermatozoa and increased abnormal sperm morphology
occur frequently in male patients with sickle cell disease
(Nahoum et al., 1980; Osegbe et al., 1981; Grigg, 2007; Berthaut
et al., 2008; Joseph et al., 2021). Surprisingly, priapism and
impotence occur frequently in patients with SCD, with an
incidence up to 50% (Emond et al., 1980; Adeyoju et al., 2002;
Nolan et al., 2005; Madu et al., 2014; Salonia et al., 2014;
Chinegwundoh et al., 2017, 2020).

Beta-thalassemia is a hereditary blood disorder caused by
reduced (β +) or absent (β0) synthesis of the β-globin chains of
hemoglobin. The variation in hemoglobin results in a reduction
in oxygen affinity and oxygen carrying capacity, resulting in tissue
hypoxia (Machogu and Machado, 2018). A study involving 168
men aged 18 years or older with homozygous beta-thalassemia
and 84 healthy age matched male volunteers showed that the
incidence of hypogonadotropic hypogonadism was as high as
76% (128 men). Total sperm count, sperm motility, abnormal
sperm morphology and serum LH, FSH, and T were lower
in patients homozygous for beta-thalassemia than in normal
controls (Safarinejad, 2008b). Furthermore, thalassemic patients
had more sperm DNA damage than the controls (Perera et al.,
2002; Elsedfy et al., 2018).(A summary of the studies in the last
20 years is shown in Table 5).
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CONCLUDING REMARKS

In this review, the available evidence clearly indicates that
hypoxia, both environmental and pathological, has deleterious
effects on sperm parameters, testicular function, reproductive
hormone secretion and pregnancy outcomes for males. Excessive
ROS mediated oxidative stress, HIF-1α mediated germ cell
apoptosis and proliferation inhibition, systematic inflammation
and epigenetic changes seemed to be the central mechanisms.
Given that infertility has become a global problem affecting
human development, it is necessary to further study the
molecular mechanism of infertility and search for molecular
targets to reduce the burden of disease. Demonstration of the
causal association between hypoxia and male infertility will
provide more options for the treatment of male infertility.
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