
REVIEW
published: 27 September 2019
doi: 10.3389/fonc.2019.00998

Frontiers in Oncology | www.frontiersin.org 1 September 2019 | Volume 9 | Article 998

Edited by:

Laurence A. Marchat,

National Polytechnic Institute, Mexico

Reviewed by:

Kwok-Ming Yao,

The University of Hong Kong,

Hong Kong

Maja Cemazar,

Institute of Oncology

Ljubljana, Slovenia

*Correspondence:

Marcela Lizano

lizano@unam.mx

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 22 June 2019

Accepted: 17 September 2019

Published: 27 September 2019

Citation:

Ayala-Domínguez L, Olmedo-Nieva L,

Muñoz-Bello JO,

Contreras-Paredes A,

Manzo-Merino J, Martínez-Ramírez I

and Lizano M (2019) Mechanisms of

Vasculogenic Mimicry in Ovarian

Cancer. Front. Oncol. 9:998.

doi: 10.3389/fonc.2019.00998

Mechanisms of Vasculogenic
Mimicry in Ovarian Cancer
Lízbeth Ayala-Domínguez 1,2, Leslie Olmedo-Nieva 2,3, J. Omar Muñoz-Bello 2,

Adriana Contreras-Paredes 2, Joaquín Manzo-Merino 4, Imelda Martínez-Ramírez 2 and

Marcela Lizano 2,5*

1 Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico,
2Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas,

Universidad Nacional Autónoma de México, Mexico City, Mexico, 3 Programa de Doctorado en Ciencias Bioquímicas,

Universidad Nacional Autónoma de México, Mexico City, Mexico, 4Cátedras CONACyT-Instituto Nacional de Cancerología,

Mexico City, Mexico, 5Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones

Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico

Solid tumors carry out the formation of new vessels providing blood supply for

growth, tumor maintenance, and metastasis. Several processes take place during

tumor vascularization. In angiogenesis, new vessels are derived from endothelial cells

of pre-existing vessels; while in vasculogenesis, new vessels are formed de novo from

endothelial progenitor cells, creating an abnormal, immature, and disorganized vascular

network. Moreover, highly aggressive tumor cells form structures similar to vessels,

providing a pathway for perfusion; this process is named vasculogenic mimicry (VM),

where vessel-like channels mimic the function of vessels and transport plasma and

blood cells. VM is developed by numerous types of aggressive tumors, including ovarian

carcinoma which is the second most common cause of death among gynecological

cancers. VM has been associated with poor patient outcome and survival in ovarian

cancer, although the involved mechanisms are still under investigation. Several signaling

molecules have an important role in VM in ovarian cancer, by regulating the expression of

genes related to vascular, embryogenic, and hypoxic signaling pathways. In this review,

we provide an overview of the current knowledge of the signaling molecules involved in

the promotion and regulation of VM in ovarian cancer. The clinical implications and the

potential benefit of identification and targeting of VM related molecules for ovarian cancer

treatment are also discussed.
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INTRODUCTION

Ovarian cancer is the second most common and lethal gynecological cancer (1). Among ovarian
cancer types, the epithelial ovarian cancer accounts for almost 90% of such malignancy (2), which
is usually diagnosed in advanced aggressive stages due to its asymptomatic nature. Extensive tumor
invasion, peritoneal metastases, and treatment failure are frequent in advanced epithelial ovarian
cancer (3).

The normal physiology of the ovary is characterized by increased permeability of blood
vessels during follicular development, ovulation, and subsequent formation of the corpus luteum,
with cyclic changes in the formation, differentiation, and regression of ovarian vasculature (4).
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These vascular processes are deregulated in ovarian cancer,
which is characterized by intense neovascularization (5, 6).
Neovasculature in ovarian cancer is formed not only from
endothelial cells but also from endothelial progenitor cells and/or
cells from the tumor itself, allowing the supply of blood and
nutrients to the tumor with great efficiency (7).

The versatility of the vascularization processes in ovarian
cancer could partially explain its aggressive nature and
the limited efficacy of anti-angiogenic therapies (8). An
alternative vascularization process, vasculogenic mimicry (VM),
has been shown to increase after anti-angiogenic treatment with
bevacizumab, in preclinical models of ovarian cancer (9). This
finding suggests that VM could be a strategy for escaping anti-
angiogenic treatment, highlighting the importance to study the
mechanisms involved in vascular remodeling.

In this review, we provide an overview of the current
knowledge of the mechanisms and signaling molecules involved
in the promotion and regulation of VM in ovarian cancer, its
clinical implications and the potential benefit of therapeutic
approaches based on the identification and targeting of VM
related molecules.

TUMOR VASCULARIZATION PROCESSES
IN OVARIAN CANCER

The study of the vascularization processes in solid tumors
has gained importance due to its implication in growth
and metastasis, as well as its possible implication for anti-
angiogenic treatment resistance (10). The most studied tumor
vascularization process is angiogenesis, although tumor tissue
has the capacity to generate its own vasculature from alternative
mechanisms such as vasculogenesis, vessel co-option, and
VM (11–13).

Angiogenesis
Angiogenesis is a highly regulated process aimed to produce new
blood vessels with a key role in development and postnatal life;
it is also involved in invasion, growth, and metastasis of solid
tumors (14, 15). The onset of angiogenesis occurs in response
to hypoxia or ischemia where pro-angiogenic signals overcome
anti-angiogenic signals. The vascular endothelial growth factor
A (VEGF-A) is the master regulator of angiogenesis, both
in physiological and pathological conditions (16). During
angiogenesis activation, a complex signaling cascade begins,
leading to the proliferation of endothelial cells (ECs) that
assemble new vascular networks from the pre-existing vessels,
increasing permeability and leakage, and restoring the supply of
oxygen and nutrients toward the tumor mass (15, 17).

Angiogenesis is essential for the growth of ovarian cancer
cells and their spreading to the peritoneum. VEGF-A has been
associated with peritoneal ECs proliferation, migration, and
formation of tube-like structures (18). The inhibition of VEGF-
A does not revert these processes, suggesting that another pro-
angiogenic factors secreted by surrounding ovarian cancer cells
or their microenvironment could be involved in the angiogenic
activation of peritoneal ECs during metastasis (18, 19). A high

level of pro-angiogenic signals has been associated with the
formation of ascites, a frequent feature of advanced ovarian
cancer (20, 21).

Vasculogenesis
Vasculogenesis, a de novo vessel formation process, is
distinguished by the in situ differentiation of ECs from
myeloid cells or endothelial progenitor cells (EPCs). This process
takes place at the beginning of vascular development and during
post-natal life (11, 22). Myeloid cells and EPCs are recruited
by pro-angiogenic or pro-inflammatory factors to the tumor
vascular bed, where they differentiate into ECs and give place
to neovasculature (23–25). Vasculogenesis has a modest impact
on tumor vascularization when the angiogenesis pathway is
active, however, it is recognized as an important rescue process
when this pathway is blocked (10, 26). For instance, when
angiogenesis is inhibited after anti-angiogenic treatment or
radiotherapy, myeloid cells, and EPCs are recruited by the
stroma-derived factor 1 (SDF-1) in response to an increased level
of hypoxia-inducible factor 1α (HIF-1α) (10, 26).

Vasculogenesis has an important role in ovarian cancer. It
has been related to treatment resistance as a consequence of
the overexpression of matrix metalloproteinase 2 and 9 (MMP-2
andMMP-9) after radiotherapy (27). Furthermore, CD34+ EPCs
from peripheral blood incorporate into vasculogenic active sites
(25) as well as CD11b+ and CD11c+ myeloid cells, recruited by
SDF-1 and β-defensins, that contribute to vasculogenesis (28).
β-defensins chemoattract CD11c+ dendritic cell precursors and
then VEGF-A induces endothelial-like specialization mediated
by VEGF receptor 2 (VEGFR-2); interestingly, recruitment of
CD11c+ cells has also been found in ascites (28).

Vessel Co-option
Vessel co-option is a process that differs from angiogenesis;
instead of inducing the proliferation of ECs, tumor cells grow by
adhering to nearby blood vessels (15). Different patterns of vessel
co-option have been described in brain, lung, and liver cancers
(12). In glioblastoma, CDC42+ CD44+ tumor cells migrate
toward a blood vessel in response to a bradykinin gradient created
by ECs; when these cells reach the vessel, they fuse with the
pericytes or adhere to the basement membrane (12). Vessel co-
option has been observed in a mouse model of ovarian cancer
(29), where endostatin inhibited vessel co-option by blocking the
attachment of ovarian cancer cells to peritoneal vessels through
integrins α5β1.

It has been proposed that after the tumor grows by vessel
co-option, co-opted vessels regress, and the tumor enters into
an avascular phase followed by the induction of peritumoral
angiogenesis (30). Vessel co-option facilitates the metastasis
of tumor cells since it increases their motility and migration.
There is evidence that tumors can switch between angiogenic
and non-angiogenic growth during progression and that they
can contain angiogenic and non-angiogenic areas (12). The
association between vessel co-option and resistance to anti-
angiogenic treatment is not clear, since vessel co-option could
be one cause of the resistance to anti-angiogenic treatment or it
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could be a consequence of the aggressive nature of cancer cells in
response to anti-angiogenic treatment (10, 31).

Vasculogenic Mimicry
VM is a process by which tumor cells form capillary-like
structures, mimicking the embryonic vascular network pattern,
without inducing the proliferation of ECs (15). This process
increases blood perfusion, allows tumor cells to obtain oxygen
and nutrients, and promotes cancer progression (13, 32). It has
been proposed that VM is carried out through cancer stem cell
(CSC) trans-differentiation into endothelial-like cells (13, 33).
Moreover, tumor cells involved in VM resemble mesenchymal
cells derived from epithelial to mesenchymal transition (EMT),
which is characterized by a down-regulation of epithelial markers
(cytokeratin, for example), a loss of cell polarity (E-cadherin,
occludin), and the upregulation of mesenchymal markers
(vimentin, N-cadherin, fibronectin) (34, 35). Furthermore, these
VM cells have an endothelial phenotype. VM has been associated
with unfavorable outcome in patients with malignant tumors
(36) and has an important participation in tumor invasion and
metastasis (37).

Cell-lined vasculature compatible with VM has been observed
in ∼30–37% of ovarian cancers (38, 39). The presence of such
cell-lined vasculature was associated with a higher histological
grade and more aggressive tumors. An increased number of VM
channels were found in poorly differentiated ovarian cancer cells
(40). The presence of VM, combined with the expression of
CD133, was positively associated with poor prognosis in patients
with ovarian cancer (41). In a preclinical model of ovarian cancer,
an acceleratedmetastasis was observed together with hypoxia and
VM after anti-angiogenic treatment with bevacizumab (an anti-
VEGF-A monoclonal antibody) (9). All these findings highlight
the importance of identifying the underlying mechanisms and
the signaling molecules involved in VM to evaluate their
prognostic or predictive value, as well as their use as potential
targets for developing more effective therapies (42).

STRUCTURAL AND FUNCTIONAL
DESCRIPTION OF VM

In 1999, Maniotis et al. performed in vitro and in vivo assays
in melanoma and found two VM types: a tubular type, and a
patterned matrix type (13). The tubular type consists of hollow
cords formed by tumor cells that give place to a tubular network.
These tubular structures are also connected to other channels
that contain red blood cells. Further studies showed that in some
cases, a mixture of tumor cells and ECs form those tubular
structures (43). The patterned matrix type consists of a network
of loops formed by matrix layers that surround clusters of
tumor cells. These layers are not uniformly spaced; therefore, the
transport of fluid is not uniform around the cell cluster. However,
this patterned matrix could provide a greater surface area for
diffusion than that provided by a tubular structure (44). The
reorganization of tumor cells into cords or clusters, as well as the
formation of matrix layers involve mechanisms such as cell-cell

adhesion, migration, and extracellular matrix remodeling, where
several signaling molecules have been associated with VM.

VM structures have been identified in tissue samples as
positive for periodic acid-Schiff (PAS) and negative for EC
markers such as CD31 or CD34 (42). PAS+ regions are
rich in components of the extracellular matrix, like laminin.
Recently, it has been shown that PAS+ regions could also
represent non-functional structures unrelated to VM in in
vitro studies (45). Moreover, the different vascular structures
aimed to conduct fluids within the tumor share several
features. Thus, in order to identify the structures that truly
correspond to VM as well as to distinguish them from
similar structures from the other vascularization processes,
it is necessary to assess their architectural and functional
features, in addition to their composition. Recently, Valdivia
et al. (46) described the architectural and functional features
required for differentiating VM from other vascular structures
in tumors (46). Whilst blood and lymph vessels are formed
by a single line of ECs surrounded by a continuous and non-
continuous basement membrane, respectively, VM structures
are formed by cancer cells resting on an inner glycoprotein
rich matrix (46). The authors propose that, in addition to the
traditional architectural features to identify a VM structure
(PAS+ and without EC markers), the presence of red blood
cells within the lumen of the structure is an indicator of VM
functionality (46).

Early studies in breast cancer and melanoma have shown
that tubular and patterned matrix VM structures are capable
of conducting plasma and red blood cells in vitro and in
vivo (44). Maniotis et al. (47) showed that VM structures
formed by aggressive melanoma cells in vitro conducted a
tracer by direct microinjection and passive diffusion (47);
moreover, the matrix pattern also contained red blood cells.
Shirakawa et al. (48) used two breast cancer mice models
to evaluate tumor blood flow with micro-magnetic resonance
angiography imaging (48). They found that aggressive tumor
cells formed VM structures in the center of the tumor, while
non-aggressive cells showed necrotic cores. Angiogenic vessels
were present in tumor periphery in both types of tumors
and blood flow was higher in VM structures than in necrotic
cores. Clarijs et al. (49) used a tracer to study perfusion in
a melanoma mouse model (49). Tracer distribution suggested
that blood vessels could be in contact with VM structures,
allowing the perfusion of the latter, mediated by at least three
mechanisms: the anastomosis of VM structures to blood vessels
(50), an increased leakage from blood vessels (47, 51), and
through anticoagulant control exerted by aggressive tumor
cells (50).

MECHANISMS AND SIGNALING
MOLECULES INVOLVED IN VM IN
OVARIAN CANCER

Several mechanisms are involved in VM, including those related
to the capacity of aggressive tumor cells to resemble features of
the ECs such as cell adhesion (52), migration (53), extracellular

Frontiers in Oncology | www.frontiersin.org 3 September 2019 | Volume 9 | Article 998

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ayala-Domínguez et al. Vasculogenic Mimicry in Ovarian Cancer

FIGURE 1 | Regulation of Vasculogenic Mimicry by cell signaling molecules in ovarian cancer. Different proteins and signaling pathways involved in VM are shown;

those characterized in ovarian cancer VM are highlighted in pink. Cancer cells are depicted in yellow; stromal cell, in green; and cancer stem cell (CSC), in blue. The

VE-cadherin/EphA2/MMP-14/MMP-2/Ln5γ2 axis is the main mechanism involved in the induction of VM. This axis is regulated by miR-27b and miR-200a. Other

proteins such as VEGF-A (regulated by miR-765 and pSTAT3), CD147, uPA, and Twist1 also regulate this axis through different pathways. Hypoxic-related protein

HIF-1α induces the expression of Twist1, VE-Cadherin (VE-Cad), Slug and Vimentin, which are involved in VM induction; moreover, proteins such as pSTAT3, HCG,

and LHR regulate the levels of HIF-1α. CSC markers, including ALDH and CD133 are found in ovarian tissues with VM structures. Different cell signaling pathways are

also involved in VM, such as Wnt5a, and RTKs pathways, which strongly correlate with VM formation. Additional molecules that have been proposed in VM regulation

in ovarian cancer are Sema4, XAF1, and Mig-7, however the precise mechanisms remain unclear.

matrix remodeling (54), perfusion (50), and maturation of blood
vessels (55). Moreover, CSCs promote VM by deregulating
pathways involved in embryonic development, such as the
transforming growth factor β (TGF-β) (56–58), Wnt (59), Notch
(60, 61), Nodal (62–64), and the Hippo pathways (65–67),
among others. EMT also plays an important role in VM, and
encompasses the pathways previously mentioned as well as
transcription factors such as Twist1/2 (68), Snail/Slug (69), and
ZEB1/2 (34). Moreover, signaling molecules related to hypoxia
(70), inflammation (71–75), andmetabolism (76–79) also have an
impact on VM. The novel findings regarding these mechanisms
and their signaling molecules in the regulation of VM in ovarian
cancer are presented in this section and are summarized in
Figure 1. Additional proteins and signaling pathways identified
in other cancer types are shown in Table 1.

Vascular endothelial (VE)-cadherin, one of the main
participants in cell-cell adhesion in endothelial cells, is strongly

associated with VM formation (80). This protein recruits
the EC-related kinase Ephrin-A2 receptor (EphA2) to the
cell membrane (52), increasing the phosphorylation of the
focal adhesion kinase (FAK). Consequently, the activation of
extracellular regulatory kinases 1 and 2 (ERK1/2) signaling
pathway is promoted, allowing the activation of MMP-14 (81).
Then, MMP-14 converts proMMP-2 into active MMP-2. These
MMPs degrade extracellular matrix components and facilitate
invasion, metastasis, and VM (82). Particularly, MMP-2 and
MMP-14 induce the Laminin5γ2 (Ln5γ2) cleavage (53, 83).
Although the precise mechanism has not been clearly described,
it is known that MMP-2 cleavages Ln5γ2 into two pro-metastatic
fragments (Ln5γ2′ and Ln5γ2x) (53). Together, these results
indicate that the VE-cadherin/EphA2/MMP-2/Ln5γ2 axis is the
main regulator of VM.

Interestingly, high expression of VE-cadherin and EphA2 has
been found in clinical samples from ovarian cancer patients
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TABLE 1 | Signaling molecules and mechanisms that regulate VM in several types of cancer.

Signaling

molecules

Function in VM Cancer type References

TF/TFPI-1,−2 Enhances perfusion in VM structures by the anticoagulant

activity of TFPI-1. TFPI-2 contributes to the activation of

MMP-2.

Melanoma (50)

PDGF-B/PDGFR-β PDGF-B recruits pericytes to support the maturation and

stabilization of vascular networks.

Melanoma (55)

TGF-β Induces EMT and upregulates the expression of MMP-14 and

MMP-2

Melanoma

Breast cancer

(56–58)

Nodal Maintains the transdifferentiated phenotype, increases the

expression of VE-cadherin, and promotes EMT

Melanoma

Breast cancer

(62–64)

Notch Promotes CSCs renewal and upregulates the expression of

MMP-2 through the activation of the VEGF/VEGFR-1 pathway

Melanoma (60, 61)

Hippo

(YAP/Sox2/Oct4)

Promotes CSCs renewal Lung cancer (65–67)

HIF1α/Bcl2/Twist1 Induces EMT Hepatocellular (68)

ZEB1/2 Induces EMT and upregulates the expression of VE-cadherin,

VEGFR-1, and MMPs

Hepatocellular (34)

HIF1α/Bcl2 Upregulates the expression of VE-cadherin Melanoma (70)

IL-8/CXCR1, 2 Upregulates the expression of MMP-2 Melanoma

Glioblastoma

Breast cancer

(71–74)

Gal-3 Upregulates the expression of VE-cadherin and IL-8 by

preventing the binding of the transcriptional repressor EGR-1

Melanoma (75)

cAMP Inhibits VM by activating Epac/Rap1 or by inactivating PI3K

pathway through ERK1/2 inhibition

Melanoma (76)

DDAH/NO Induces VM by unknown mechanism Breast cancer (77)

COX2/EP3 Increases the activity of MMP-2 Breast cancer (78, 79)

VM, vasculogenic mimicry; EMT, epithelial to mesenchymal transition; CSC, cancer stem cell.

that exhibit a highly invasive phenotype (84, 85). Additionally,
other studies demonstrated that MMP-2 and MMP-14 are also
overexpressed in ovarian cancer samples, which is associated
with poor clinical outcome (38, 86). It is worth to mention
that those findings strongly correlated with the presence of VM
structures, suggesting that these molecules are important players
in this process.

The Phosphatidylinositol 3-kinase (PI3K) cell signaling
pathway regulates MMPs expression in VM (87). This pathway
is activated through FAK phosphorylation (88), impacting in the
expression ofMMP-14.Moreover, the PI3K pathway is frequently
activated in ovarian cancer, probably impacting VM (89).

Another regulator of VM is the urokinase plasminogen
activator (uPA), which is required to induce the degradation
of the extracellular matrix, impacting in tumor angiogenesis.
The overexpression of uPA positively correlates with VM
formation in ovarian cancer tissues (54). In addition, it was
demonstrated that in SKOV-3 and OVCAR-3 ovarian cancer
cells, the ablation of uPA expression results in a decrement
of complete VM structures formation and such mechanism
involves the participation of AKT/mTOR/MMP-2/Laminin5γ2
signal pathways (54).

VEGF-A also upregulates the expression MMPs. It has been
shown that in melanoma, VEGF-A induces VM formation
by activating the PI3K/protein kinase C α (PKCα) pathway

via VEGFR-1 signaling (90). However, in glioblastoma, VM is
induced by the VEGFR-2 signaling (91). In an in vitro model
of ovarian cancer using SKOV-3 and OVCAR-3 cells, VEGF-A
promoted migration, invasion, and VM by up-regulating MMPs
via EphA2 (92). This suggests that VEGF-A interacts with the
VE-cadherin/EphA2/MMP-2/Ln5γ2 axis in the regulation of VM
in ovarian cancer.

The plasma membrane glycoprotein CD147 plays an
important role during tumor progression, invasion and
metastasis, regulating metalloproteinases expression in
peritumoral stromal cells. Invasion capability was evaluated in
two different cell lines derived from ovarian cancer with different
invasion activity: CABA I and SKOV3 (93). A correlation of
CD147 expression with tumor invasiveness, protease activity
(MMP-2 and MMP-9), and vascular channels formation was
observed. Interestingly, when high invasive cell line was treated
with small interfering RNA against CD147, a suppression of
non-EC-lined channels was observed. In addition, when CD147
was overexpressed in a low invasive cell line, those cells exhibited
an increase of tumor invasion and vascular channel formation.
These data suggest that CD147 plays an important role in VM
induction in ovarian tumors and CD147 could be an attractive
target for therapeutic intervention (93).

Furthermore, Ln5γ2 activates the endothelial growth factor
receptor (EGFR) which promotes the expression of the
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migration-inducing protein 7 (Mig-7), stimulating invasion and
VM (94). A study carried out in ovarian cancer samples revealed
an association of VM with VE-cadherin and Mig-7 expression
(84). It was observed that ovarian tumors without VM frequently
expressed low levels of VE-cadherin compared to those with VM.
Meanwhile, Mig-7 expression was increased in tumor samples
compared to normal tissues, positively correlating with VM and
VE-cadherin expression (84).

Some elements involved in apoptosis have been associated
with the formation of VM structures, such as the pro-apoptotic
XIAP-associated factor 1 (XAF1). Recently, in vivo xenograft
models of ovarian cancer have shown that the overexpression of
XAF1 decreases the number of VM structures (39). Moreover,
in vitro assays with SKOV3 cells revealed that proliferation,
migration and invasion were inhibited, and the levels of VEGF
were reduced when XAF1 was exogenously overexpressed (39).
Therefore, XAF1 is a potent negative regulator of VM in
ovarian cancer.

It has been shown that VEGF-A regulates the expression of the
axon guidance factor semaphorin 4D (Sema4D) (95), which has
been identified as a promotor of VM in non-small cell lung cancer
(96), where the recognition of Sema4D by the plexin B1 receptor
activates the small GTPase RhoA, which is implicated cell
motility. However, when plexin B1 was inhibited, a disruption of
the RhoA/ROCK signaling occurred, suppressing VM formation.
Additionally, the presence of VM in clinical specimens correlated
with increased levels of Sema4D (96). In an ovarian cancer cell
line (A2780), soluble Sema4D promoted angiogenesis and VM
via plexin B1 (95); moreover, in clinical samples from patients, a
high expression of Sema4D had a positive correlation with the
malignant degree of epithelial ovarian cancer. Interestingly, it
was observed that VEGFR-2, plexin-B1, and Sema4D control the
expression of CD31, MMP-2, and VE-cadherin in ovarian cancer
cells, which are the markers and initiators of angiogenesis and
VM (95).

CSCs are present in ovarian cancer and are positive for CD133,
a unique surface marker of CSCs (97). It is known that CD133+
cells promote VM in several cancer types (41, 91, 98–101).
The combined expression of CD133 and VM in samples from
patients was associated with high-grade ovarian carcinoma, late-
stage disease, non-response to chemotherapy and shorter overall
survival (41). The trans-differentiation of CD133+ CSCs into
ECsmay induce VM formation and the expression of ECmarkers
such as VE-cadherin (101) and VEGFR-2 (91). Moreover, it has
been shown that in hypoxic environment the subpopulation of
CD133+ CSCs is augmented when Twist1 was overexpressed
(100). This finding shows that hypoxia may exert an effect on
CSCs that probably leads to VM formation.

CSCs can also exhibit a high activity of aldehyde
dehydrogenase-1 (ALDH1) (97). The expression of ALDH1
has been evaluated in different types of tumor, including breast
cancer, colorectal cancer, and ovarian cancer and strongly
correlates with VM, determining an unfavorable clinical
outcome (102–104). Although the precise mechanism has not
been described, it is known that ALDH1 and VM increase in
response to hypoxia (105).

Hypoxia regulates several pathways in cancer, such as
angiogenesis, and it has been related to VM in melanoma,
glioblastoma, ovarian cancer, and hepatocellular carcinoma (68–
70, 106). Hypoxia induces VM formation by up-regulating VE-
cadherin expression. The main effectors of this pathways, HIF-1α
and HIF-2α, positively regulated VE-cadherin expression; this
effect is through the binding of HIF to hypoxia response elements
(HRE) located in VE-cadherin promoter in glioblastoma cells
(106). Interestingly, it was observed that EMT is promoted in a
hypoxic environment and as a result, VMwas induced in SKOV3
andOVCAR3 cells (69). In vitro assays showed that hypoxia leads
to increased invasion, migration and an enhancement of MMP-
2 activity. Therefore, EMT induction as a response to hypoxia
is a master regulator of VM in ovarian cancer cells. Moreover,
this study demonstrated that in ovarian cancer samples, the levels
of HIF-1α were strongly associated with VM formation and the
expression of Twist1, Slug, and Vimentin.

Another important regulator of VMunder hypoxic conditions
are the signal transducer and activator of transcription 3 (STAT3)
and the phospho-STAT3 (p-STAT3). It has been suggested
that p-STAT3 promote VM, this is due to the binding of
pSTAT3 to HIF-1α, which in turn delays its degradation (107,
108). In gastric adenocarcinoma, VM was associated with an
increased expression of HIF-1α, STAT3, and p-STAT3 (109).
Moreover, STAT3 acts as a transcription factor in VEGF-A
transcription (110). Interestingly, in SKOV3 cells p-STAT3 was
found in the nucleus, suggesting that was transcriptionally
active (111). In addition, when STAT3 was inhibited, the
formation of VM structures was completely avoided, suggesting
that p-STAT3 is an important regulator of VM in ovarian
cancer cells.

The Wnt family members regulate EC differentiation and
vascular development (112) and has been associated with VM. In
glioma and colon cancer, the canonical Wnt/β-catenin pathway
induced VM by increasing the expression of VEGFR-2 and
VE-cadherin (59, 113). Interestingly, in ovarian cancer, the
non-canonical Wnt signaling is implicated in VM formation.
It was found that Wnt5a is overexpressed in tumor samples
and is associated with VM (114). Moreover, in vitro analysis
revealed that Wnt5a overexpression is linked to PKC pathway
activation. Furthermore, it was shown thatWnt5a overexpression
induced EMT, increased invasion and motility of SKOV3
cells (114).

An important proangiogenic factor in ovary is the human
gonadotropin (HCG). The fifth subunit of β-HCG, CGB5, was
shown to promote VM formation in vitro in OVCAR3 cells
(115). Additionally, overexpression of CGB5 induced the growth
of ovarian cancer cells in a xenograft murine model, as well as
VM (116). It was also shown that the activation of luteinizing
hormone receptor (LHR), which is the HCG receptor, is required
for the promotion of VM formation by CGB5. In another study, it
was found that ovarian cancer cells exogenously expressing HCG
induced an overexpression of HIF-1α. Importantly, vascular
markers such as CD31 and VEGF were also upregulated in those
cells (117). Therefore, the HCG/LHR axis induces VM by HIF-1α
regulation in ovarian cancer.
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TABLE 2 | VM related miRNAs in different types of cancer.

miRNA Type of cancer miRNA target References

miR-26b HCC

Glioma

VE-cadherin, Snail

and MMP-2

EphA2

(123, 124)

miR-141 Glioma

Renal carcinoma

EphA2 (122, 125)

miR-27a/b Ovarian cancer

HCC

VE-cadherin

Twist1

(126, 127)

miR-101 HCC TGF-βR, Smad2 and

SDF1

(129)

miR-200a Ovarian cancer EphA2 (85)

miR-204 Breast cancer PI3K, c-SRC (130)

miR-373 Glioma EGFR (131)

miR-186 Gastric cancer

Prostate cancer

Twist1 (132, 133)

miR-29b HCC STAT3 and MMP-2 (134)

miR-193b Breast cancer DDAHI (77)

miR-539-5p Glioma Twist1 (135)

miR-490-3p Breast cancer Twist1 (136)

miR-765 Ovarian cancer VEGF-A (128)

VM, vasculogenic mimicry; HCC, hepatocellular carcinoma.

MICRO-RNAS AS REGULATORS OF VM IN
OVARIAN CANCER

Micro-RNAs (miRNAs) are single stranded and non-coding
RNA molecules of 19-25 nucleotides in length that have a
post-transcriptional regulatory function (118). Different studies
have demonstrated that miRNAs are involved in several
physiological processes such as cell proliferation, invasion,
migration, differentiation, as well as pathological processes
including angiogenesis and VM (119–122). The dysregulation
in the expression of these RNA molecules is often observed
in numerous types of cancer. Diverse studies demonstrate
that miRNAs post-transcriptionally regulate different signaling
molecules involved in VM process (123–136); examples of these
miRNAs are enlisted in Table 2.

A well-described miRNA family is miR-26, which includes
miR-26a and miR-26b. Those are commonly downregulated
in several types of cancer such as glioma, HCC, and gastric
cancer (124, 137, 138). For instance, in gastric cancer miR-26a
and−26b suppress angiogenesis by targeting hormone growth
factor (HGF) mRNA and consequently affecting HGF/VEGF
signaling (138). Moreover, in HCC miR-26b has been identified
as tumor suppressor since its down-regulation promotes VM and
angiogenesis (123).

Similarly, another cluster of miRNAs belonging to the miR-
200 family (miR-141, miR-200a, miR-200b, miR-200c, and miR-
429) has beenwidely studied in several types of cancers (125, 139–
142). It has been shown that miR-141 overexpression inhibits
VM formation through directly targeting EphA2 transcript,
decreasing EphA2 protein levels in glioma and renal carcinomas
(122, 125).

Hitherto, three miRNAs (miR-200a, miR-27b, and miR-765)
have been described as VM regulators in ovarian cancer through
directly targeting 3′UTRs of VM-related transcripts (85, 126,
128) (Table 3). The miR-200a was the first microRNA found
in ovarian cancer capable of regulating VM (85). Tumors with
low miR-200a expression correlate with the presence of VM
structures and poor overall survival. An inverse correlation
between mRNA and protein EphA2 levels and miR-200a
expression was observed in ovarian cancer samples, suggesting
a direct regulation among them. In silico assays revealed a
miR-200a binding site at EphA2 3′UTR; this observation was
confirmed in SKOV3 ovarian cancer cells, where a direct binding
of miR-200a to EphA2 3′UTR was observed through luciferase
assays. Consequently, the levels of EphA2 protein and mRNA
decreased in this model. In agreement, it was shown that the
EphA2 overexpression restores VM in miR-200a expressing
cells, indicating that miR-200a inhibits VM by mainly targeting
EphA2 (85).

Previously, it has been described that VE-cadherin expression
is related to VM formation in different types of cancer. A
bioinformatic study identified miR-27b as putative regulator
of VE-cadherin by the detection of a binding site at VE-
cadherin 3′UTR. Concordantly with this result, luciferase assays
demonstrated that miR-27b binds to VE-cadherin mRNA 3′UTR
in ovarian cancer cells. Furthermore, expression levels of VE-
cadherin mRNA and protein in different ovarian cancer cell lines
negatively correlate with miR-27b expression. Low metastatic
cell lines OVCAR3 and SKOV3 express high amounts of miR-
27b and low VE-cadherin mRNA, compared to metastatic cells
ES2 and Hey1B that exhibit low amounts of miR-27b and high
VE-cadherin mRNA. Overexpression of miR-27b on high VE-
cadherin expressing cells decreases VE-cadherin mRNA and
protein levels. When miR-27b is overexpressed in metastatic
ovarian cancer cell lines (Hey1B and ES2), the migration,
invasion, and VM are decreased in in vivomodels (126).

A recent study aimed to determine the set of miRNAs
regulated in an early stage before complete VM establishment
under hypoxia conditions. It was shown that SKOV3 ovarian
cancer cells grown under hypoxia conditions form a higher
number of 3D capillary-like structures than those cells grown
under normoxia conditions (128). A set of miRNAs involved
in the regulation of tumorigenesis-related pathways, as well
as several genes involved in VM and angiogenesis was found.
Among them, miR-765 was highly downregulated under hypoxia
(128). Moreover, its restoration promotes a dramatic inhibition
of 3D capillary-like structures and down-regulates VEGF-A
expression. Importantly, it was demonstrated that VEGF-A
mRNA is a direct target of miR-765, since it binds to VEGF-A
3’UTR. Additionally, low levels of miR-765 and high levels of
VEGF-A were associated with low overall survival from a cohort
of 1,485 ovarian cancer patients (128).

Although only three miRNAs have been directly associated
with VM in ovarian cancer, several signaling pathways, and
proteins controlling this mechanism are regulated by miRNAs
(143–164); therefore, these non-coding transcripts could have a
potential role on VM regulation. Table 3 shows the common VM
targets in ovarian cancer that are regulated by miRNAs.
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TABLE 3 | VM related miRNAs in ovarian cancer.

miRNA Expression in OC (↑up ↓down) Target related to VM in OC Direct/indirect VM target References

miRNAs RELATED WITH VM IN OVARIAN CANCER

miR-27b ↓down VE-cadherin Direct 3’UTR binding (126)

miR-200a ↓down EphA2 Direct 3’UTR binding (85)

miR-765 ↓down VEGF-A Direct 3’UTR binding (128)

miRNAs PROBABLY RELATED WITH VM IN OVARIAN CANCER

miR-92 ↑up HIF-1α Indirectly by targeting HIF inhibitor VHL (143)

miR-199a-5p ↓down in Hypoxic OC Direct 3’UTR binding (144)

miR-199 ↓down By protein levels (145)

miR-125 ↓down By protein levels (145)

miR-138 ↓down in invasive OC Direct 3’UTR binding (146)

miR-145 ↓down Indirectly by targeting p70S6K1 (147)

miR-718 ↓down VEGF Direct 3’UTR binding (148)

miR-126 ↓down By protein levels (149)

miR-497 ↓down Direct 3’UTR binding (150)

miR-92 ↑up Indirectly by targeting HIF inhibitor VHL and increasing HIF-1α (143)

miR-199 ↓down By mRNA levels (145)

miR-125 ↓down By mRNA levels (145)

miR-145 ↓down Indirectly by targeting p70S6K1 (147)

miR-520d-3p ↓down EphA2 Direct 3’UTR binding (151)

miR-365 ↓down Wnt5a Direct 3’UTR binding (152)

miR-490-3p ↓down MMP-2 By mRNA and protein levels (153)

miR-106b ↓down By mRNA and protein levels (154)

miR-122 ↓down By protein levels (155)

miR-122 ↓down MMP-14 By protein levels (155)

miR-15a-3p ↓down Twist1 Direct 3’UTR binding (156)

miR-532-5p ↓down Direct 3’UTR binding (157)

miR-219-5p ↓down Direct 3’UTR binding (158)

miR-320 ↓down Direct 3’UTR binding (159)

miR-548c ↓down Direct 3’UTR binding (160)

miR-214 ↓down SEMA4D Direct 3’UTR binding (161)

miR-193b ↓down uPA Direct 3’UTR binding (162)

Mir-23b ↓down By mRNA and protein levels (163)

miR-519a ↓down STAT3 Direct 3’UTR binding (164)

VM, vasculogenic mimicry; OC, ovarian cancer.

CLINICAL IMPLICATIONS OF THE
SIGNALING MOLECULES OF VM IN
OVARIAN CANCER

Anti-angiogenic therapies have shown limited effects against
cancer progression, due to alternative vascularization processes,
such as VM, triggered by aggressive tumor cells (10). The
knowledge of the mechanisms and signaling molecules involved
in VMmay lead to the development of novel anti-vascularization
therapies that overcome the limitations found in conventional
therapies. Therefore, it is necessary to explore the possible
therapeutical strategies that could improve the clinical outcome
of ovarian cancer patients.

Therapies targeting VM have not been developed in ovarian
cancer so far. However, some inhibitory molecules of VM
elements have been studied and have shown promising anti-VM

effects (165–174). These inhibitor molecules are summarized
in Table 4.

Studies using pancreatic cancer cells showed that Ginsenoside
Rg3, a tetracyclic triterpenoid saponin, reduces VM in xenograft
mice models. Moreover, the expression of VE-cadherin, EphA2,
MMP-2, andMMP-9 was also down-regulated after the treatment
(174). Ginsenoside Rg3 has been proved in ovarian cancer

derived cells restraining HIF-1α expression by activating the

ubiquitin-proteasome pathway. This effect efficiently blocked
migration and EMT in in vitro and in vivo ovarian cancer models,

promising a novel anti-VM therapeutic agent (175, 176).
It has been shown that PARP inhibition sensitizes for chemo

and radiotherapy in different types of tumors. In melanoma cells
that were treated with PARP inhibitors (PJ-34, Isoquinolinone,
or Olaparib) a reduction of pro-metastatic and VM markers
was observed (177). PARP I inhibitors, such as Olaparib
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TABLE 4 | Inhibitor molecules that target VM-related proteins.

VM-related protein VM Inhibitor Cancer type Drug action Reference

CD133 3-phenylthiazolo [3,2-a] benzimidazoles

(4b Compound)

Breast cancer

Colon cancer

Inhibits cell surface expression of CD133. (165)

Mig-7 D-39 (derived from medicinal plant Liriope

muscari)

Ovarian cancer Suppresses Mig-7 expression. (166)

uPA WX-671 (Mesupron or Upamostat) Pancreatic cancer Inhibits Serine proteases (including uPA). (167)

XAF1 ATRA (All trans retinoic acid) Colon cancer Promotes the overexpression of XAF1. (168)

CD147 AC-73 HCC Inhibits dimerization of CD147. (169)

CD133 and CD44 TX-402 (Tirapazamine) Ovarian cancer Decreases CD133 and CD44 levels. (170)

HIF-1α Noscapine Ovarian cancer Promotes proteasome-mediated

degradation of HIF-1 α.

(171)

EphA2 4a Compound Glioblastoma Inhibits EphA2 directly. (172)

VE-Cadherin Sunitinib Renal cell carcinoma Inhibits Tyrosine-kinases (including

VE-Cadherin).

(173)

The different molecules with a potential VM-therapeutic effect that has been tested in different types of cancer.

VM, vasculogenic mimicry; HCC, hepatocellular carcinoma.

and Rupaparib, have been approved for the treatment of
recurrent BRCA-associated ovarian cancer by the Food and Drug
Administration (FDA); while Niraparib is used as maintenance
therapy following chemotherapy for recurrent ovarian cancer
(178). Nevertheless, to date there is no information about their
effect on VM in ovarian cancer.

Thalidomide is an immunomodulatory agent with strong anti-
angiogenic properties and has been proved in ovarian cancer,
glioblastoma, hepatocellular carcinoma, and multiple myeloma
in diverse clinical trials. Induction therapy with thalidomide
significantly improved the overall response rate, progression free
survival and overall survival (179). Previously, it has been shown
that thalidomide suppresses tumor growth and angiogenesis in
murine models (180). Interestingly, in a xenograft mouse model
of melanoma, it was observed that mice treated with Thalidomide
induced necrosis in melanoma cells. In addition, VM and tumor
growth were significantly reduced compared to non-treated
specimens. This effect could be related to the down-regulation
of NF-kappaB signaling pathway (181). However, further studies
are required to elucidate this statement.

A monoclonal antibody has been developed to target
VM, unfortunately it has not been introduced for ovarian
cancer treatment. This antibody targets the outer-membrane
immunoglobulin-like domains of VE-cadherin, blocking
receptor function. In lung cancer cells, it was observed that this
antibody functions as an anti-VM agent for cancer treatment,
since it inhibited the activation of the VE-cadherin-related
pathway in VM (182). Due to the advantages that monoclonal
antibody therapies imply, its application in ovarian cancer as an
anti-VM agent is promising.

Other molecules implicated in VM in ovarian cancer, such as
miR-200a, miR-27b, and miR-765 represent potential candidates
for anti-tumoral therapies (85, 126, 128). Importantly, the
current strategies are focused in the reduction of cancer
through restoring the expression of down-regulated miRNAs,
also known as miRNA replacement therapy. There are several
ways to harness miRNAs in cancer cells for therapeutic purposes,
including introduction of synthetic miRNA mimics, miRNA

expressing plasmids, and small molecules that epigenetically
alter endogenous expression of miRNAs (183). Such anti-VM
strategies could represent an opportunity to venture into the
study of new molecules for therapeutic purposes in ovarian
cancer. Further studies will be required to prove the effectiveness
of such molecules for treatment purposes.

CONCLUDING REMARKS

Ovarian cancer is a common gynecological cancer and it is
usually diagnosed in advanced stages where therapeutic success
is limited. This type of tumors exhibit an aggressive phenotype
characterized by a high rate of metastasis, invasion, and poor
treatment response. These features are highly associated with
the development of neovasculature formed by both endothelial
and tumor cells. Particularly, MV is a process that may be
influencing ovarian cancer poor prognosis and limited efficacy
of anti-angiogenic strategies. Nevertheless, the mechanisms
underlying VM formation in ovarian cancer remains unclear
and deserves further studies. Recently, molecules that regulate
cellular adhesion, hypoxia and EMT have been identified as key
regulators of VM. Additionally, it has been shown an important
post-transcriptional regulation mediated by microRNAs, that
impact on the expression of VM-related proteins such as VE-
cadherin, EphA2, and VEGF. Furthermore, this information
has allowed the development of strategies with therapeutic
potential directed against VM formation. However, subsequent
studies will be necessary to elucidate the mechanisms that
allow the development of conventional anti-angiogenic therapies
combined with the novel anti-VM targets that improve the
clinical outcomes of ovarian cancer patients.
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