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Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent

interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes

named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most

cell types, whereas their expression is greatly enhanced by interferon treatment, viral

infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded

by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not

have any known enzymatic roles. However, they execute a variety of cellular functions by

mediating protein-protein interactions and forming multiprotein complexes with cellular

and viral proteins through their multiple TPR motifs. The versatile tertiary structure of

TPR motifs in IFIT proteins enables them to be involved in distinct biological functions,

including host innate immunity, antiviral immune response, virus-induced translation

initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current

understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited

to the antiviral immune response and innate immunity. However, recent studies on IFIT

protein functions and their involvement in various molecular signaling mechanisms have

implicated them in cancer progression and metastasis. In this article, we focused on

critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing

their prognostic significance in health and cancer. Research suggests that IFIT proteins

could be novel therapeutic targets for cancer therapy.

Keywords: IFIT, cancer, TPRs, OSCC, progression, metastasis, drug resistance

INTRODUCTION

The interferon-induced protein with tetratricopeptide repeats (IFIT) gene family is well-studied
interferon-stimulating genes (ISGs) for their antiviral properties (Fensterl and Sen, 2015). IFIT gene
products are cytoplasmic proteins with no known enzymatic activity, but all of them share special
structural motifs known as tetratricopeptide repeats (TPRs). The TPR motifs consist of helix-turn-
helix structures that can make multiple protein complexes in the cells (Allan and Ratajczak, 2011).
IFIT proteins are involved in a variety of biological processes, such as cell proliferation, migration,
virus-induced translation initiation, replication and double-stranded RNA signaling (Fensterl and
Sen, 2011). Most cell types without stimulation do not express IFIT genes at high levels, whereas the
transcription of IFIT genes is rapidly induced by interferon (IFN) treatment and viral infection. The
antiviral functions of human IFIT proteins have been extensively demonstrated in many research

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2019.00148
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2019.00148&domain=pdf&date_stamp=2019-12-19
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bmtcl@ibms.sinica.edu.tw
https://doi.org/10.3389/fmolb.2019.00148
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00148/full
http://loop.frontiersin.org/people/352820/overview
http://loop.frontiersin.org/people/814410/overview


Pidugu et al. Oncogenic Roles of IFITs in Cancer

studies (Fensterl and Sen, 2011, 2015; Diamond and Farzan,
2013). Recent studies have implicated IFIT proteins as prognostic
markers to determine the clinical outcome of many cancers,
such as glioblastoma, hepatocellular carcinoma, breast cancer
and pancreatic cancer (Danish et al., 2013; Zhang et al., 2016;
Yang et al., 2017; Zhao et al., 2017). During the past several years,
we explored the biological and clinical functions of IFIT proteins
in oral squamous cell carcinoma (OSCC) (Blot et al., 1988; Lai
et al., 2008, 2013; Pidugu et al., 2019b). In this review, we focus
on the molecular and clinical significance of IFIT proteins in
cancer and discuss their emerging oncogenic roles, with a special
emphasis on the progression of human OSCC.

IFIT Expression in OSCC
Oral cancer is one of the most familiar malignant cancers
worldwide, and it is estimated that 3.6% of cancer deaths were
due to oral cancer in 2012 (Shield et al., 2017). It is also one
of the fastest-increasing malignancies and the fourth leading
cause of death in male cancer patients (Liu et al., 2010). OSCC
accounts for more than 90% of oral cancers. Betel quid chewing,
tobacco use and alcohol consumption are the major risk factors
for OSCC (Su et al., 2007). In addition, human papillomavirus
(HPV) infection has been reported as an aetiological agent
of OSCC (Gillison et al., 2008; Husain and Neyaz, 2017).
However, HPV-16-positive patients had better clinical outcomes
than patients with HPV-negative tumors (Schwartz et al., 2001).
Because of the synergistic tumor-promoting effect of cigarette
smoking and alcohol consumption, people with heavy smoking
and alcohol consumption habits are more prone to OSCC than
those who only smoke or drink (Blot et al., 1988; Haddad
and Shin, 2008; Jha, 2009). A high incidence of OSCC has
been reported in Asian countries due to the cultural practice
of chewing betel nuts (Su et al., 2007; Liu et al., 2010; Krishna
Rao et al., 2013). Several studies have reported the relationship
between betel nut chewing and increased mortality rate from
OSCC (Jeng et al., 2001; Wen et al., 2010). OSCC is usually
diagnosed in advanced stages due to ignorance of the patients
or inaccurate diagnosis (Scott et al., 2006). OSCC patients with
advanced-stage (III and IV) tumors are usually treated with
extensive surgery combined with radiation and chemotherapies
(Kirita et al., 2012; Noguti et al., 2012). The overall 5 year
survival rate of OSCC patients usually varies from 40 to 50%
(Markopoulos, 2012). Disappointingly, the 5 year survival rates
are low in OSCC patients, and no significant improvement
has been seen (Wang et al., 2013). The development of drug
resistance by intrinsic molecular mechanisms causes treatment
failure. Therefore, it is of fundamental importance to identify
the tumor-intrinsic pathways involved in drug resistance and
metastasis for the development of effective therapies for the
treatment of OSCC patients.

During the course of our research, we found that IFIT
protein levels were altered in OSCC patient tissues. However,
how and why their expression was induced in OSCC is still
unknown. That warrants further investigation. It has been
reported that the increased incidence of OSCC in Asian countries
is caused by chewing betel quid’s (Krishna Rao et al., 2013).
Many research studies have documented the association between

OSCC progression and betel nut (BN) or betel quid (BQ)
chewing (Jeng et al., 2001). The carcinogenic components of the
areca nut cause malignant transformation of cells that leads to
increased risk for the development of OSCC. Hence, chewing
BNs/BQs is considered an independent risk factor for OSCC
(Warnakulasuriya et al., 2002; Sharan et al., 2012). As shown
in previous studies, areca nut extract treatment resulted in the
differential expression of various cellular genes, including IFIT2,
in human keratinocytes (Lai and Lee, 2006; Lai et al., 2008).
Therefore, we speculated that BQ chewing may influence IFIT
expression in tumor tissues of OSCC patients. We preliminary
found that high IFIT1, IFIT3, and IFIT5 expression levels are
significantly associated with betel quid chewing in patients.
However, further prospective cohort studies are required to
determine the influence of betel quid chewing on IFIT expression
in patients with OSCC. The distinct expression of individual
IFIT genes in the same cell or tissue is believed to result in
non-redundant functions (Terenzi et al., 2007; Wacher et al.,
2007). Hence, we hypothesized that individual IFIT proteins may
exhibit unique functions depending on the cell type.

Gene Structure and Transcriptional
Regulation of Human IFITs
The human IFIT gene family is composed of four genes:
IFIT1, IFIT2, IFIT3, and IFIT5. They are clustered on human
chromosome 10q23.31 (Table 1) (Varela et al., 2014). Besides,
an untranscribed IFIT1 pseudogene, IFIT1P has been identified
on human chromosome 13 (Wathelet et al., 1988). The IFIT
genes have a simple gene architecture with 2 exons and a
promoter. The two exons are separated by an intronic region
that extends a few kilobases in length. The first exon is small
and is next to interferon-stimulated response elements (ISREs),
regulatory elements responsible for IFN treatment. The second
exon encodes the protein-coding mRNA sequence (Fensterl and
Sen, 2011, 2015; Liu et al., 2013) (Figure 1A). The presence of
the ISREs in the promoter regions of IFIT genes could be the
reason for their low basal expression and rapid IFN-mediated
transcriptional induction (Sarkar and Sen, 2004; Pichlmair et al.,
2011). INFs are broadly divided into two groups, type I and
type II; type I contains IFN-α, IFN-β, IFN-δ, IFN-ε, IFN-κ ,
IFN-τ , and IFN-ω, and type II IFNs include IFN-γ (Pestka et al.,
1987, 2004; Platanias, 2005). IFN-α, -β, or -γ treatment activates
the transcription of a multitude of ISGs, including IFIT genes;
it was roughly estimated that these number 500–1000 genes,
depending upon cell or tissue type (Der et al., 1998; de Veer
et al., 2001). It was noted that IFIT proteins are extensively
induced by IFN-α compared to IFN-γ treatment (Der et al.,
1998; de Veer et al., 2001). In addition to IFN stimuli, the
expression of IFITs can also be triggered by several signaling
pathways, such as those of Toll-like receptor 3 (TLR3), retinoic
acid-inducible gene-I/melanoma differentiation-associated gene-
5 (RIG-I/MDA-5) and pathogen-associated molecular patterns
(PAMPs) (Fensterl and Sen, 2011; Diamond and Farzan, 2013)
(Figure 1B).

The transcription kinetics of individual IFIT genes vary
depending on the stimulus, exposure time, and cell or tissue
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TABLE 1 | Synopsis of all available gene database information and synonyms for Human IFIT genes.

Gene name Entrez gene ID HGNC ID Ensemble ID OMIM ID Alternate names

IFIT1 3434 5407 ENSG00000185745 147690 IFI-56K, IFNAI1, IFIT-1, G10P1, IFI56, ISG56, P56, IFI56, RNM561, C56,

Hup56

IFIT2 3433 5409 ENSG00000119922 147040 ISG54K, IFI-54K, IFIT-2, G10P2, IFI54, P54, GARG-39, ISG-54K, IFI-54,

CIG-42, Cig42

IFIT3 3437 5411 ENSG00000119917 604650 IFI-60K, CIG-49, IFIT-3, IFIT-4, ISG-60, IFIT4, CIG49, IFI60, RIG-G, P60,

GARG-49, Cig41, IRG2

IFIT5 24138 13328 ENSG00000152778 616135 IFIT-5, ISG58, RI58, P58

type. For instance, human IFIT1 expression is high at 6 h
after IFN treatment and decreases rapidly within 12 to 24 h
of treatment (Kusari and Sen, 1986). IFIT1 mRNA levels are
high in HT1080 fibrosarcoma cells 24 h after treatment with
IFN-β , whereas IFIT2 mRNA levels are substantially decreased
(Terenzi et al., 2006). In HEK293 cells, the mRNA levels of
both IFIT1 and IFIT2 remain high even after 24 h of treatment
with IFN (Terenzi et al., 2006). However, anti-inflammatory
therapies with glucocorticoids such as dexamethasone negatively
regulate the transcription of IFIT genes due to the competitive
binding of the glucocorticoid receptor with glucocorticoid
receptor-interacting protein-1 (GRIP1), thereby inhibiting IRF-
3 activation (Smith and Herschman, 1996; Reily et al., 2006).
IFIT genes have been shown to undergo mutations. However,
the mutation frequencies were relatively low compared to
other cancer driver genes (Figure 2) (Cerami et al., 2012;
Gao et al., 2013). In head and neck cancer, the mutation
frequencies are lower than 1%. Since mutations in IFIT genes
can alter the structure of encoded proteins and significantly
affect protein stability and their interactions with other cellular
proteins (Johnson et al., 2018), prior knowledge of mutations
of IFIT genes may be crucial for investigating the cause
of cancers.

IFITs With Versatile TPR Motifs in Their
Protein Structure
The molecular weights of the human IFIT proteins range from
54 to 60 kDa. Hence, IFIT1, IFIT2, IFIT3, and IFIT5 proteins
are denoted as p56, p54, p60, and p58, respectively; the number
represents the molecular weight of the proteins (Table 2). The
unique characteristic feature of IFIT proteins is that all of them
contain many TPR motifs distributed across the whole sequence.
IFIT proteins have different numbers of TPR motifs in their
structure. The TPR is a structural unit of IFIT proteins comprised
of 3 to 16 degenerate tandem repeats of 34 amino acids that form
helix-turn-helix arrangements enabling them to be involved in
protein-protein interactions and are frequently found in scaffold
proteins (Allan and Ratajczak, 2011). The antiparallel helices of
multiple TPR motifs impart a unique folding nature to the IFIT
proteins that allow for the binding of distinct cellular proteins
(Blatch and Lassle, 1999; D’Andrea and Regan, 2003). The
proposed consensus amino acid sequence conventionally found
in TPR motifs is W4G8Y11G15Y17A20Y24A27P32 (D’Andrea and
Regan, 2003). However, TPRs are degenerate in amino acid
sequence, and the tandem repeats of each amino acid residue

are variable and can be replaced by other classes of amino acids.
Therefore, the prediction of TPR motifs in a protein is difficult.
According to the UniProtKB database, the predicted number of
TPR motifs in human IFIT1 (P09914), IFIT2 (P09913), IFIT3
(O14879), and IFIT5 (Q13325) proteins is 10, 9, 8, and 8,
respectively (Figure 3A). Although all human IFIT proteins
share TPR motifs in their structure, the amino acid sequence
similarity among IFIT1, IFIT2, IFIT3, and IFIT5 is merely
25% (Figure 3B). Phylogenetic analysis of human IFIT proteins
reveals evolutionary relationships between IFIT1 and IFIT5 and
between IFIT2 and IFIT3 (Liu et al., 2013) (Figure 3C), whereas
the sequence identity is 54% between IFIT1 and IFIT5 and
52% between IFIT2 and IFIT3. This implies that each IFIT
protein may have unique biological functions, which is indeed
witnessed in the cellular and molecular functions of different
IFIT-family proteins. IFIT proteins such as IFIT1, IFIT2, and
IFIT3 can form homo-oligomers in solutions (Pichlmair et al.,
2011), except for IFIT5, which is solely monomeric. The crystal
structure of human IFIT2 has shown that it makes homo- or
heterodimers with other IFIT familymembers (Stawowczyk et al.,
2011; Sen and Fensterl, 2012). Although the complete crystal
structure of IFIT3 is not available, IFIT3 may be similar to IFIT2
in forming a homodimer because the N-terminal domain of
IFIT3 has a 70% sequence similarity with IFIT2 (Yang et al.,
2012). The first protein complex of IFIT1, IFIT2, and IFIT3
was found in the IFN-treated HeLa cell lysates (Stawowczyk
et al., 2011). Subsequently, protein pulldown assays followed
by mass spectrometry analysis have shown that IFIT proteins
could associate with other members of the IFIT family except
IFIT5 (Pichlmair et al., 2011; Habjan et al., 2013). In addition,
we observed the protein complex of IFIT1, IFIT2, and IFIT3
in OSCC cells by co-immunoprecipitation assay (Pidugu et al.,
2019b). These findings suggest that IFIT1, IFIT2, and IFIT3 can
form protein complexes in cells. Recent research revealed that
IFIT1, IFIT2, and IFIT3 proteins interact with each other via a
conserved YxxxL motif in the C-terminus of each protein. In
the functional complexity of these three proteins, IFIT3 acts as
a central scaffold and regulates the functions of IFIT1 and IFIT2
(Kumar et al., 2014; Fleith et al., 2018; Mears and Sweeney, 2018).
Recent protein crystallographic studies of IFIT1 and IFIT5 have
also revealed that IFITs can interact with viral RNA containing 5’
triphosphate group (PPP-RNA) (Abbas et al., 2013; Feng et al.,
2013; Katibah et al., 2013). Furthermore, the crystal structure
reveals that IFIT2 specifically binds with AU-rich RNAs (Sen and
Fensterl, 2012; Yang et al., 2012).
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FIGURE 1 | Human IFIT gene family location, structure, and transcriptional regulation. (A) The genetic architecture of human IFITs. The human IFIT genes are located

on human chromosome 10q23.31. The exons are depicted as black boxes, the introns as dark lines, and ISREs in the promoter regions as blue asterisks. The

direction of the open reading frames (ORFs) is designated by white arrowheads. (B) Signaling pathways of IFIT gene transcription. The ISREs in the promoter regions

of IFIT genes are induced by stimulation of cell surface receptors such as IFNAR-α/β, TLR-3, RIG-I/MDA-5, TLR-7, and TLR-9 by IFN-α/β, viral infection, and PAMPs.

Transcriptional induction is mediated by various transcription factors, such as IRF-3, IRF-5, IRF-7, and IRF-9. The encoded proteins (IFIT1, IFIT2, IFIT3, and IFIT5)

regulate OSCC progression. IFIT1/IFIT3 promote OSCC invasion and metastasis by EGFR activation. IFIT2 inhibits OSCC migration via CK-18. IFIT5 expression is

correlated with HPV E6 protein in OSCC. However, its mechanism in OSCC is not yet understood. IFN-α/β, interferon alpha/beta; IFNAR-α/β, interferon alpha/beta

receptors; STAT1/2, signal transducer and activator of transcription 1/2; TLRs, Toll-like receptors; RIG-I, retinoic acid-inducible gene-I; MDA-5, melanoma

differentiation-associated gene-5; IRFs, interferon regulatory factors; ISRE, interferon-stimulated responsive elements; IFIT, interferon-induced proteins with

tetratricopeptide repeats; EGFR, epidermal growth factor receptor, CK-18, cytokeratin-18; HPV E6, human papilloma virus early protein-6; OSCC, oral squamous

cell carcinoma.

Interdependence Between IFIT1 and IFIT3
Protein sequence analysis revealed that IFIT1 and IFIT3 share
only 37% sequence similarity. Intriguingly, the expression of
IFIT1 was strongly correlated with IFIT3 in both OSCC cell lines

and tissues derived from OSCC patients (Pidugu et al., 2019b).
Ectopic expression of IFIT3 also induced endogenous IFIT1
expression in a dose-dependent manner (Johnson et al., 2018).
These data indicate that IFIT1 and IFIT3 are interdependent.
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FIGURE 2 | Cancer type summary of mutation frequencies in IFIT genes across the cancer studies. Pictures shows the histograms of alteration of mutation frequencies

in IFIT1 (A), IFIT2 (B), IFIT3 (C), and IFIT5 (D) across the cancer studies. Data obtained from TCGA PanCancer Atlas studies. Picture courtesy of cBioPortal.

TABLE 2 | Summary of Human IFIT gene encoded proteins.

Gene

name

Protein

name

UniprotKB

ID

No. of amino

acids

No. of predicted TPR

motifs

IFIT1 P56 P09914 478 10

IFIT2 P54 P09913 472 9

IFIT3 P60 O14879 490 8

IFIT5 P58 Q13325 482 8

This was further supported by the studies where deletion or
mutation in the C-terminal YxxxL motif of IFIT3 resulted in
decreased IFIT1 expression (Fleith et al., 2018). This could

be due to the enhanced IFIT1 protein stability or decreased
degradation by IFIT3 in the complex. Alternatively, IFIT3 may
promote IFIT1 activity by enhancing the IFIT1 concentration
in the cell by averting its turnover by locking it in a stable
complex (IFIT1: IFIT3) (Fleith et al., 2018; Johnson et al.,
2018). Formation of the complex with IFIT3 also seems to
increase the IFIT1 specificity, since IFIT3 binds with IFIT1 and
facilitates the binding of IFIT1 with Cap0 RNAs, and hence
functional studies demonstrated that IFIT3 is required for the
stabilization of IFIT1 expression and its antiviral functions in the
cell (Johnson et al., 2018). IFIT1 is phosphorylated at 24 h after
Sendai virus infection in HEK293 cells, yet the phosphorylation
site and its subsequent effect of phosphorylation remain elusive
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FIGURE 3 | The organization of tetratricopeptide repeat (TPR) motifs and phylogenetic analyses of human IFIT family proteins. (A) The schematic illustration shows

the predicted number of TPR motifs in IFIT1 (P09914), IFIT2 (P09913), IFIT3 (O14879) and IFIT5 (Q13325) according to the UniProtKB database. The numbers are

UniProtKB accession numbers. (B) Sequence alignments of human IFIT proteins with Clustal Omega. The multiple-sequence alignment shows that IFIT1, IFIT2, IFIT3,

and IFIT5 share only 25% sequence similarity. (C) The cartoon depicts the evolutionary relationship among human IFIT proteins. The multiple-sequence alignment

using Clustal Omega reveals that IFIT1 and IFIT5 have 54% sequence similarity, whereas IFIT2 and IFIT3 have 52%.
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(Li et al., 2009). Since the tyrosine in the IFIT3 C-terminus
YxxxL motif is crucial for the interaction between IFIT1 and
IFIT3 (Fleith et al., 2018), it would be noteworthy to determine
whether this tyrosine residue is prone to phosphorylation and
how this impacts IFIT1: IFIT3 complex formation. Moreover,
it was found that a small proportion of IFIT1 was ISGylated
by human ISG15 protein in IFN-β-treated HeLa cells; however,
the consequences of this modification remain unclear, and
further studies are warranted to understand the mechanistic
insights into IFIT1: IFIT3 complex formation (Zhao et al.,
2005).

IFITs in Malignant Progression
Although IFITs are involved in the host immune response and
antiviral defense, emerging research studies have shown their
involvement in malignant progression (Lai et al., 2008, 2013;
Niess et al., 2015; Zhang et al., 2016; Ohsugi et al., 2017; Yang
et al., 2017; Zhao et al., 2017; Chen et al., 2018; Lo et al.,
2018, 2019; Nushtaeva et al., 2018; Shen et al., 2018; Huang
et al., 2019). The epithelial-mesenchymal transition (EMT) is
a biological mechanism in which epithelial cells convert into a
mesenchymal phenotype to acquire increased cell invasion and
migration capacity as well as resistance to apoptosis (Kalluri
and Weinberg, 2009), which lead to metastasis (Yilmaz and
Christofori, 2009). Accumulated evidence has shown that EMT
is linked to an increased risk of cancer invasion and decreased
the survival rate of OSCC patients (Yilmaz and Christofori, 2009;
Natarajan et al., 2014). In our previous studies, we found an
inverse association of IFIT2 with the migration activity of OSCC
cells (Lai et al., 2008) and showed reduced IFIT2 expression level
was correlated with an increased rate of metastasis in OSCC
patients (Lai et al., 2013). IFIT2 exhibited distinct cytoskeletal
staining patterns in squamous cells and surrounding normal cells
in OSCC patient tissues and interacted with cytokeratins such
as CK8 and CK18. Knockdown of endogenous IFIT2 expression
using IFIT2-specific siRNA enhanced OSCC cell migration rates.
Strikingly, high IFIT2 expression in tumor tissues was correlated
with better patient survival (Lai et al., 2008). The enhanced
malignancy of IFIT2-depleted OSCC cells was attributed to
increased expression and secretion of tumor necrosis factor-
alpha (TNF-α), and hence blocking TNF-α abolished the
angiogenic activity of IFIT2-silenced metastatic cells (Li et al.,
2012). We also demonstrated that knockdown of IFIT2 induced
EMT in OSCC by activating the atypical PKC signaling pathway
(Lai et al., 2008, 2013).

We recently found that ectopic overexpression of IFIT1 and
IFIT3 enhanced EGFR and AKT activation and subsequently
promoted OSCC invasion through EMT (Pidugu et al., 2017).
IFIT1 expression was strongly correlated with IFIT3 expression
in OSCC cell lines and patient tissues. Additionally, the
expression of both IFIT1 and IFIT3 was associated with
phospho-EGFR in OSCC specimens. Clinicopathological and
survival analyses showed that elevated IFIT1 and IFIT3
expression correlated with poor survival in OSCC patients.
Furthermore, we demonstrated that IFIT1 and IFIT3 enhanced
the EGFR endocytic recycling process by interacting with
Annexin-2 (ANX2) (Pidugu et al., 2019b). However, IFIT3 has

been shown to have antiproliferative activity by enhancing
the expression of cell cycle negative regulators such as p27
and p21 in monocytic U937 cells (Xiao et al., 2006). IFIT3
increased p21 protein level by downregulating c-Myc, a repressor
of p21 in the cell (Xiao et al., 2006). IFIT proteins execute
multiple complex cellular functions based on cell type and
tissue types. Therefore, the functions of IFIT proteins could be
altered depending on the cell system. Hence, the controversial
functions of IFIT3 warrant further investigation. IFIT5 has been
implicated exclusively in an innate immune response. However,
a newly identified mechanism of IFIT5 is regulation of the
turnover of tumor suppressor microRNAs (miRNAs), including
miR-363 and miR-128, resulting in increased expression of
transcription factors of EMT such as slug and ZEB1, thereby
enhancing invasion in renal cell carcinoma (RCC) (Lo et al.,
2019). Moreover, the oncogenic role of IFIT5 has been
identified in bladder cancer. IFIT5 promoted cell invasion
and migration by inducing EMT by downregulating miR-
99a in bladder cancer (Huang et al., 2019). IFIT5 expression
was also inversely correlated with miR-363 expression in
prostate cancer. IFIT5 is involved in the degradation of
miR-363 and can form a complex with miR-101 and miR-
128 to promote prostate cancer progression by inducing
EMT (Lo et al., 2018).

IFITs in Apoptosis
Intriguingly, IFIT-family proteins display distinct functions
in apoptosis. The negative association of IFIT2 with tumor
malignancy is likely due to its pro-apoptotic activity (Stawowczyk
et al., 2011; Chen et al., 2017). Ectopic IFIT2 overexpression
induced the activation of caspase-3 and disturbed the plasma
membrane asymmetry and permeability, which is a basic
characteristic feature of apoptosis (Stawowczyk et al., 2011;
Lai et al., 2013; Feng et al., 2014). In addition, IFIT2 was
associated with the mediator of IRF3 activation (MITA) and
regulated apoptotic cell death via the mitochondrial pathway
(Stawowczyk et al., 2011). Inhibition of proteasome-mediated
degradation of IFIT2 led to the aggregation of IFIT2 in the
perinuclear region and promoted apoptosis (Chen et al., 2017).
Derepression of IFIT2 made the cells prone to apoptotic death
induced by external stimuli such as chemotherapeutic drugs
and serum starvation (Feng et al., 2014; Wang et al., 2016).
IFIT2-mediated apoptosis was not dependent on the DNA
damage response (Chen et al., 2017; Ohsugi et al., 2017).
Rather, IFIT2 induced apoptosis by regulating the balance
between pro- and anti-apoptotic Bcl-2 family proteins, which
altered the permeability of the mitochondrial membrane (Tait
and Green, 2010; Stawowczyk et al., 2011). Several research
studies have confirmed the ability of IFIT2 to promote the
apoptotic death of cancer cells, including OSCC (Lai et al.,
2013; Feng et al., 2014), colorectal cancer (Jia et al., 2017;
Ohsugi et al., 2017), leukemia (Zhang et al., 2017), osteosarcoma
(Wang et al., 2016), and hepatocellular carcinoma (Tang et al.,
2017).

IFIT3 acts as a bridging molecule between the mitochondrial
antiviral signaling (MAVS) complex and the TNFR-associated
factor family member-associated NF-κB activator binding
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kinase 1 (TBK1) to regulate the activation of IRF3 and
NF-κB (Liu et al., 2011). Overexpression of IFIT3 had
a protective role in human lung epithelial cells, whereas
depletion of IFIT3 expression induced apoptotic cell death
(Hsu et al., 2013). Studies have shown that co-expression
of IFIT3 inhibited IFIT2-dependent apoptotic cell death
(Stawowczyk et al., 2011). Since IFIT2 and IFIT3 form a
protein complex in the cell, the apoptotic effects of IFIT2
can be negatively regulated by IFIT3 (Reich, 2013). However,
further studies are needed to understand whether the pro-
survival signal of IFIT3 alone can protect the cell or
whether the IFIT2: IFIT3 association is required to modulate
IFIT2-mediated apoptosis.

IFIT1 negatively regulated NF-κB and IRF3 activation by
interrupting the MITA-MAVS-TBK1 interaction in the cell (Li
et al., 2009). Our recent study has shown that IFIT1 interacted
with IFIT3 and that IFIT1 and IFIT3 expression promoted OSCC
cell proliferation and metastasis (Pidugu et al., 2019b). However,
the anti-apoptotic roles of IFIT1/IFIT3 have to be investigated in
OSCC. Ectopic expression of IFIT5 induced IRF-3- and NF-κB-
mediated gene expression. Furthermore, IFIT5 colocalized with
MAVS (Zhang et al., 2013; Zheng et al., 2015). Recent research
has shown that IFIT5 promoted the progression of various
cancers, including renal cancer, prostate cancer, and bladder
cancer (Lo et al., 2018, 2019; Huang et al., 2019). Hence, it
would be interesting to investigate whether IFIT5 may also have
anti-apoptotic functions.

IFITs in Drug Resistance
The failure of chemotherapy or targeted therapy has often been
associated with intrinsic or acquired drug resistance in cancer
cells (Mansoori et al., 2017). Anticancer drug resistance can
be caused by various intrinsic cellular mechanisms, including
alterations of intracellular drug distribution, changes in drug
metabolism, decreased apoptosis, enhanced drug efflux by ATP-
binding cassette transporters, enhanced DNA damage repair,
cell cycle dysregulation, and reduced drug-target interactions
(Larsen et al., 2000). Increased expression of IFIT1 and
IFIT3 genes was observed in DNA damage-resistant sublines
compared to parental cell lines in various cancers, including
OSCC cells (Weichselbaum et al., 2008). IFIT1 and IFIT3
were also upregulated in estrogen-negative breast cancer cells
in post-chemotherapy residual tumors (Legrier et al., 2016).
Overexpression of IFIT1 or IFIT3 increased OSCC resistance to
various chemotherapeutic drugs, including cisplatin, carboplatin,
oxaliplatin, 5FU, and ganetespib. Interestingly, IFIT1 and
IFIT3 expression made OSCC cells susceptible to gefitinib
(EGFR-TKI) (Yen et al., 2014; Pidugu et al., 2018, 2019a).
IFIT1 and IFIT3 promoted EGFR activation in OSCC cells
and enhanced the tumor-preventive activity of gefitinib. In
addition, the combination treatment of IFN-α and gefitinib
showed synergistic anti-tumor activity in OSCC cells (Bruzzese
et al., 2006; Pidugu et al., 2019b). These studies demonstrated
that IFIT1 and IFIT3 modulate the drug response via EGFR
signaling. The efficacy of the therapies with various drugs
depends on the cellular mechanisms active in the cancer
cells. Thus, advanced metastatic OSCC must be treated with

multifaceted therapies to improve the clinical outcome in
patients. Therefore, targeting specific IFITs can be a good
clinical approach for OSCC treatment. We have also shown
that IFIT2 knockdown enhances atypical PKC signaling in
OSCC cells (Lai et al., 2013). Activation of PKC signaling is
involved in the development of multidrug resistance (MDR)
phenotype by phosphorylation of p-glycoprotein in cancer
cells (Rumsby et al., 1998). On the other hand, inhibition
of atypical PKC has improved clinical outcomes in advanced
basal cell carcinoma (BCCs) (Mirza et al., 2017). Therefore,
IFIT2 depletion may promote drug resistance. Hence, additional
studies are warranted to determine the IFIT2-mediated drug
resistance in OSCC.

IFITs in HVP Infection
The HPV infection is one of the aetiological factors of OSCC
pathogenesis (Gillison et al., 2008; Husain and Neyaz, 2017).
Studies have shown that OSCC patients with HPV infection
had a better prognosis compared to patients with no infection
(Schwartz et al., 2001). However, the biological mechanism
that leads to better clinical outcomes in OSCC patients is not
clear. IFIT1 has been shown to act against HPV by direct
binding with key E1 replication protein, which is crucial for
the synthesis of viral progeny DNA. The HPV E1 protein
binds at the viral origin of replication DNA elements and
makes a hexameric helicase complex with the help of HPV E2
protein. This protein complex interacts with several host cell
proteins such as DNA polymerase alpha and recruits replication
protein A (RPA) to initiate viral DNA replication (Wilson et al.,
2002). The binding of the N-terminus of human IFIT1 with
HPV E1 inhibits its helicase function and stops viral DNA
replication by uncoupling it from the viral DNA. It has been
demonstrated that IFIT1 binding activity with HPV E1 is not
virus strain-specific, as it binds with E1 of HPV11, HPV18,
and HPV31. HPV replication is inhibited to a great extent
by the treatment with interferons, and this effect is weakened
by the shRNA-mediated knockdown of IFIT1. Thus, human
IFIT1 is considered the prime antiviral protein against HPV
(Terenzi et al., 2008).

Human IFIT5 plays a crucial role in the host innate immune
response during viral infection (Zhang et al., 2013; Zheng et al.,
2015). Interestingly, we found that the expression of human
IFIT5 protein is highly correlated with HPV E6 protein in tissues
of OSCC patients (Yen et al., 2014). However, the underlying
molecular mechanism involved in the association between IFIT5
and HPV E6 proteins is not yet understood. HPV E6 is one of the
major oncoproteins that contribute to the malignant progression
of OSCC. One of themajor functions of HPV E6 is to enhance the
proteasome-mediated degradation of tumor suppressor protein
p53 via the interaction with E6-associated protein (E6AP). p53
regulates cell growth and apoptosis immediately after DNA
damage. HPV E6 also impedes pro-apoptotic proteins, such
as procaspase 8 and Bak, to block apoptosis (Mantovani and
Banks, 2001; Gupta and Gupta, 2015). Over the past decade,
an increasing number of HPV E6-associated proteins have
contributed to cellular malignant transformation, with human
telomerase as one of the best examples (Narisawa-Saito and
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Kiyono, 2007). Recently, human IFIT5 has been implicated in
cancer progression (Lo et al., 2018, 2019; Huang et al., 2019).
Therefore, the correlation between human IFIT5 and HVP E6
might contribute to OSCC malignancy, and further investigation
is warranted to explore the reason for their association.

IFITs as Putative Co-chaperones
Heat shock protein 90 (Hsp90) is a ubiquitously expressed
ATPase-directed molecular chaperone in the cell, which
facilitates posttranslational protein homeostasis by regulating a
variety of molecular processes such as stabilization, maturation,
degradation of client proteins that are involved in various signal
transduction pathways (Caplan, 1999; Whitesell and Lindquist,
2005; Pearl and Prodromou, 2006). Hsp90 regulates the folding
and activation of more than 200 client proteins (https://www.
picard.ch/downloads/Hsp90interactors.pdf), including EGFR
(Ahsan et al., 2012), AKT (Basso et al., 2002), SAPK (Tatebe and
Shiozaki, 2003), p38 (Ota et al., 2010), PKC (Gould et al., 2009),
FAK (Xiong et al., 2014), andDNA-PK (Solier et al., 2012).Hsp90
controls the maturation and intracellular trafficking of ErbB2-
family proteins, including EGFR (Xu et al., 2001, 2002; Yang et al.,
2016). The biological function of Hsp90 relies on an inherent
ATPase activity that is modulated by many of its co-chaperones.
Emerging evidence has indicated that many TPR proteins,
such as Hsp90-organizing protein (HOP), carboxy-terminus of
Hsc70–interacting protein (CHIP), Cdc37, PP5, Unc45, Fkbp51,
Fkbp51, Fkbp52, Sti1, and Cyp40, act as co-chaperones and play
crucial roles in stabilizing the interaction between chaperones,
such as Hsp90 or Hsp70, and their client proteins (Bose et al.,
1996; Frydman and Hohfeld, 1997; Chen et al., 1998; Blatch and
Lassle, 1999; Caplan, 1999; Scheufler et al., 2000; Li et al., 2012).
HOP interacts with Hsp70 and Hsp90 with its TPR1 and TPR2A
domains, respectively. Both TPR1 and TPR2A domains of HOP
bind with EEVDmotifs ofHsp70 andHsp90 through electrostatic
interactions between C-terminal aspartates and hydrophobic
interactions of amino acid residues upstream of the EEVDmotifs
(Chen and Smith, 1998; Scheufler et al., 2000; Brinker et al.,
2002; Travers and Fares, 2007). CHIP, a quality-control E3 ligase
containing a co-chaperone protein, regulates the degradation of
ubiquitinylated client proteins, which is crucial for maintaining
protein turnover and cellular homeostasis. CHIP has three
N-terminal tandem repeats of TPR motifs by which it interacts
with and regulates Hsp70 and Hsp90 (Ballinger et al., 1999;
Paul and Ghosh, 2014). Intriguingly, the balance between client
protein folding and degradation is regulated by the binding of
HOP or CHIP with Hsp90 and Hsp70. Emerging evidence has
shown that the proteins with TPR motifs bind a C-terminal
highly conserved motif, the EEVD-COOH tail, of Hsp70/Hsp90
to control protein folding and maturation (Demand et al., 1998;
Scheufler et al., 2000; Brinker et al., 2002). Furthermore, the
binding of these co-chaperones is determined by the C-terminal
phosphorylation status of Hsp70 and Hsp90 (Muller et al.,
2013). Since IFIT proteins contain multiple TPR motifs in their
structures, we speculated that they may exert co-chaperone
functions. Hsp90 has two isoforms, Hsp90α and Hsp90β ,
but the functional difference between these isoforms is not
well-understood (Subbarao Sreedhar et al., 2004). Interestingly,

co-immunoprecipitation followed by LC-MS/MS analysis
showed 16 peptides with 21% sequence coverage and 17 peptides
with 16% sequence coverage of Hsp90α; 59 peptides with 50%
sequence coverage and 57 peptides with 44% sequence coverage
of Hsp90β were identified with immunoprecipitates of IFIT1
and IFIT3, respectively. Protein-protein interaction network
analysis using the STRING 10.5 database showed that heat shock
protein 90 s (Hsp90α/β) directly bound IFIT1 and IFIT3 (Pidugu
et al., 2019a,b). Increased C-terminal phosphorylation of Hsp90α
was observed in IFIT1- or IFIT3-overexpressing OSCC cells.
Overexpression of IFIT1 or IFIT3 in OSCC cells enhanced the
phosphorylation of Hsp90 client proteins, including EGFR, AKT,
p38, and SAPK/JNK. Alternatively, inhibition of Hsp90 activity
by ganetespib led to decreased C-terminal phosphorylation
of Hsp90α and expression and activation of its downstream
client proteins (Pidugu et al., 2019a). These Hsp90-downstream
signaling regulators have been widely shown to play crucial roles
in cell survival, migration, invasion, and metastasis (Tsutsumi
and Neckers, 2007; Pashtan et al., 2008; Tsutsumi et al., 2009).
Since IFIT1 and IFIT3 contain TRP motifs, we may hypothesize
that they function as co-chaperones. Further investigation is
warranted to elucidate the TPR motifs of IFIT1 and IFIT3
that mediate protein-protein interactions in OSCC. A recent
study has shown that IFIT2 is co-precipitated with p67phox and
mitochondria-associated heat shock protein Hsc70 (Stawowczyk
et al., 2018). As IFIT2 contains many TPR domains in its
structure, it binds with p67phox and Hsc70 through TPR motif-
mediated interactions; however, the exact TPR motifs involved
in the interaction have not yet been mapped. Since increased
Hsp90 activity directly influences client kinase activation and
stabilization, Hsp90 is regarded as a promising therapeutic
target for cancer treatment (Caplan et al., 2007; Trepel et al.,
2010). Further studies are needed to delineate the co-chaperone
functions of IFITs in the future.

The Clinical Relevance of IFITs in OSCC
and Other Cancers
The ISGs and their signaling pathways play vital roles
in the malignant transformation of cells in the tumor
microenvironment. Although IFNs have been used as exogenous
pharmaceuticals for the treatment of cancers, paradoxical
findings revealed that constitutive expression of aberrantly
regulated ISGs promotes neoplastic disease development and
progression (Cheon et al., 2014). Abnormal expression of ISGs
promotes tumor invasion and progression in many cancers,
including skin cancer, breast cancer and head and neck cancers
(Perou et al., 1999; Suomela et al., 2004; Andersen and Hassel,
2006; Hatano et al., 2008). Increased expression of ISGs has been
reported in metastatic cancer cells compared to non-metastatic
cells (Cai et al., 2009; Khodarev et al., 2009). ISGs can modulate
the tumor cell response to therapeutic drugs by altering the
tumor microenvironment. Defects in interferon signaling cause
resistance to immunotherapies such as anti-CTLA-4 and PD1
blockade (Shin et al., 2015; Gao et al., 2016; Zaretsky et al., 2016).
Constant exposure to low levels of IFNs induces the transcription
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of a subset of ISGs called interferon-related DNA damage-
resistant signature (IRDS) genes that contribute to tumor growth,
metastasis, resistance to radiation therapy and chemotherapeutic
drugs (Rickardson et al., 2005; Duarte et al., 2012; Cheon et al.,
2013). High expression of IRDS genes in cancer tissues promotes
tumor growth, invasion, and metastasis (Wallace et al., 2011).
IFIT1 and IFIT3 genes are classified as IRDS subset genes
and are considered as predictive biomarkers for chemotherapy
and radiation therapy in many primary human cancers, such
as breast cancer, head and neck cancer, prostate cancer, lung
cancer, and glioma (Weichselbaum et al., 2008). Therefore,
cancer patients with IRDS expression are suggested to undergo
therapies combined with adjuvant treatments. Accordingly, high
IFIT1 and IFIT3 expression have been correlated with a better
therapeutic response to IFNs along with chemotherapeutics
and immunostimulating agents in patients with breast cancer,
glioblastoma, and hepatocellular carcinoma (Zhang et al., 2016;
Yang et al., 2017; Nushtaeva et al., 2018). However, the enhanced
expression of IFIT3 in pancreatic cancer has been shown to cause
pseudo-inflammation and result in cancer progression (Niess
et al., 2015; Zhao et al., 2017). Our recent investigations also
demonstrated that high IFIT1 or IFIT3 expression correlated
with T-stage, lymph node metastasis, lymphovascular, perineural
invasion, and poor overall survival in OSCC patients. Ectopic
expression of IFIT1 or IFIT3 in OSCC cells promoted tumor
growth and metastasis by activating EGFR signaling (Pidugu
et al., 2019b). Strikingly, we also found that enhanced IFIT1 or
IFIT3 expression in OSCC cells promoted sensitivity to gefitinib
(EGFR-TKI). Moreover, the combination treatment of gefitinib
and IFN-α resulted in a synergistic tumor-inhibitory effect in
OSCC (Bruzzese et al., 2006; Pidugu et al., 2018). This could be
due to the enhanced EGFR tyrosine kinase activity in OSCC cells
caused by IFIT1 and IFIT3 expression. These data suggest that
IFIT1 and IFIT3 expression can be used as prognostic biomarkers
to predict the EGFR-TKI and IFN-α therapeutic response in
OSCC patients and probably in patients with other cancer types.

Interestingly, we also observed that high IFIT1 or IFIT3
expression in OSCC cells increased resistance to various
therapeutics, including cisplatin, oxaliplatin, carboplatin, 5-FU,
and ganetespib. IFIT1 or IFIT3 expression enhanced C-terminal
phosphorylation of Hsp90 and its client proteins, including PKC,
EGFR, AKT, and p38 (Pidugu et al., 2017, 2019a). Protein-
protein interaction analysis revealed that IFIT1 and IFIT3
colocalize with both Hsp90α andHsp90β isoforms in OSCC cells.
Collectively, these data suggest that IFIT1 and IFIT3 regulate the
drug response and might function as co-chaperones in OSCC.
Thus, IFIT1 and IFIT3 proteins can be considered potential
therapeutic targets for OSCC. In contrast, IFIT2 has been shown
to have tumor suppressor function in many cancers. Decreased
expression of IFIT2 is associated with increased cell proliferation
and metastasis and predicts poor clinical outcome in gastric
cancer patients (Chen et al., 2018). Downregulation of IFIT2
expression was observed in colorectal cancer (CRC) tissues
compared to normal tissues. Overexpression of IFIT2 in CRC
cells suppressed cell growth and increased apoptosis (Ohsugi
et al., 2017). Our findings agree with previous findings that
IFIT2 depletion significantly increased OSCC metastasis both in

vitro and in vivo (Lai et al., 2013). Besides, the high expression
of IFIT2 in OSCC tumor tissues negatively correlated with the
nodal stage. The positive association of IFIT2 expression with
better overall patient survival suggests that IFIT2 can act as a
novel prognostic biomarker to predict OSCC progression (Lai
et al., 2008). Although IFIT2 belongs to the same family, it
executes tumor suppressor functions, whereas IFIT1 and IFIT3
have tumor-promoting properties in OSCC. However, how IFITs
regulate contradictory functions in OSCC cells is not yet known.
Further investigations are required to understand the possible
molecular mechanisms that regulate opposing functions of IFITs
in OSCC.

DISCUSSION

IFITs are quickly induced by multiple stimuli, such as
IFN-dependent or IFN-independent signaling pathways. Over
the past decade, the anti-viral functions of IFITs have been
extensively studied. Many structural and functional studies
propose that IFITs are also involved in the regulation of cell-
intrinsic and cell-extrinsic immune responses via new pathways
that must be corroborated. Although IFITs have a simple
gene architecture and promoter structure, they execute multiple
complex functions based on stimulus, cell type, and tissue type.
The variable amino acid sequence in TPR motifs could be the
reason for the broad range of non-redundant functions mediated
by IFITs in the cell. Even though IFITs are renowned antiviral
proteins, recent studies hint at their complex biological and
molecular roles in cancer.

In this review, we hypothesize that IFIT protein may serve
as co-chaperones of Hsp90 (Figure 4). Many studies have
demonstrated that TPR proteins interact with the C-terminus
of Hsp90 to facilitate the stabilization of the chaperone complex
(Scheufler et al., 2000; Brinker et al., 2002; Muller et al., 2013).

FIGURE 4 | Cartoon illustration depicting putative co-chaperone functions of

IFIT1 and IFIT3. A hypothetic scheme shows that IFIT1/IFIT3 may regulate

C-terminal phosphorylation of Hsp90 and hence enhance proper folding and

maturation of its downstream signaling regulators in OSCC.
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Hsp90 is a ubiquitously expressed molecular chaperone in the
cells that regulates a multitude of cellular processes, such as
client kinase folding, maturation, and degradation (Whitesell and
Lindquist, 2005). The direct association of IFIT1 or IFIT3 with
heat shock proteins (Hsp90α/β) suggests a unique mechanism
of action of IFIT1 and IFIT3 that may be involved in activating
Hsp90 and several of its downstream signaling regulators, which
are crucial for OSCC tumor progression and drug resistance.
Thus, IFIT1 and IFIT3may likely function as co-chaperones and
serve as potentially important therapeutic targets for OSCC.

Alternatively, our recent studies have shown that ectopic
overexpression of IFIT1 and IFIT3 enhanced the EGFR endocytic
recycling process by interacting with Annexin-2 (ANX2)
recycling and thus activated several downstream pathways
involving in cell proliferation, survival, and drug resistance.
Activated EGFR subsequently promoted OSCC invasion through
EMT (Figure 5). This hypothesis was supported by the clinical
observations showing a positive association of phospho-EGFR
levels with the expression of both IFIT1 and IFIT3 in OSCC
specimens. In addition, elevated IFIT1 and IFIT3 expression
indeed correlated with poor survival in OSCC patients. In

contrast, decreasing IFIT2 expression activated PKC pathway and
promoted the progression of tumor malignancy. However, how
PKC is activated by depleting IFIT2 protein is still unknown. It
cannot be neglected that IFIT proteins may execute controversial
activity in different cell types. However, we may infer that IFITs
play certain roles on modulation of survival signaling pathways.

Additionally, recent studies have shown that IFIT1 undergoes
ISGylation (Zhao et al., 2005) and phosphorylation (Li et al.,
2009), indicating that IFIT protein stability and function can
be regulated by posttranslational modification. The association
between IFIT5 and HPV E6 indicates that IFIT5may be involved
in the malignant transformation of oral squamous cells during
disease progression. Additional studies are warranted to ascertain
the role of IFIT5 in HPV-positive OSCC.

In overall, the involvement of IFITs in the progression of
cancer is an emerging question that warrants our concern.
Apparently, these non-enzymatic proteins may exert their
biologic activities via protein-protein interaction. Interruption of
protein-protein interaction is a new clue for anti-cancer drug
development. We prospect that in vivo studies with individual
IFIT gene knockout mice can contribute to unraveling the

FIGURE 5 | Schematic model represents IFIT1 and IFIT3 interaction with ANXA2 promote EGFR recycling. Diagram illustrating the association of IFIT1 and IFIT3 with

ANXA2 and enhance p-EGFRY1068 endocytic recycling, which subsequently leads to EGFR, AKT activation, and enhance the expression of downstream

epithelial-mesenchymal transition (EMT) transcription factor slug. Activated EGFR and its downstream signaling regulators promote OSCC invasion and metastasis.
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pathophysiological roles of the respective IFIT proteins, and they
could also open a new avenue for research into multiple disease
systems and drug development in the future.
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