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Abstract
Functional near-infrared spectroscopy (fNIRS) is an increasingly used technol-
ogy for imaging neural correlates of cognitive processes. However, fNIRS sig-
nals are commonly impaired by task-evoked and spontaneous hemodynamic 
oscillations of non-cerebral origin, a major challenge in fNIRS research. In an 
attempt to isolate the task-evoked cortical response, we investigated the cou-
pling between hemodynamic changes arising from superficial and deep layers 
during mental effort. For this aim, we applied a rhythmic mental arithmetic 
task to induce cyclic hemodynamic fluctuations suitable for effective frequency-
resolved measurements. Twenty university students aged 18–25  years (eight 
males) underwent the task while hemodynamic changes were monitored in the 
forehead using a newly developed NIRS device, capable of multi-channel and 
multi-distance recordings. We found significant task-related fluctuations for 
oxy- and deoxy-hemoglobin, highly coherent across shallow and deep tissue 
layers, corroborating the strong influence of surface hemodynamics on deep 
fNIRS signals. Importantly, after removing such surface contamination by lin-
ear regression, we show that the frontopolar cortex response to a mental math 
task follows an unusual inverse oxygenation pattern. We confirm this finding 
by applying for the first time an alternative method to estimate the neural sig-
nal, based on transfer function analysis and phasor algebra. Altogether, our 
results demonstrate the feasibility of using a rhythmic mental task to impose an 
oscillatory state useful to separate true brain functional responses from those 
of non-cerebral origin. This separation appears to be essential for a better un-
derstanding of fNIRS data and to assess more precisely the dynamics of the 
neuro-visceral link.
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1   |   INTRODUCTION

Based on the neurovascular coupling principle, functional 
near-infrared spectroscopy (fNIRS) aims at detecting the 
hemodynamic changes evoked by neuronal oxygen con-
sumption. NIRS is a non-invasive optical imaging technol-
ogy and it has been widely used to measure brain, mostly 
cortical, activity through relative concentration changes in 
oxygenated (HbO) and deoxygenated (HbR) hemoglobin 
(for reviews see: Obrig & Villringer, 2003; Pinti et al., 2020).

A major challenge in fNIRS research is to reliably dis-
entangle the hemodynamic response due to neurovascular 
coupling from other confounding components (Tachtsidis 
& Scholkmann, 2016). fNIRS changes caused by brain ac-
tivity are naturally low in amplitude and unfortunately 
also overlap with other fluctuations that do not originate in 
the cerebral cortex, mainly: (i) systemic hemodynamic ac-
tivity detectable in both cerebral and extracerebral regions 
(Bauernfeind et al.,  2014; Minati et al.,  2011; Tachtsidis 
et al., 2009), (ii) local blood flow changes in superficial tis-
sue layers across the head (Kirilina et al., 2012), and (iii) 
instrumental noise and other artifacts. The first two, far 
from being simply spontaneously generated, can also be 
evoked by cognitive, emotional or physical tasks. If the 
modulation of these non-cortical task-related components 
of the signal mimics the dynamics of the brain activation 
of interest they could become an important source of in-
terference and noise (Nambu et al., 2017; Näsi et al., 2013; 
Zimeo Morais et al.,  2017). So much so that Takahashi 
et al. (2011) showed that the task-related skin blood flow 
changes could explain over 90% of the NIRS signal on a 
verbal fluency experiment, while Minati et al. (2011) fur-
ther demonstrated the strong confounding effect of arte-
rial blood pressure fluctuations.

To better infer the presence of a functional response, 
experimental protocols attempt to increase statistical 
power by repeating the stimuli a sufficient number of 
times, interspersed with contrast conditions in which a 
different response (or none) is expected. To this end, fNIRS 
experiments often used blocked or event-related designs, 
depending on whether one wants to analyze sustained 
or transient responses, respectively (Pinti et al.,  2020). 
Event-designs use short-duration stimuli, normally ran-
domized in order and separated by a constant or jittered 
inter-stimulus interval. Block-designs attempt to maintain 
mental engagement by presenting stimuli within a condi-
tion for a long enough time interval, followed by a differ-
ent condition or a resting inter-stimulus interval (Amaro 
& Barker,  2006). To investigate the interaction between 
“sustained” and “transient” responses, mixed designs can 
also be used (Petersen & Dubis, 2012).

Depending on the stimulus presentation strategy, dif-
ferent analysis methods have been developed to make 

inference about the functional hemodynamic response 
and isolate it from confounding interferences (for a review 
see Tak & Ye, 2014). Although classic averaging strategies 
provide robust results, the usual averaged-based statistical 
tests, such as t test or ANOVA, do not allow estimating 
the shape or time-course of fNIRS signals, so they have 
been progressively replaced by more powerful methods. 
These include the general linear model (GLM) framework 
(Friston et al.,  2007; Schroeter, Bücheler, et al.,  2004), 
data-driven approaches as principal component analysis 
and independent component analysis (Kohno et al., 2007; 
Zhang et al.,  2005) and dynamic state-space modeling 
(Diamond et al., 2006; Kolehmainen et al., 2003). GLM is 
one of the most widely adopted statistical framework to 
quantify how well the measured fNIRS signals fit a hemo-
dynamic model that reflects the expected neural response. 
It exploits the good temporal resolution of fNIRS and al-
lows to include different covariates within the regression 
model (e.g., physiological signals). In its most basic form, 
the model is obtained by convolving a hemodynamic 
response function (HRF) with a stimuli function that 
encodes the hypothesized time course of the neuronal re-
sponse (Koh et al., 2007; Tak & Ye, 2014). Therefore, GLM 
is a hypothesis-driven approach that requires the combina-
tion of a specific HRF (often taken from fMRI studies) and 
other nuisance regressors to construct the linear model, 
which might not be obvious depending on the task type, 
brain region and participant’s idiosyncrasy. Moreover, 
GLM demands special caution when applied to fNIRS sig-
nals due to some statistical issues (Huppert, 2016; Huppert 
et al., 2009; Koh et al., 2007). In contrast, “principal” and 
“independent” component analysis methods only rely on 
general statistical assumptions as orthogonality and inde-
pendence, respectively. Although useful for separating the 
mixed components that make up the fNIRS signals, they 
require additional processing to elucidate which of them 
are task-related and which are not, particularly difficult 
when extracerebral and cerebral responses are correlated 
(Zhou et al., 2020). State-space models, mainly based on 
the Kalman filter, allow building complex hemodynamic 
models to describe the time varying characteristics of the 
fNIRS signals and estimate the HRF. Although dynamic 
analysis appears to provide better estimates of the HRF 
and better account for non-stationary signals, it still re-
quires improvements in model specifications and state-
space estimators.

Regardless of the strengths and weaknesses of each 
experimental method, all benefit from the inclusion of 
short-distance recordings to obtain a reference of the con-
tribution of superficial layers to fNIRS signals (for reviews 
see: Fantini et al.,  2018; Tachtsidis & Scholkmann,  2016; 
Tak & Ye, 2014). Multi-distance measurements are consid-
ered particularly effective in isolating the actual cerebral 
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response. Nevertheless, some open questions remain re-
garding, for example, the ideal range for source-detector 
distances, the optimal number of short-channels and their 
arrangement relative to long-channels. Ideally, and be-
cause there is growing evidence of the heterogeneous na-
ture of surface hemodynamics (Wyser et al.,  2020), each 
long-channel should be paired with at least one nearby 
short-channel. Unfortunately, such a precise spatial con-
figuration of the paired measurements is not currently 
possible with the most commonly used NIRS devices today.

Our interest is focused on investigating the cou-
pling between hemodynamic changes arising from the 
superficial and deep layers during mental effort, and 
isolating the task-evoked cortical response from other 
confounders. The rationale behind is the assumption 
that extracerebral and cerebral responses are the re-
sult of a coordinated effect product of different inter-
related processes (Caldwell et al.,  2016; Tachtsidis & 
Scholkmann,  2016). Rather than viewing surface fluc-
tuations only as annoying confounders that must be 
removed, we regard them as carriers of valuable infor-
mation. Information, that might prove essential not only 
to gain a better understanding of the fNIRS data but also, 
and perhaps as important, to more accurately assess the 
full dynamics of the neuro-visceral link. This goal, how-
ever, is hampered by the inherent difficulty in differen-
tiating spontaneous from task-locked fluctuations. One 
possible solution is to deliberately induce periodic oscil-
lations, so that they can be easily located and analyzed 
by using well-established frequency-domain methods.

In previous studies, a number of protocols have been 
used to generate hemodynamic oscillations at particu-
lar frequencies to investigate cerebrovascular regulation, 
including cuff inflation-deflation (Aaslid et al.,  2007; 
Kainerstorfer et al.,  2014), head-up tilting (Hughson 
et al., 2001), squat-stand exercises (Claassen et al., 2009), 
paced breathing (Pierro et al.,  2014), and even in visual 
and motor studies (Obrig et al., 2000; Schroeter, Bücheler, 
et al., 2004; Wolf et al., 2002).

Here, we hypothesized that performing a cyclic cog-
nitive task would also induce periodic hemodynamic 
fluctuations measurable in fNIRS recordings. To test this 
hypothesis, the current study was designed to generate 
an oscillatory state suitable for effective analysis in the 
frequency-domain. To this end, we employed a mental 
arithmetic task within a cyclic block-design at a specific 
frequency, while performing dense multi-distance re-
cordings on the forehead using a newly developed multi-
channel NIRS device. Concurrently, we recorded cardiac 
activity by continuously monitoring heart rate.

The analysis of the magnitude and phase relationships 
between signals in the frequency-domain would allow 
to: (i) identify common task-related oscillatory activity, 

(ii) estimate the contribution of shallow and deep tissue 
layers to fNIRS signals, (iii) separate task-related surface 
hemodynamics from the putative cortical response, and 
(iv) measure the relative timing between HbO and HbR 
changes to better interpret the underlying physiological 
processes. Furthermore, we used the empirical transfer 
function as an alternative method to estimate the func-
tional brain activity and assess the timed-coordination 
between extracerebral and cerebral responses. To our 
knowledge, such an approach has never been previously 
tested in fNIRS studies.

2   |   METHOD

All data processing was done off-line with MATLAB 
(Version R2019a, Mathworks, Natick, MA, USA), using 
native functions, self-made scripts and open source 
packages.

2.1  |  Participants

All procedures performed in this study were approved 
by the Ethics Committee of the University Miguel 
Hernandez, in accordance with the declarations of 
Helsinki. Participants did not receive any remuneration. 
A total of twenty-four healthy young adults volunteered, 
10 males and 14 females (mean age: 22.3; SD: 4.2), were re-
cruited for this study. All of them were instructed before-
hand about the purpose of the experiment and provided 
informed written consent prior to study enrollment. After 
that, the participants practiced the task for 10–15 min to 
make sure they understood and got used to it (to minimize 
stress responses). They were seated in a comfortable posi-
tion while performing the task.

2.2  |  Mental task

In this work, the task was based on a block protocol de-
signed as a cyclical pattern of mental effort, alternating 
phases of mental math with phases of pause of the same 
duration, that is, regular repetitions of activation-rest. 
The idea behind this was to induce periodic hemody-
namic changes in the form of cycles of some kind of re-
sponse followed by a return to basal levels. In this way, 
such an oscillatory pattern may be analyzed by conven-
tional spectral methods. As illustrated in Figure 1, the ex-
perimental session was organized into three consecutive 
uninterrupted recordings: (i) 300 s of baseline in resting 
condition, (ii) 300 s of task, and (iii) 300 s of recovery in 
a relaxed state. Participants were asked to keep their eyes 
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on the screen throughout the experiment. During specific 
time intervals, an image was presented on the screen to 
instruct the participants to relax mentally. This image 
was a soft-colored paint depicting an inanimate scene (it 
was rated as neutral by the participants in a parallel study 
with affective pictures; results not shown here). The NIRS 
probe remained in the same position throughout the ses-
sion. The task consisted of 10 consecutive 30-s trials. Each 
trial began with 15  s of mental calculation, followed by 
a 15-s pause of relaxation. To perform the mental math 
participants were asked to iteratively subtract a small 
number (between 5 and 9) from a three-digit number 
(between 100 and 199), as fast as possible. Both numbers, 
chosen randomly in each trial, were presented on a 21.5″ 
display monitor, 80 cm. away from the participants' eyes. 
Afterwards, the pause started by presenting the question 
“Result?” for 5 s, which prompted the participants to in-
form verbally of the final result of their mental calcula-
tions (to allow scoring the performance and ensuring that 
the participants were paying attention), followed by the 
“relax” image. Two seconds before presenting the subtrac-
tion operands, a fixation cross was displayed in the middle 
of the computer screen to announce the beginning of the 
mental calculation. Note that the 30-s period of the trials 
corresponds to a frequency of 0.033  Hz, which we will 
refer to as ft (task frequency) throughout this manuscript. 
This frequency was chosen so that it did not overlap with 
well-known spontaneous fluctuations such as blood pres-
sure (0.08–0.12 Hz) (Huppert et al., 2009; Julien, 2006), or 
very slow endothelial activity (0.01–0.02 Hz) (Stefanovska 
et al.,  1999). Furthermore, the 15-s duration of mental 
effort accommodates that of a typical hemodynamic re-
sponse (Buxton et al., 2004; Friston et al., 1998), while the 
next 15-s pause allows a return to baseline levels, being an 
optimal inter-event interval to minimize overlaps between 
consecutive hemodynamic responses (Aarabi et al., 2017; 
Dale, 1999). Here, we tried to minimize the generation of 
distress by using a subtraction arithmetic task that was 
cognitively challenging, but did not exceed the partici-
pants' mental abilities. Further, we constantly emphasized 
the importance of the mental effort, and not the amount 
or accuracy of the operations performed.

2.3  |  Heart rate measurement

ECG was registered using a BIOPAC MP36 physiological 
monitoring system and the AcqKnowledge software 4.1 
(Biopac Systems, Inc., Goleta, CA, USA) at a sampling rate 
of 500 Hz. ECG was recorded in lead II configuration with 
disposable electrodes. The MP36R device was digitally 
synchronized through the I/O port with the PC running 
the stimuli presentation, so event markers were recorded 
as well. At the end of the experiment, the raw data were 
post-processed with AcqKnowledge to: (i) create an R-R 
tachogram from the ECG signal, using the implemented 
Pan–Tompkins algorithm (Pan & Tompkins, 1985) for R 
wave detection, and (ii) extract the instantaneous heart 
rate from the reciprocal of the tachogram. Finally, the 
data was exported to MATLAB and then resampled to 
10 Hz using cubic spline interpolation.

2.3.1  |  Heart rate exclusion criteria

Many studies have investigated how cognitive perfor-
mance correlates with the stress level induced by mental 
workload, in most cases through different physiological 
measures, heart rate being one of common use (Charles 
& Nixon, 2019; Hakimi, 2018; Mandrick et al., 2016; Tao 
et al.,  2019). However, there is not a clear threshold to 
differentiate between heart rate changes due to a pure 
mental effort and those due to a stressful situation. As the 
present work focuses on the first, it was necessary to esti-
mate a maximum increase in heart rate, beyond which the 
influence of stress was considered disproportionate. We 
took as a reference the results of other studies that applied 
the Trier Social Stress Test, a standard protocol for stress 
induction in healthy people (Kudielka et al.,  2007). In 
their review work, Kudielka et al. (Kudielka et al., 2007) 
reported that the mean heart rate increases to the test 
are about 15–25  bpm. Kirschabum et al.  (1993), found 
increases about 26  bpm during the test. On the basis of 
the aforementioned literature, we decided to apply a limit 
well below the reported values. Compared to the mean 
heart rate at baseline, the threshold was set to a maximum 

F I G U R E  1   Schematic representation of the experimental procedure



      |  5 of 25MOLINA-RODRÍGUEZ et al.

increase of 12 beats per minute (bpm) during the task. 
Two participants were excluded for exceeding this limit, 
leaving a sample of N = 22. Thus, only those participants 
showing reasonably stable heart rate throughout the 
baseline and task periods were further considered. The 
Wilcoxon-signed rank test was used to resolve for differ-
ences between the maximum heart rate reached during 
baseline and task.

2.4  |  fNIRS recordings

In this study we used a multichannel, wireless, continuous-
wave NIRS device (Brainspy28, Newmanbrain, S.L., 
Elche, Spain), which employs four sources and ten detec-
tors forming a rectangular grid of 80x20 mm. Each source 
housed two light-emitting-diodes (LED) at wavelengths 
740 nm and 850 nm. Through a precise switching cycle, 
the device combines pairs of optodes at different separa-
tion distances, providing 16 short-channels and 12 long-
channels that corresponds to a source-detector distance of 
14 and 32 mm, respectively (Figure 2a). Moreover, the de-
vice measures and corrects the ambient light contribution. 

Also it incorporates a 3-axis accelerometer to account for 
head motion. It transfers data wirelessly (via Bluetooth) at 
a sample rate of 10 Hz. The NIRS probe was placed onto 
the forehead, centered on AFpz according to the interna-
tional 10–5 system, mainly covering the frontopolar area 
of the prefrontal cortex (PFC) (Figure  2b). The optodes 
contact the skin through an intermediate convex lens 
pressing the skin when the probe is held firmly, in order 
to reduce cutaneous blood flow and, therefore, its hemo-
dynamic interference (Takahashi et al., 2011).

2.4.1  |  Signal quality check—Channels and 
participants exclusion criteria

To ensure that only clean signals pass to further analysis, 
we conducted some preliminary quality tests. To account 
for instrumental noise (Huppert et al.,  2009; Orihuela-
Espina et al., 2010) we evaluated first the raw optical data 
to identify channels exhibiting extreme values (bellow 5% 
or above 95% of the device dynamic range), or an excessive 
coefficient of variation >7.5% (calculated as the percent-
age ratio between the standard deviation and the mean) 

F I G U R E  2   Probe geometry and 
placement. (a) Optode arrangement 
(yellow squares: Sources; white circles: 
Detectors). Sixteen short-channels (black 
lines with numbers) and twelve long-
channels (green lines with letters). (b) 
Probe position on the forehead. Green 
shaded areas roughly mark the regions 
explored by the long-channels. Black 
rectangles outline the long-channels 
averaged within each ROI (right, medial 
and left)
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(Zimeo Morais et al., 2017). Thus, we discarded the record-
ings suffering from poor signal to noise ratio, saturation 
or unphysiological noise contamination. By visual inspec-
tion, we rejected recordings affected by motion artifacts 
by identifying sharp changes in the fNIRS signals aligned 
with abrupt shifts in the accelerometer data. Two partici-
pants were excluded after the quality check. Therefore, 
the final sample consisted of N = 20 participants (8 males 
and 12 females; mean age: 21.7; SD: 3.8).

2.4.2  |  fNIRS data preprocessing

Preprocessing was carried out using the Homer2 NIRS 
package (Huppert et al., 2009) based in MATLAB. The raw 
optical data were converted to optical density, and then 
into oxy- ([HbO]) and deoxyhemoglobin ([HbR]) relative 
concentration changes via the modified Beer–Lambert law 
(Delpy et al., 1988; Kocsis et al., 2006). We used a differential 
pathlength factor calculated in accordance with the general 
equation described in Scholkmann and Wolf (2013), which 
takes into account the participant’s age and the wavelength. 
No partial volume correction was used.

The fNIRS data were digitally low-pass filtered by using 
a zero-phase, 5th-order Butterworth filter, cut-off 2.5 Hz 
(MATLAB Signal Processing Toolbox); no high-pass fil-
tering was applied. Therefore, we remove only high-
frequency noise while preserving cardiac, respiratory, 
blood pressure and vasomotor components. After prepro-
cessing, for each chromophore we obtained 16 time-series 
from the short-channels plus 12 from the long-channels 
that we refer to as “shallow-” and “deep-signals”, respec-
tively, to indicate how much the light penetrated during 
their corresponding records. Thus, we had a set of multi-
distance recordings to effectively address the problem of 
extracerebral contamination (Pfeifer et al., 2018; Saager & 
Berger, 2005; Scholkmann et al., 2014; Yücel et al., 2015), 
by assuming that short-separation recordings are sensitive 
only to extra-cerebral changes, while long-separation re-
cordings are sensitive to both extracerebral and cerebral 
activity (Brigadoi & Cooper, 2015; Saager & Berger, 2005; 
Scarpa et al., 2013; Yücel et al., 2017).

When using multi-distance recordings regression 
can be performed assuming that the physiological noise 
has comparable time courses in both shallow- and deep-
signals, and that the focal, task-evoked, cerebral hemo-
dynamics is independent, that is, uncorrelated (Saager 
et al., 2011; Saager & Berger, 2008). However, the hetero-
geneous nature of the local superficial fluctuations cannot 
be dismissed, which raises the need to collect the shallow-
signals at recording sites as close as possible to the deep-
signal to be decontaminated from surface hemodynamics 
(Gagnon et al., 2012). Here, we used a NIRS device that 

allows each deep-signal to have three shallow-signals that 
meet the proximity requirements: two obtained close to the 
long-channel’s detector and source, respectively, and one 
close to its center (see Figure 2a). Adopting the “double 
short separation measurements” approach recommended 
in (Gagnon et al.,  2014), we used the combination (the 
sum) of the two shallow-signals recorded near the detec-
tor and source to estimate the extracerebral component to 
be suppressed from the corresponding deep-signal. Thus, 
for example, the signal from long-channel “A” was re-
gressed on the sum of the signals from the short-channels 
1 and 5 (Figure 2). Over the entire time courses, for all the 
deep-signals we computed:

where �0 and, �1 are the regression coefficients, Sdeep is the 
deep-signal, Sshallow is the combined shallow-signal and 
Sclean the desired “clean signal” (in fact, the raw residuals). 
We solved linear regression by applying the MATLAB func-
tion “robustfit”, which uses an iteratively reweighted least 
squares algorithm and is less sensitive to outliers than ordi-
nary least-squares (Holland & Welsch, 1977). After regres-
sion, each Sdeep has its associated pair Sclean and Sshallow,  
making a total of 12 signal triplets for each chromophore. 
Noteworthy, although Sclean probably represents the neural 
component, at this point we prefer the term “clean” with-
out making assumptions about its actual origin. This pre-
caution is based on the fact that, because our mental task 
attempts to induce periodic oscillations the requirement of 
non-correlation between extracerebral and cerebral hemo-
dynamics may not be met, compromising the performance 
of regression (Fantini et al., 2018; Saager & Berger, 2008). 
Later, in this work, we will apply additional analysis to ver-
ify the nature of these regression-estimated signals.

Finally, as the channel positions are not fully consistent 
across individuals due to the variability in head shape and 
size (Tak et al., 2016), the signal-to-noise ratio and signal 
reliability can be improved by spatial clustering (Plichta 
et al., 2006; Schecklmann et al., 2008). To this end and to 
avoid interpreting isolated channels, for every single par-
ticipant we averaged across the signals belonging to three 
regions of interest (ROI), left, medial, and right (Figure 2b). 
As such, the signal triplets associated with the four left-
most long-channels (A, B, C, D) yield the corresponding 
averages of Sshallow, Sdeep and Sclean. The same procedure 
was applied for the medial (E, F, G, H) and the rightmost (I, 
J, K, L) four long-channels. Thus, each of the three ROIs 
now reduces to just three average signals that, from now 
on, we denote by SS (shallow), DS (deep), and CS (clean). 
All further processing was done on these signals, which 
display comparable signal-to-noise ratio across the three 
ROIs because they have been obtained by averaging the 

Sclean = Sdeep −
(

�0 + �1Sshallow
)

,
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same number of neighboring signals in each frontopolar 
region. For each ROI, we computed the averaged time 
courses of HbO and HbR for the three signals across all the 
participants. Furthermore, we obtained the grand average 
of the trials epoched in the interval −15 to 30 s relative to 
the onset (10 trials × 20 participants = 200 trials). Standard 
error of the mean (SEM) was calculated as well.

2.5  |  Identification of task-induced 
frequencies

Firstly, we evaluated if the task successfully induced oscil-
lations by estimating the power spectral density (PSD) of 
each participant’s NIRS data during the task and the base-
line condition. The PSDs were computed using Welch’s 
averaged periodogram method (Welch, 1967) with a ham-
ming window of length 2000 samples and 50% of overlap 
to achieve a good frequency resolution (0.005 Hz), spectral 
smoothness, and reduced noise variance (Ilvedson, 1998). 
To allow comparisons, the PSDs were normalized to rela-
tive percentage values by calculating the power ratio of 
each frequency bin to the total power of the entire spec-
trum (Aarabi & Huppert, 2016). For further analysis, we 
focused on the frequency range 0.005 to 0.08 Hz under the 
assumption that the expected task-induced oscillations 
would fall within that range.

We assessed the presence of significant task-induced os-
cillations by contrasting the PSDs during task and baseline. 
Along frequency bins we performed one-tail paired t-tests to 
check whether within-subject PSD values were statistically 
higher for the task compared with baseline. The observed 
t-statistics were corrected for multiple comparisons by fol-
lowing the cluster-based nonparametric approach given 
in (Maris & Oostenveld, 2007). We computed Monte Carlo 
cluster tests over 1000 permutations of the same t-test where 
the condition, that is, task and baseline, was randomly shuf-
fled within subject. Then, we estimated the so-called permu-
tation p-value from the proportion of random realizations 
that have larger cluster-statistic than the observed one. We 
set a critical alpha-level = 0.01 to identify the frequency bins 
that showed significantly higher PSD values during the task. 
Finally, the PSDs were averaged across participants (N = 20) 
to obtain the average normalized PSD of HbO and HbR for 
each signal type and ROI. In addition, the 95% confidence 
interval (CI) for the mean at each frequency bin was calcu-
lated by bootstrapping over 1000 resamples.

2.6  |  SS and DS relationships

Here, SS data were obtained from fNIRS channels explor-
ing the frontopolar region with a source-detector distance of 

14 mm. The scalp-cortex distance is known to be increased 
in this region (15 mm to 17 mm) compared to more lateral 
frontal areas (Cui et al., 2011; Haeussinger et al., 2011) which, 
together with the presence of the frontal sinuses, decreases 
the cerebral fNIRS sensitivity (Haeussinger et al.,  2014). 
Moreover, as pointed out by Zhang et al.  (2015), short-
channels with a source-detector distance in the range of 14 
to 16 mm have a sensitivity to the brain of only about 0.47%. 
Although it is unlikely that SS picked up cortical signals, it 
was still important to examine the commonalities and dif-
ferences between SS and DS to reasonably ensure that SS 
data are primarily dominated by shallow hemodynamics, 
while DS also contain deeper components that, likely, stem 
from the cortical layer. The rationale for this analysis was to 
demonstrate that the link SS-DS would be altered at the task 
frequency if another deep oscillatory process (e.g., neuro-
vascular response) appears in the DS signal. To this end, 
for the time-series pairs HbOss/HbOds and HbRss/HbRds we 
performed the following within-subject analysis: (i) cross-
spectrum to identify shared fluctuations, (ii) frequency-
domain correlation to identify significant covariation, and 
(iii) transfer function to evaluate the relationship in magni-
tude and phase. Following the recommendations given in 
(Claassen et al., 2015) for transfer function analysis, neither 
detrending nor high-pass filtering was used, and a triangu-
lar smoothing window (coefficients ¼, ½, ¼) was applied to 
both auto- and cross-spectra.

To identify synchrony (or shared fluctuations) in the 
frequency-domain between shallow and deep signals, 
a cross-spectrum analysis was performed to compare 
the two signals. We computed the cross-power spectral 
density (CPSD) of the bivariate time-series using the 
MATLAB function “cpsd”, based on the Welch’s averaged 
periodogram method (Welch,  1967); as for PSD we set 
a hamming window of length 2000 samples and 50% of 
overlap. From the complex-valued result, we obtained the 
magnitude and phase values to find the shared power and 
phase shift between both signals at particular frequencies. 
The magnitude peaks that showed significantly higher 
values during the task were located by following the same 
approach as for PSD in Section 2.5; the values were nor-
malized and averaged in the same way.

To ensure the reliability of the cross-spectral estimates, 
we evaluated whether the signals showed significant sta-
bility in their relative amplitude and phase at particular 
frequencies. To this end, we estimated their frequency-
domain correlation by computing the magnitude-squared 
coherence (MSC) as a function of the PSDs and the CPSD 
(Zhang et al., 1998):

MSCssds (ƒ) =
|

|

CPSDssds (ƒ)
|

|

2

PSDss (ƒ)PSDds (ƒ)
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Coherence values vary between 0 (no correlation) and 1 (per-
fect correlation), describing the linearity of the relationship 
between both signals in the frequency domain. The coher-
ence values were also averaged across participants for each 
signal pair and ROI. Only if significant coherence exists, the 
cross-spectral estimates have a useful meaning (Claassen et 
al., 2015). Values of about 0.5 have been commonly consid-
ered as a threshold for significance (Sassaroli et al.,  2018) 
but, as the threshold may depend on the frequency, a better 
alternative for assessing significance is the surrogate data ap-
proach (Faes et al., 2004; Paluš, 1997). In this work, following 
the nomenclature given in (Paluš, 1997), we chose the FT1 
surrogates method as it conserves the power spectrum of the 
original signals (Faes et al., 2004). FT1 surrogates were con-
structed by substituting the phase of the Fourier transform 
of the original signals with random values in the range [−π, 
π] while the modulus is preserved, and then returning to 
time-domain by inverting the Fourier transform. We gener-
ate 1000 surrogate series and for each one the averaged MSC 
was computed as for the original signals, realizing the null 
hypothesis that the averaged MSC stem from pairs of signals 
that fluctuate asynchronously at the same frequencies of the 
experimental signals. Afterwards, the mean MSC values ob-
tained from the actual signals were compared with the FT1 
distribution to estimate the MSC threshold levels for each 
frequency bin at α = .05.

A transfer function describes the dynamic relation-
ship between the output signal of a system and the input 
signal. Under the assumption of linearity, the transfer 
function can be estimated from the frequency-domain 
representation of the experimental input–output signals. 
Transfer function models have become a popular ap-
proach to investigate the dynamic of cerebrovascular au-
toregulation (Claassen et al., 2015; Van Beek et al., 2008), 
and they have also been used to remove systemic physio-
logical noise from fNIRS signals (Bauernfeind et al., 2013; 
Florian & Pfurtscheller, 1997). In this work, assuming that 
SS has energy in the frequency range of interest and con-
tain quasi-periodic oscillations, the transfer function H (ƒ) 
was approximated from the experimental fNIRS data as 
(Zhang et al., 1998):

For each time-series pair, shallow and deep signals were, 
respectively, the input and output data used to obtain 
an approximation of the transfer function at particular 
frequencies (e.g., input HbOss, output HbOds). From the 
complex-valued result, we obtained the magnitude (gain), 
which represents the relative change in μM between input 
and output, and the phase that carries their temporal 
coupling (phase difference or time-lag), while coherence 

values indicate the reliability of these measures. For re-
porting, the gain data were converted into percentage val-
ues. Then, at the group level and for each signal pair and 
ROI, we computed the averages of gain and circular phase 
angle; phase statistics were managed by means of the 
Matlab Toolbox CircStat (Berens,  2009). In addition, we 
calculated the 95% confidence interval (CI) band around 
the mean by bootstrapping over 2000 resamples. Finally, 
to assess whether the task induced a consistent phase 
coupling across participants, we applied a bootstrapped 
Rayleigh test (Oden, 1983) on the phase values at the task 
frequency. Consistent coupling should be reflected as a 
narrow distribution of phase values around a preferred 
angle. On the contrary, a poor inter-subject synchroniza-
tion should display a more uniform distribution through-
out the 360° circle.

2.7  |  Estimating deep component from 
transfer function

We previously expressed some concerns relating to the 
reliability of the regression-estimated CS signals. To ad-
dress them, we applied an alternative novel approach to 
estimate CS from the transfer function. Supposing that 
DS solely contains the same fluctuations seen in SS, the 
relation between both signals should be highly linear 
and coherent, only altered by the small differences in 
the volume sampled by our short- and long-channels. 
Therefore, the transfer function should yield fairly con-
stant gain values across frequencies (depending of the 
fractional part of DS power that is produced by SS) and 
a phase shift close to zero (in-phase). Furthermore, co-
herence values should be close to one. However, when 
another oscillatory process is added to DS we can expect 
some level of disturbance in gain and/or phase at cer-
tain frequencies. At a specific frequency, cyclic hemo-
dynamic oscillations can be approximated as sinusoids, 
completely defined by their values of amplitude, phase 
and frequency. Adding two sinusoids of common fre-
quency results in a sinusoid with same frequency but 
with amplitude and/or phase altered. In our case, if the 
task elicits independent cyclic oscillations in both shal-
low and deep layers, the observed deep sinusoid Xds (t) at 
the task-frequency would result from the sum of the two 
contributing sinusoids Xss (t) and Xuk (t), that is:

where Xss (t) is the observed shallow sinusoid and Xuk (t) is 
the unknown deep component. All of these sinusoids are 
characterized by their values of amplitude A, angular fre-
quency � and phase �, thus, in sinusoidal form:

H (ƒ) =
CPSDssds (ƒ)

PSDss (ƒ)

Xds (t) = Xss (t) + Xuk (t) ,
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Because they represent harmonic oscillations of common 
frequency (i.e., �ds = �ss = �uk = task frequency), they do 
not depend on � or t, but only on A and �, which makes 
it possible to convert them into phasors (or complex num-
bers). In exponential form would be:

where j =
√

− 1, while ��⃗X ds, ��⃗X ss and ��⃗X uk are the phasor 
representation of Xds (t), Xss (t) and Xuk (t) respectively. 
According to phasor algebra:

hence, we can estimate the unknown component by com-
puting the subtraction of the two complex numbers corre-
sponding to the known phasors, that is,:

To this end, we firstly obtained the phasors' values for phase 
and amplitude as follows: (1) We designated ��⃗X ss as the “refer-
ence phasor” and, hence, �ss = 0. (2) From the transfer func-
tion we obtained the phase value between SS and DS at the 
task frequency ft, so �ds = arg

(

H
(

ft
))

, which indicates the 
phase-shift of ��⃗X ds with respect to ��⃗X ss. (3) Ads was obtained 
from the PSD by calculating the RMS amplitude at ft and con-
verting it to the peak amplitude of a sinusoid that is, 
Ads =

√

2

�

PSD
�

ft
�

FR, where FR is the frequency resolution 
(0.005 Hz in our case). Due to spectral leakage, better ampli-
tude estimates are obtained by summing the PSD values 
within the frequency interval 

[

ft − FR, ft + FR
]

. (4) Ass was 
estimated in the same way and then scaled to the theoretical 
value that it should reach in DS by itself. This is a crucial step 
in the procedure. The scaling factor was the gain value of the 
transfer function at ft but during “baseline”, which represents 
the fraction of SS magnitude present in DS when no signifi-
cant deep component contributes. Thus, Ass was multiplied 
by the baseline gain to yield its scaled amplitude. Then, we 
performed the phasor subtraction (Equation 1) to obtain the 
amplitude Auk and the phase �uk of the phasor ��⃗X uk. Finally, 
��⃗X uk was converted to a sinusoid, which represents the alter-
native CS estimated by transfer function. This procedure was 
performed for every single-participant’s signals and averages 
were computed for each ROI and chromophore.

2.8  |  Simulations

To assess the feasibility of CS estimation by phasors, we 
performed a fairly realistic simulation by using the actual 

data during task rather than artificial or baseline signals. 
SS was used as is. DS was obtained by scaling SS to the am-
plitude that it should reach in the deep-recording, that is, 
multiplying by the transfer function gain during baseline 
(See Section 2.7, step 4). We generated a synthetic neural 
signal as a sinusoidal wave oscillating at 0.033 Hz, with 
amplitude and phase obtained from the averaged CSs es-
timated by regression (amplitude = 0.05 μM and 0.04 μM, 
time-lag = 13 and −9.5 s for HbO and HbR, respectively, 
and relative to CS) (See Results 3.1 and Figure 4). Then, 
the sinusoid was added to DS to build the simulated deep-
signal. This procedure was applied to the medial-ROI data 
of every participant and then subjected to both regression 
and phasor estimation of the neural component. Because 
phasor-estimated result represents the average over the 
task, the regression-estimated signal was averaged across 
trials to allow intra-subject comparisons. The quality of 
the neural estimates was quantified using the root mean 
square error (RMSE) between the true synthetic signal 
and the recovered one. A paired t test was applied to re-
solve for statistical differences.

2.9  |  Measuring HbO/HbR coupling

To investigate significant frequency-domain correlation 
between HbO and HbR, we computed their MSC and 
CPSD during the baseline and task conditions. In this 
case, we were only interested in the SS and CS signals be-
cause we assume that DS is nothing more than the lin-
ear combination of the first two. MSC and CPSD data, as 
well as their averages and significance thresholds, were 
obtained by the same procedure previously detailed. In 
addition, from the complex-valued CPSD we extracted the 
phase data (Müller et al., 2003; Reinhard et al., 2006) at 
the task-frequency to assess the temporal relation (time-
shift) between both chromophores. As usual, this proce-
dure was applied for every single participant. Next, we 
computed the circular mean of phase angles at the group 
level and then, to assess whether it was significantly ori-
ented in a preferred direction, we applied a bootstrapped 
Rayleigh test (Oden, 1983) through 2000 resamples. The 
95% CI was also computed by bootstrapping.

2.10  |  Measuring HbO/heart rate  
coupling

As in Section 2.9, we investigated the relationships between 
HbO and heart rate by MSC and CPSD. We only used the 
HbO data of the SS signals because the coupling between 
heart rate and the rest of signals can be inferred from the 
results obtained in other previously performed tests.

Adscos
(

�dst+�ds
)

=Asscos
(

�sst+�ss
)

+Aukcos
(

�ukt+�uk
)

.

��⃗X ds=Adse
j𝜙ds , ��⃗X ss=Asse

j𝜙ss and ��⃗X uk=Auke
j𝜙uk ,

��⃗X ds =
��⃗X ss +

��⃗X uk,

(1)��⃗X uk =
��⃗X ds −

��⃗X ss.
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3   |   RESULTS

We analyzed how fNIRS signals fluctuate in response to 
a cyclic mental arithmetic task, which can induce physio-
logical stress responses (Charles & Nixon, 2019; Kudielka 
et al., 2007). To reduce any putative stress response that 
could have influenced our results we have taken several 
cautions. First, we have used a non-strenuous task du-
ration, only 30 s, including a calculation and a recovery 
phase. Second, volunteers practiced the task for 10–15 min 
to make sure they understood and got used to it and the ex-
perimental setting. Third, the participants included in this 
study had a stable mental performance and reasonably 
low heart-rate fluctuations during the entire experimen-
tal session. In fact, they showed no significant differences 
between their heart rate values across the two conditions 
(baseline and task) of the experiment, (Wilcoxon’s signed 
rank test, p  =  .091). On average, during task, the mean 
heart rate increased only slightly, 7 bpm (9%), with respect 
to the baseline (Table 1).

3.1  |  Oscillations alignment to the 
task frequency

fNIRS signals showed clear oscillations in accordance 
with the task frequency and such oscillations were con-
sistently observed, over multiple ROIs, on both shallow 
and deep layers. Figure  3 shows the results of the PSD 
analysis at the group level. The normalized PSDs were 
averaged across participants for each of the three ROIs, 
for each signal type and for each condition (baseline and 
task). The DC component (frequency = 0) was set to zero 
and the upper value of the displayed frequency range 
was limited to 0.08  Hz. A ubiquitous peak can be seen 
at ~0.01 Hz both at rest (Figure 3, black traces) and dur-
ing mental task (Figure  3, colored traces), although the 
cluster-permutation test found no significant differences 
between both conditions. However, a clear peak at ft was 
detected exclusively during the task and marked as sig-
nificant by the cluster-test (p  <  .01) (Figure  3, shaded 
vertical rectangles). This peak corresponds closely to the 
task frequency and was observed in all ROIs and signal 
types. In some cases, a secondary peak around 0.066 Hz 
was also found, which most likely represents a harmonic 
of the fundamental task-frequency. It seems obvious that 

the task successfully induced cyclic fluctuations of the 
HbO and HbR, which were present in the shallow-signals 
(Figure  3SS), deep-signals (Figure  3DS) and in clean-
signals (Figure 3CS).

Figure  4 shows the group-level averaged temporal 
traces of HbO and HbR after band-pass filtering around 
the task frequency, using a filter width of 0.015 Hz. It can 
be seen how SSs (Figure 4SS) start to oscillate in sync with 
the task-trials, although showing an evident time-shift 
between both chromophores. Figure  4 also depicts the 
grand averages of the trials across participants (smaller 
plots next to temporal traces), which for SS display a com-
mon response consisting of: (i) shortly before the trial 
onset, the HbO strongly increases reaching a maximum 
at ~11.2  s, (ii) then HbO gently returns to previous lev-
els during the subsequent rest, and (iii) HbR changes 
were less pronounced and lead HbO by ~4 s. Regarding 
the DSs, a similar periodic response can be observed 
(Figure  4DS), but HbO peaks are slightly anticipated to 
SS (~ 0.3 s) while HbR lags SS by ~2 s. Finally, CSs also 
show cyclic fluctuations aligned to the task (Figure 5CS), 
but in this case HbO oscillates in counter-phase with re-
spect to SS. Furthermore, HbO and HbR show similar am-
plitudes (~0.05 μM) and evolve anti-correlated with each 
other, HbO showing a valley at ~12.6 s and HbR a peak 
at ~18.5 s. At this point, it seems likely that the observed 
time-shift in DS, relative to SS, is due to the summation 
of the CS component. Interestingly, the pattern seen in 
CS would correspond to an inverted HbO/HbR response, 
that is, decrease in HbO together with an increase in HbR. 
Noteworthy, the inverted pattern does not appear imme-
diately but progressively reaches stability during the first 
few trials. This observation might be of interest for a ten-
tative physiological interpretation (see Discussion).

Because fNIRS signals can be highly individual-specific, 
we have provided additional information about hemody-
namic response and spectral data for each participant in 
the Supplementary Material, with the aim of illustrating 
the individual differences and the variable contribution of 
surface tissues to the fNIRS signals in different regions of 
the forehead.

3.2  |  SS/DS relationships

To answer the question of to what extent shallow fluctua-
tions contribute to deep-signals, we performed coherence, 
cross-spectra and a transfer function estimate between 
SS and DS data (Figure  5). The analysis revealed a sig-
nificant cross-spectral peak during the task centered at ft 
(p < .01), and that was present in all ROIs for HbO and HbR 
(Figure 5a, left axis). These peaks indicate that SS and DS 
oscillate at the task frequency with a remarkable shared 

T A B L E  1   Averaged heart rate metrics across participants 
(baseline and task)

All n = 20 Maximum (range) Mean (range)

Baseline 98 (62–127) 77 (53–104)

Task 103 (66–140) 84 (55–116)
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power. Moreover, a higher peak was located at ~0.01 Hz but 
showing no differences during task compared to baseline.

Coherence values were above the significance thresh-
old along the entire range of explored frequencies in both 
conditions (Figure 5a, right axis), describing a consistent 
linear relationship between SS and DS in the frequency 
domain. Coherence levels were particularly high for HbO 
(on average > 0.8), indicating a stronger correlation and, 
likely, that HbO is more influenced by shallow hemody-
namics than HbR. It should be noted that coherence also 
peak during the task around ft (quite evident for HbR), 
meaning that the task-induced oscillations were more co-
herent than the spontaneous ones.

During the task, transfer function analysis revealed 
a decrease in magnitude around ft for HbO, especially 

pronounced in the medial ROI (Figure  5b). Phase val-
ues also showed certain perturbation at the same fre-
quency (Figure  5c). HbR exhibited a slight increase in 
magnitude, mainly observed in the medial and left ROIs 
(Figure  5b), in parallel with strong disturbances in the 
phase values (Figure 5c). Again, the resting condition did 
not show such changes. A t test revealed no differences 
at the group-level between gain values of HbO and HbR 
during rest (p = 0.2). However, during task the gain val-
ues were significantly lower for HbO (p  <  .01) in me-
dial and left ROIs, which agrees with the decreasing gain 
values shown in Figure 5b. The paired t test showed no 
differences for either HbO or HbR when comparing task 
with rest, indicating that on average the change during 
task is very subtle.

F I G U R E  3   Grand average (20 participants) of the normalized PSDs for each ROI (right, medial and left), chromophore and signal type 
in the frequency range 0.005 to 0.08 Hz. Solid black curves refer to baseline and colored curves to task. Dashed lines represent the 95% CI of 
the mean. Shaded rectangles delimit the frequency ranges that show significantly higher power during task. (SS) results for shallow-signals. 
(DS) deep-signals. (CS) clean-signals

F I G U R E  4   Averaged time courses of HbO (red traces) and HbR (blue traces) across participants during task (plus a portion of baseline 
and recovery to the left and right respectively) for each ROI and signal type. The small plots next to time courses show the grand average of 
trials. SEMs are depicted by thin lines. Gray boxes mark the 15-sec of mental math of each trial. Each row show the results for shallow (SS), 
deep (DS) and clean-signals (CS) for the three ROIs (right, medial and left).
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Circular histograms show that during rest the phase 
angles concentrate around 0° at the task frequency in 
all the cases (Figure 5g), being the Rayleigh test highly 
significant (p < .01) and the 95% CI quite narrow. This 
implies that SS and DS oscillate almost in-phase at that 
frequency (no time-lags). However, during the task the 
phases of HbR were shifted clearly to positive values (DS 
lags SS) in the medial and left ROIs by 22° and 30°, re-
spectively (Rayleigh test, p < .01), which correspond to 
time-lags of 1.8 and 2.5 s at ft (Figure 5d). Phase changes 
in HbO were less apparent than those of HbR, a slight 
shift to negative values (DS leads SS) was observed in 
the same ROIs (−8° and  −4°, time-lags 0.6 and 0.3  s). 
Noteworthy, the time-lags calculated from the phase 
values coincide with those obtained from the averaged 
time-series (see Figure 4).

As expected, these results corroborate that shallow- 
and deep-signals are highly correlated, underlining the 
strong influence of surface hemodynamics on deep re-
cordings, which is particularly true for HbO (also observ-
able within a single individual, compare Figures S1 and S2 
of supplementary material). Fortunately, the analysis also 
disclosed changes in magnitude and phase related to the 
task, pointing to the contribution of a deep component, 
uniquely present in DS, as responsible for the observed 
disturbances. Therefore, these findings confirm that our 

deep recordings captured other oscillatory processes that 
are different from the superficial ones.

3.3  |  Neural signal estimation by transfer  
function

We applied an alternative method to estimate the putative 
neural signal by using phasor representations of the mag-
nitude and phase data obtained from transfer function. 
Under the assumption that signals were quasi-stationary 
over the sort period of time determined by the task, we 
modeled them as sinusoids oscillating at 0.033 Hz, that is, 
the task frequency. Phasor algebra was used to extract the 
hidden deep component that explained the disturbances 
observed in DS. As a representative example, Figure 6 com-
pares the CS obtained by regression with that estimated 
from transfer function data in the medial ROI. As reported 
in Section 3.2, the transfer function of HbO showed a clear 
decrease in magnitude around ft in parallel with a phase-
shift of about −8°, which is illustrated in the middle-plot 
of Figure 6a. The left-hand plot shows the grand-average 
of the experimentally obtained trials, comparing SS (solid 
line) and DS (dashed line). It can be seen the smaller am-
plitude of DS and the slight shift to the left with respect 
to SS. The right-hand plot shows what SS should look like 

F I G U R E  5   Averaged results across participants of CPSD, MSC and transfer function data between SS and DS for each ROI, comparing 
baseline and task. (a) CPSDs are drawn on the left axis and MSC on the right axis. Thick black curves correspond to baseline and the colored 
ones to task (HbO in red and HbR in blue). Dashed lines depict the 95% CI of the mean. Gray boxes indicate the frequencies that showed 
significantly higher cross-power during task. (b) Averaged gain values for task. Arrows point to frequencies showing clear disturbances in 
gain. (c) Averaged phase values for task. (d) Circular histograms of phase angles for task plus mean angles, p-values for the bootstrapped 
Rayleigh test and 95% CIs. (e–g) same as (b)–(d) but for baseline results
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in DS in the absence of any other interfering component, 
according to the magnitude estimate obtained at rest (see 
Section 2.7). As the red arrows indicate, the magnitude and 
phase differences of the observed DS (dashed line) related 
to the predicted SS (solid line) are now more apparent.

After performing the phasor subtraction, the interfer-
ing deep component emerged as the sinusoid depicted 
by the red trace in the plot to the right of Figure  6c. In 
the case of the HbR, a small increase in magnitude and a 
phase-shift of about 22° were measured at ~ ft. Similarly, 
the right-hand plot of Figure 6b illustrates the differences 
between the predicted (solid line) and observed (dashed 
line) DS. Phasor algebra pointed to the blue sinusoid 
drawn to the right of Figure 6c as responsible for the dis-
turbances. The left-hand plot of Figure 6c shows the CSs 
obtained by means of regression. It can be seen the good 
match with the deep components estimated by phasors. 
For the three ROIs (right, medial and left), the estimated 
time lags between SS and CS were on average 11.5, 13 and 
10.7 s for HbO, and −9.9, −9.5 and −9.5 s for HbR (Figure 
S6). Phasor analysis corroborates that the task induced 
deep hemodynamic fluctuations in form of an inverted 
HbO/HbR response, which from now on we will consider 
as the neural signal we were looking for. Despite individ-
ual differences, accounting for the inter-subject variability, 

we found that 90% of the participants (n = 18) showed this 
type of response in at least one ROI (see Figure S3).

3.4  |  Simulation results

Figure  7a shows a segment of the bandpass filtered SS, 
simulated DS and synthetic neural response for each 
chromophore of a representative participant. Simple visual 
inspection reveals time courses comparable to the group-
averaged experimental signals shown in Figure 4. The re-
covered signals averaged across all participants are shown 
in Figure 7b for each estimation method. In the case of HbO, 
it can be seen that the shapes of the recovered signals are 
very similar for both methods, but the phasors fit better to 
the true synthetic signal showing significantly lower RMSE 
values (paired t test, p < .01). HbR time courses were also 
comparable, but again phasors performed better (p < .01).

These findings suggest that, compared to phasors, 
regression underestimates amplitude, mainly for HbO. 
Here, we found higher SS-DS coherence for HbO than for 
HbR, indicating a strong correlation that could affect more 
regression performance. Overall, phasors seem to work as 
well as or even better than regression, and could help to 
independently verify the results in any case.

F I G U R E  6   Illustrative comparison of neural signal estimation by regression and phasor analysis in the medial-ROI. Left plot a shows 
the grand averaged time courses across all the trials for HbO, comparing the experimental SS (solid trace) and DS (dashed trace). Similarly, 
left plot (b) shows the results for HbR. Right plot a compares the experimental DS for HbO (dashed) with the theoretical DS that should 
be observed if SS were the only contribution (solid). Arrows illustrate the amplitude and time shifts of the observed DS relative to the 
theoretical one. Right plot (b) shows the case of HbR. The central plots depict the averaged gain along frequencies for HbO (a) and HbR (b) 
with arrows indicating the direction of change at ft and the corresponding circular histograms of phase angles at that frequency. C plots 
show the averages of neural signals estimated by regression (left) and phasors (right) respectively. Thin lines represent SEMs
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3.5  |  HbO/HbR coupling

During the task, CPSDs showed a significant peak of shared 
power at ft in both SS (Figure 8SS, left axis, red trace) and 
CS (Figure  8CS, left axis, red trace) over all ROIs. MSC 
measures revealed significant frequency-domain cor-
relation levels at several frequencies, as indicated by the 

asterisks along the MSC curves drawn in the right-axis of 
the spectral plots. It can also be seen that MSC levels were 
higher during the task (red trace) than at rest (black trace), 
suggesting that the task increased coupling not only in its 
frequency but also beyond. Since Interpreting coherence 
when spectral power is very low could be risky and results 
outside the task specific frequency were beyond the scope 

F I G U R E  7   Construction of synthetic data and simulation results. (a) Simulated DS time courses for HbO (left) and HbR (right) data of 
a representative participant. DSs (dashed traces) were constructed by adding a synthetic neural signal (magenta traces) to the theoretical 
scaled version of the observed SS (solid traces in red and blue). (b) Averaged recovered signals across all participants for HbO (left) and HbR 
(right) by regression (green) and phasors (magenta), compared to the true synthetic signal (black)

F I G U R E  8   Averaged CPSDs, MSCs and phases between HbO and HbR for each ROI, comparing baseline and task. (SS) results for 
shallow-signals. CPSDs are drawn on the left axis for baseline (black curves) and task (red curves), dashed lines depict the 95% CI of the 
mean. Gray boxes indicate the frequencies that showed significantly higher cross-power during task. MSCs are shown on the right axis; 
asterisks indicate frequencies with significant coherence. Circular histograms show phase differences at ft during baseline (top) and task 
(bottom); significant phase concentration statistical values are labeled in magenta text. (CS) results for regression-estimated clean-signals
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of the present work, here we focus solely on the peak of 
interest.

MSC also peaked around ft, reaching the highest levels 
in the medial and left ROIs (MSC > 0.9, p < .01), which sug-
gest strong correlation between HbO and HbR. Concerning 
temporal coupling for SS, circular histograms show how 
phase differences at ft significantly concentrate during task 
around −39°, −39° and −47° in the right, medial and left 
ROIs, respectively (Rayleigh test, p < .01), with HbR lead-
ing HbO by 3.2 to 3.9 s (Figure 8SS, circular plots at bot-
tom). For baseline data, phase analysis was not significant 
for any ROI (Figure 8SS, circular plots at top). Notably, CS 
revealed that, on average, HbO and HbR oscillate almost in 
phase-opposition in the medial and left ROIs (−162° and 
176°, respectively, p < .01), showing a time lag around 15-s 
but with an unclear precedence. In the right ROI the sig-
nificance level was not reached in any case. These results 
imply that the task induced coherent fluctuations between 
HbO and HbR in both shallow and deep layers, but with 
some differences. For SS, the temporal coupling was consis-
tent across participants over all the ROIs, showing an out-
of-phase relationship. However, CS phases were consistent 
at the group level only in the middle and left regions, more-
over showing counter-phase fluctuations, in line with an 
inverted hemodynamic response.

3.6  |  HbO/heart rate coupling

CPSD and MSC measures were also performed to inves-
tigate HbO and heart rate couplings. We focused solely 

on significant peaks in shallow signals. As illustrated in 
Figure 9, a peak of shared power was located in the three 
ROIs at ft. In parallel, MSC also peaked at the same fre-
quency, indicating strong correlation at the task frequency 
(p < .01). Notably, the phase mean did not reach signifi-
cant levels in any case (p > .05). These results indicate that 
at the single-subject level HbO and heart rate oscillate well 
coupled, resulting in significant coherence at the averaged 
group level. However, individual phase values were differ-
ent enough to disperse the angular mean, reflecting an ev-
ident inter-subject variability in the temporal coupling of 
the two signals (see Figure S1). Figure 9 also shows the av-
eraged fluctuations of the band-pass filtered HbO (bottom 
plots, red trace) and heart rate (bottom plots, black trace). 
The grand average of trials across participants (small plots 
next to time courses) also revealed that both signals start 
to increase few seconds before the trial onset.

4   |   DISCUSSION

The main purpose of this work was to assess the feasibility 
of using rhythmic cognitive tasks to induce periodic hemo-
dynamic fluctuations suitable for effective frequency-
resolved measurements. First, we investigated whether 
power spectral analysis can distinguish task engagement 
from rest. Next, we measured the phase-amplitude cou-
pling between different signal pairs to estimate their lin-
ear relationship, aiming to differentiate the functional 
brain response from extra-cerebral confounders and to 
infer the nature of the underlying processes.

F I G U R E  9   Averaged time courses, CPSDs, MSCs and phases between superficial HbO and heart rate (HR) for each ROI, comparing 
baseline and task. Top row plots show the CPSDs (left axis), MSCs (right axis) and circular histograms of phase differences at ft. Baseline 
values are drawn in black and task values in red. Gray boxes delimit the frequencies with significant higher cross-power during task. Bottom 
row plots show HbO (red) and heart rate (black) time courses along the entire task; gray boxes mark the 15-s of mental math of each trial. 
The small plots next to time courses show the grand average of trials. Thin lines depict SEMs
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We found that mental arithmetic successfully evoked 
cyclic changes in NIRS signals measured in the frontopo-
lar region of the forehead, in the form of highly charac-
teristic spectral peaks centered on the task frequency (i.e., 
0.033 Hz). These peaks are clearly discernible from spon-
taneous activity in resting-state and apparently indepen-
dent of a stress response. As mental arithmetic tasks have 
been used frequently as stressors (Al-Shargie et al., 2016; 
Hakimi, 2018; Takamoto et al., 2013), and mental overload 
increases stress (Mandrick et al.,  2016; Tao et al.,  2019), 
the experimental protocol used here was tailored to mini-
mize such an effect.

Predictably, we corroborated the strong influence of 
surface hemodynamics on deep fNIRS signals, as reflected 
by the high coherence levels found between signals ob-
tained from multi-distance recordings. In this study, 
rather than simply considering the surface contribution 
as unwanted noise, we took advantage of the shared os-
cillatory state imposed by the task to extract amplitude 
and phase data, and use it to separate the true deep signal 
from that originating in extracerebral tissues. Notably, our 
results revealed that the deep signals extracted follow an 
unusual pattern of HbO decrease accompanied by HbR 
increase, which is reversed (i.e., symmetrically opposite) 
with respect to the canonical brain activation response.

Previous works have reported that fNIRS signals os-
cillate close to the experimental stimulation frequency. 
Franceschini et al.  (2000), for instance, using a motor 
task comprising sequences of 10 s of tapping and 17 s of 
rest, found spectral peaks at the frequency of the 27-s task 
period (0.037 Hz). Schroeter, Schmiedel, et al. (2004), ex-
ploring the visual cortex, identified spectral peaks for HbO 
and HbR at 0.023 Hz, close to the 0.028 Hz correspond-
ing to the visual stimulation cycle of 35  s (18-s of stim-
ulation plus 17-s of rest). Likewise, Zhang et al.  (2007) 
also found a peak in visual cortex related to the stimu-
lation frequency of 0.033  Hz. Regarding mental tasks, 
Kirilina et al. (2012) observed periodic changes in fNIRS, 
fMRI and other physiological signals, coupled to the sin-
gle block period of an n-back (30-s) and a semantic task 
(34-s). Also using a sematic categorization task, Kirilina 
et al. (2013) identified coherent oscillations between skin 
blood flow and HbO corresponding to the 34-s period of 
stimulation. Nonetheless, with the exception of Zhang 
et al. (2007), none of the cited studies used task/rest inter-
vals of the same duration. We argued that a block-design 
consisting of exactly regular cycles would better induce an 
oscillatory state, stationary enough throughout the dura-
tion of the task to allow reliable measurements. Although 
no consensus exists as to the most appropriate stimulus 
interval in block-design experiments, fNIRS studies often 
fall in the range of very low frequencies (0.02 to 0.08 Hz), 
referred as “activation-band” by Kirilina et al.  (2013). 

However, for frequency-analysis purposes, large task cy-
cles lead to extremely low frequencies, which are difficult 
to identify and could overlap with spontaneous very slow 
waves (Stefanovska et al.,  1999). For example, Vermeij 
et al.  (2014), using a verbal n-back working-memory 
task of 180  s (0.005  Hz), only reported fluctuations in 
the range 0.02 to 0.07 Hz, correctly concluding that they 
could not be attributed to the task cycle. Likewise, Obrig 
et al. (2000) used similarly large periods of 120 s, finding 
peaks at 0.1–0.04 Hz, far from the 0.008 Hz predicted by 
the task frequency. On the contrary, short periods could 
fall within the range of spontaneous blood pressure waves 
(i.e., Mayer waves) that could obfuscate (or override) the 
functional response (Yücel et al.,  2016). Furthermore, it 
might also be desirable to choose periods shorter enough 
to accommodate a single response (i.e., not several succes-
sively overlapped). Here, we used repetitive 15-s cycles of 
mental math plus 15-s pause, highlighting the oscillatory 
activity of 30-s period. We successfully found significant 
task-locked oscillations, separable from spontaneous ac-
tivity, and showing time courses compatible with isolated, 
single responses. Further research is needed to test other 
stimulation periods that might be even more appropriate.

In almost all the aforementioned studies, the authors 
discussed the contribution of non-neural components to 
the observed fNIRS changes, stressing the importance of 
separating brain activation from these potential confound-
ers. This concern should be particularly addressed when 
exploring the frontopolar region due to the influence of 
task-related skin blood flow changes, mainly on HbO sig-
nals (Haeussinger et al., 2014; Sato et al., 2013; Takahashi 
et al., 2011). It seems that, in most functional experiments, 
the superposition of extracerebral and cerebral hemody-
namic responses could not be avoided, as they are not inde-
pendent but inter-related processes (Caldwell et al., 2016; 
Tachtsidis & Scholkmann,  2016). Our results validate 
these considerations by showing that, on the frontopolar 
region, deep-recordings are strongly influenced by superfi-
cial activity. In fact, by solely analyzing deep-signals with-
out applying proper corrections, an activation response 
evoked by the task can be erroneously deduced. Such a 
misinterpretation is more likely when only HbO is taken 
into account, for example as seen in Figure  4DS where 
HbO shows a clear increase/decrease pattern locked to the 
task. However, the HbR time course is less conclusive, not 
supporting a typical activation response and underscor-
ing the need to assess both chromophores to convey more 
realistic interpretations (Fantini et al., 2018). Our results 
also provide complementary evidence that surface hemo-
dynamics influences the different hemoglobin species in 
a differential way, with HbO being more affected than 
HbR. This is in agreement with previous studies report-
ing a stronger influence of confounding factors on HbO 
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(Bauernfeind et al.,  2014; Gagnon et al.,  2011; Heinzel 
et al., 2013; Kirilina et al., 2012).

To address the contamination issue, we employed a 
multi-distance approach in which each deep-recording 
was cleaned from surface influence by using two specific 
short-recordings as reference, thus controlling for inho-
mogeneous hemodynamic activity in the scanned surface 
area. As commented in Section  2.4.2, such a strategy is 
commonly accepted as very effective to remove noise, and 
even considered as a gold standard (Zhou et al.,  2020). 
After performing conventional linear regression, we ob-
tained a clean deep-signal for each ROI that also oscillates 
at the task frequency, but apparently showing deactivation 
instead of an expected activation (Figure  4CS). In view 
of this unusual pattern, and despite the thickness of the 
tissues that cover and protect the brain (see Section 2.6), 
it was necessary to verify whether our short 14  mm re-
cordings were also picking up cortical signals, leading to 
poorly estimated regression residuals. By exploiting the in-
duced oscillatory state, we employed the empirical trans-
fer function and phasor representation of HbO and HbR 
fluctuations (Figure 6) to explain the amplitude and phase 
disturbances observed in deep-signals. The results con-
firmed the presence of deep HbO and HbR components 
that fluctuate coupled to the task, following an inverted 
pattern with both chromophores almost in counter-phase. 
The convergence of two independent analysis, regression 
and transfer function, strongly supports the finding of a 
putative cortical response in the form of deoxygenation/
oxygenation cycles; noteworthy, it was found in 90% of 
our sample, a considerable higher occurrence than those 
reported in, for example, motor imagery fNIRS studies 
(Abdalmalak et al., 2020; Holper et al., 2011). Therefore, 
we demonstrated that our short- and deep-recordings cap-
tured different hemodynamic components.

Moreover, simulated data revealed that combining trans-
fer functions and phasors might provide better estimates of 
the amplitude of functional cortical responses. It is worth 
noting that if shallow and neural signals had oscillated 
highly correlated (positive or negatively), the regression 
could have failed because the scaling factor (beta) would 
have caused the subtraction to flatten the residuals, leading 
to accidental removal of the cerebral signal. This drawback 
could be avoided using the method proposed here. Phasors 
were first proposed by Zheng et al.  (2010) to explain the 
phase relationships between hemoglobin species but, to 
our knowledge, this is the first time they have been used to 
analyze multi-distance fNIRS recordings. Further improve-
ments on the method are currently under way.

Inverse oxygenation responses have been previously 
reported in fNIRS studies using different task modalities, 
such as motor imagery (Abdalmalak et al., 2020; Holper 
et al.,  2011), visual stimulation (Maggioni et al.,  2015), 

working memory n-back (Haeussinger et al.,  2014; 
Kirilina et al., 2012), emotional stimulation (Matsukawa 
et al.,  2018), and mental arithmetic (Bauernfeind 
et al., 2008; Pfurtscheller et al., 2010). This phenomenon 
has only been partially explained so far, being of consider-
able interest to understand the underlying neuro-vascular 
mechanisms and gain insight into the negative BOLD re-
sponse observed in fMRI studies (see Holper et al. [2011] 
and Maggioni et al.  [2015] for in-depth discussions of 
possible explanations). Regarding fNIRS studies probing 
the PFC during working memory tasks, some research-
ers found a decrease in HbO in frontopolar region using 
fixed inter-optode distances (i.e., no multi-distance cor-
rection), while they found no significant HbR changes 
(Haeussinger et al., 2014; Kirilina et al., 2012). They sug-
gested that task-evoked sympathetic vasoconstriction 
drives skin blood flow changes, which in turn impair 
fNIRS long-recordings, leading to an apparent decrease in 
oxygenation response. Noteworthy, in both studies, fMRI 
data showed deactivation in the medial region of the PFC. 
In contrast, Takahashi et al.  (2011) found a positive pat-
tern (i.e., increased oxygenation) using a verbal-fluency 
task, which they attributed to skin vessels dilatation by 
comparing short- (5 mm) and long-distance (30 mm) sig-
nals and showing that the effect disappears when pressure 
is applied to the skin. In the present work, we used two 
short-channels to clean each long recording, which is a 
very effective method to remove the components (of local 
or systemic origin) that are common to the shallow and 
deep-signals (Fantini et al., 2018). However, if a systemic 
component appears at different times in the surface and 
deep layers (e.g., blood flow delay), the regression itself 
may render a false neuronal response. Time differences in 
vascular reactivity driven by the task (e.g., delayed auto-
nomic mediation) may also cause delays between layers. 
Wyser et al. (2020) reported an average time lag of ~0.51 s 
between shallow and deep signals for Mayer pressure 
waves, similar to the values found by Kirilina et al. (2013). 
Tong and Frederick  (2010) estimated a time of ~6  s for 
a pressure wave to pass the whole brain. Using nose tip 
temperature as a proxy to assess autonomic activity during 
a mental math task, Pinti et al.  (2015) found mean time 
lags of less than 4 s, albeit showing significant individual 
variability, between changes of cutaneous blood flow and 
prefrontal fNIRS signals. During a cognitive task, a mean 
time lag of ~6 s between skin blood flow and prefrontal 
fNIRS signals was found in (Kirilina et al., 2013). The pha-
sor method do not solve the problem of different timing ei-
ther, but they provide independent information about the 
delays between signals and avoid regression constraints. 
We found clearly longer delays than those we have men-
tioned (see Section  3.3 and Figure S6), and we believe 
that they are unlikely to be due to a delayed physiological 
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response, otherwise they would reflect a considerable lack 
of coordination between autonomic and prefrontal activ-
ity. Assuming that the observed response is an artifact due 
to time delays, it can be expected that for a specific indi-
vidual the delay will be the same in the three ROIs of the 
narrow frontopolar region explored. However, we found 
that in some participants showing consistent surface sig-
nals across ROIs, the estimated neural signal was clearly 
different depending on the region (e.g., participants 1, 2, 
3 and 4, Figures S1 and S3). Therefore, we conclude that 
such an inverted pattern actually represents the functional 
cortical response. However, the existence of some delay 
cannot be fully ignored and follow-up work is required.

Overall, our results are more in line with those re-
ported by Pfurtscheller et al. (2010). Using a similar task, 
they also found an HbO decrease in the medial area of the 
PFC, but no significant changes for HbR. They corrected 
for extracerebral contamination by employing a common 
average reference spatial filter, which relies on subtract-
ing the averaged signals from each fNIRS channel. After 
correction, we found significant fluctuations for both HbO 
and HbR, which is of great interest for interpretation pur-
poses and implies that our methodological approach is 
better suited to discriminate the functional brain response. 
Other fNIRS studies have reported reduced activation in 
medial areas of the frontal cortex related to arithmetic 
subtraction in adolescents (Artemenko et al., 2018) or to 
task difficulty (Verner et al.,  2013). However, since they 
did not use multi-distance corrections, comparing results 
could be risky.

Currently, fNIRS inverse oxygenation response re-
mains an open topic, as the underlying neurovascular 
mechanisms are only partially understood. Some stud-
ies have been devoted to relate it with the fMRI negative 
BOLD response (NBR) in visual (Maggioni et al.,  2015) 
and motor cortices (Abdalmalak et al.,  2020), investi-
gating its potential cause. Maggioni et al. (2015) found a 
consistent spatial correlation between NBR and inverse 
fNIRS response, while Abdalmalak et al. (2020) attribute 
the phenomenon to motion artifacts. The first discuss in-
depth on the origin of NBR, favoring the idea of neural 
deactivation (Mullinger et al.,  2014) against the “blood 
stealing” explanation promoted by other authors (Shmuel 
et al., 2002). Pfurtscheller et al. (2010) also explained the 
inverse response in terms of a “focal activation/surround 
deactivation” pattern. As we did not find any delay in the 
hemodynamic response, our results also speak against a 
sequestration of blood from neighboring areas to active 
areas. Our NIRS probe covered a relatively small area 
of the PFC, so our data are insufficient to support or re-
ject the idea of concurrently activated and deactivated 
areas. However, based on the delay need to reach consis-
tent counter-phase changes in HbO/HbR and the strong 

rhythmicity imposed by the task, we suggest a simpler 
explanation. It may be plausible that such an inverted re-
sponse actually expresses a cyclical brain activation state, 
which after reaching stability appears as a period of ox-
ygen consumption (during mental effort) in a previously 
well oxygenated brain area, followed by a subsequent re-
oxygenation (during the pause). Thus, in the steady-state, 
the mental effort period starts under a condition of O2 ex-
cess (or compensated) that leads to use the currently avail-
able O2 until a new supply of fresh blood is needed. In this 
line, Wylie et al. (2009) proposed that different HbO/HbR 
(and total Hb) combinations might be present in activated 
visual cortex areas. Nevertheless, more research is needed 
to fully elucidate the complex coupling between O2 con-
sumption and blood flow/volume changes in the PFC.

We also found that only the medial and left ROIs showed 
a consistent inverse response at the group level, which is 
supported by the significant concentration of HbO/HbR 
phase angles around 180° (Figure 8CS) and the stronger 
disturbances in gain and phase detected by transfer func-
tion during the task (Figure 5). This finding suggests that, 
on average, frontopolar activity was slightly lateralized 
to the left. A meta-analyses conducted by Arsalidou and 
Taylor  (2011) indicates that, among others, frontopolar 
area seems to be generically engaged in mental arithme-
tic, sustaining working memory functions that are nec-
essary to achieve good mathematical performance. They 
proposed that, for calculation tasks, this area manages the 
successive executive steps that can lead to the final calcu-
lated result. Noteworthy, they also reported that activity in 
the left part of frontopolar cortex was concordant among 
studies involving calculation tasks. The characteristics of 
our arithmetic task fit with that functional specialization 
as it is necessary to coordinate each of the iterative sub-
tractions (steps), while holding the result of the previous 
operation in the working memory, and then combining 
both to obtain the final result (main goal). Nonetheless, 
as we did not control for task difficulty or used calcula-
tion modalities other than subtraction, we acknowledge 
that complementary research is needed for more rigorous 
comparisons and interpretations. In any case, an import-
ant point to be also considered is whether the observed 
response can be attributed to the “task-negative” activity 
of the default-mode network (DMN) (Raichle et al., 2001; 
Raichle & Snyder, 2007). As the brain region interrogated 
by our NIRS probe overlaps with the medial prefrontal 
cortex (DMN-associated region), our findings could reflect 
decreased neuronal activity in this key region due to task 
engagement. Since DMN also include deeper structures, 
unreachable for fNIRS, exploring this possibility will re-
quire further research using fMRI imaging methods.

Concerning shallow hemodynamic, we found a con-
sistent task-locked pattern of monotonic HbO increase 
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followed by a decrease during the task pause, which was 
shortly preceded by similar HbR changes of lesser ampli-
tude. As previously discussed, these fluctuations greatly 
impair the deep-recordings and potentially lead to their 
misinterpretation as brain activation, especially when only 
accounting for HbO. Therefore, we suggest special caution 
should be taken when interpreting HbO changes reported 
by fNIRS studies employing mental arithmetic tasks and 
using only long-recordings, as in (Çiftçi et al., 2008; Tanida 
et al., 2004; Verner et al., 2013; Yang et al., 2009).

Aiming to elucidate the origin and influence of the ex-
tracranial confounds present in fNIRS signals, some stud-
ies monitored concurrently skin blood flow, heart rate and 
arterial blood pressure during cognitive tasks (Haeussinger 
et al., 2014; Kirilina et al., 2012; Takahashi et al., 2011). 
Although with variable results, they suggested that task-
induced sympathetic outflow (leading to increased car-
diac output and arterial blood pressure), together with 
skin blood flow/volume changes due to local vasomotion 
(constriction and/or dilatation), are the mechanisms re-
sponsible for these extracranial hemodynamic changes. In 
our work here, we consider that skin blood flow contri-
bution has been small or negligible due to: (i) the optode-
skin interface of our NIRS device reduces the skin blood 
flow (see Section 2.4), and (ii) our short-channels are long 
enough (14 mm) to allow light penetrate deeper into the 
subcutaneous and muscle tissues of the forehead (per-
haps even the skull), with little contribution of the skin 
compared with the volume illuminated. Therefore, albeit 
we cannot exclude local vasodynamics effects, we point 
to a systemic drive as the major cause. Our findings re-
vealed that the task induced highly coherent heart/HbO 
fluctuations at the single-subject level, but with consid-
erable individual variability in their temporal coupling, 
which leads to inconsistent phase values at the group level 
(Figure  9). Many studies have emphasized the link be-
tween fNIRS signals, heart rate and blood pressure during 
rest and under functional stimulation (Franceschini 
et al., 2000; Franceschini et al., 2006; Kirilina et al., 2012; 
Minati et al., 2011; Tachtsidis et al., 2008, 2009; Takahashi 
et al., 2011). In our work, we did not monitor blood pres-
sure, thus preventing the possibility of linking it with 
heart rate and HbO. However, based on the aforemen-
tioned studies, we reasonably assume that the task used 
here may also have induced blood pressure oscillations 
contributing to HbO fluctuations.

The observed HbO/HbR surface pattern seems com-
patible with an oxygenation effect due to an increased 
arterial inflow in the micro-vascular bed, which in turn 
leads to parallel HbR changes. Thus, the phase differ-
ence between HbO and HbR (−39° to 47°) would reflect 
the complex contribution of capillary transit time, blood 
flow and blood volume changes in shallow layers (Elting 

et al., 2020; Zheng et al., 2010). However, mainly for HbR, 
other mechanisms as forehead venous volume changes 
(Kirilina et al., 2012) or even superficial O2 consumption 
could overlap. Another interesting possibility is that sur-
face signals also overlap changes in cerebral blood flow 
arising from increasing metabolic demands and cerebral 
autoregulation. This is plausible as we placed the NIRS 
probe over a forehead region mainly supplied by the su-
praorbital and supratrochlear arteries that ultimately con-
nect (via the ophthalmic artery) to the frontopolar branch 
of the anterior cerebral artery, which plays a key role in 
blood supply to the frontal lobes. Prior studies have sug-
gested that blood pressure measured from the supraor-
bital artery may reflect cerebral perfusion pressure (Lee & 
Westenskow, 1998; Narus et al., 1995), or that the clamp-
ing of the internal carotid affects both supraorbital blood 
flow and frontal lobe oxygenation (Hove et al.,  2006). 
Jenkins and Brown (2014) also postulated the relationship 
between frontal activity asymmetry and forehead blood 
flow in a study using EEG and infrared thermography.

Another interesting finding was that the HbO re-
sponse precedes the trial onset by some seconds. Previous 
studies reported that the PFC increases oxygenation a 
few seconds prior to the onset of voluntary exercise, in-
dependently of its actual intensity (Asahara et al.,  2018; 
Ishii et al., 2018; Matsukawa et al., 2015). It has been hy-
pothesized that a feedforward mechanism (termed “cen-
tral command”), involving higher brain centres, sends 
descending signals that adjust physiological systems, as 
the cardiovascular one, to the upcoming effort (Goodwin 
et al.,  1972; Williamson,  2010). Furthermore, there is 
growing evidence that preparing for a mental challenge 
induces activity in certain cerebral areas as the Anterior 
Cingulate Cortex and PFC (Sohn et al.,  2007; Vassena 
et al., 2014, 2019). We suggest that, here, the anticipatory 
effect may have been enhanced by the use of such a rhyth-
mic and predictable task. It is tempting to speculate that 
the aforementioned studies and our results point to the 
same task-related arousal mechanism that brings fresh ar-
terial blood, full of oxygen to the cortex in preparation for 
upcoming cognitive demands.

Task-related arousal mechanisms requires a close 
interaction between cognitive function and autonomic 
control (Forte, De Pascalis, et al.,  2019; Forte, Favieri, 
et al.,  2019; Nicolini et al.,  2014; Thayer & Lane,  2009; 
Wang et al., 2016). Thus, the autonomic control appears 
to be associated with activity levels in executive brain re-
gions, which allows an adaptive response to environmen-
tal demands. Conversely, autonomic dysfunctions may be 
related to the deterioration of certain cognitive functions, 
specifically of executive functions (Forte, De Pascalis, 
et al., 2019; Forte, Favieri, et al., 2019). This close coor-
dination of extracerebral and cerebral responses with the 
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task period may have great functional value. The correct 
coupling between physiological resources may be the 
sign of proper cognitive and/or cardiovascular function 
and, its disruption, a potential early marker of cognitive 
decline and/or cardiovascular disease.
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