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Background. Macrolides have received considerable attention for their anti-inflammatory and immunomodulatory actions beyond
the antibacterial effect. These two properties may ensure some efficacy in a wide spectrum of respiratory viral infections. We
aimed to summarize the properties of macrolides and their efficacy in a range of respiratory viral infection. Methods. A search of
electronic journal articles through PubMed was performed using combinations of the following keywords including macrolides
and respiratory viral infection. Results. Both in vitro and in vivo studies have provided evidence of their efficacy in respiratory viral
infections including rhinovirus (RV), respiratory syncytial virus (RSV), and influenza virus. Much data showed that macrolides
reduced viral titers of RV ICAM-1, which is the receptor for RV, and RV infection-induced cytokines including IL-1β, IL-6, IL-8,
and TNF-α. Macrolides also reduced the release of proinflammatory cytokines which were induced by RSV infection, viral titers,
RNA of RSV replication, and the susceptibility to RSV infection partly through the reduced expression of activated RhoA which is
an RSV receptor. Similar effects of macrolides on the influenza virus infection and augmentation of the IL-12 by macrolides which
is essential in reducing virus yield were revealed. Conclusion. This paper provides an overview on the properties of macrolides and
their efficacy in various respiratory diseases.

1. Introduction

Macrolides are a group of antibiotics whose activity stems
from the presence of the macrolide ring to which one
or more deoxy sugars, usually cladinose and desosamine,
may be attached. Lactone rings are usually 14, 15 or 16
membered. Macrolides which tend to accumulate within
leukocytes and are transported into the site of infection are
used to treat respiratory and soft-tissue infections caused by
Gram-positive bacteria such as Streptococcus pneumoniae and
Haemophilus influenzae. In addition to the typical antibiotic
effect, two properties including the anti-inflammatory and
the immunomodulatory actions are inherent in this group
of drugs. These anti-inflammatory and immunomodulatory
actions of macrolides encouraged a number of researchers
to explore a potential application of macrolides even for
respiratory viral infection [1–5].

The purpose of this paper is to summarize the properties
of macrolides and their efficacy in a range of respiratory viral
infection.

2. Search Strategy

We performed an electronic article search through
PubMed using combinations of the following keywords:
macrolides (azithromycin, clarithromycin, dirithromycin,
erythromycin, roxithromycin, and telithromycin) and
respiratory viral infection (respiratory syncytial virus,
rhinovirus, adenovirus, metapneumovirus, influenza virus,
and parainfluenza virus). All types of articles such as
randomized controlled trials, clinical observational cohort
studies, review articles, and case reports were included.

3. Anti-Inflammatory and Immune Modulation
Effects of Macrolides

At present, macrolides are known to possess anti-inflam-
matory and immunomodulatory actions extending beyond
their antibacterial activity in pulmonary inflammatory dis-
orders such as diffuse panbronchiolitis (DPB), asthma, and
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cystic fibrosis. Both in vitro and in vivo data show macrolides
to downregulate prolonged inflammatory response, reduce
airway mucus secretion, inhibit the bacterial adhesion
biofilm, reduce the production of reactive oxygen species,
inhibit neutrophil activation and mobilization with an accel-
eration of the apoptotic process, and also block the activation
of nuclear transcription factors [6–11]. After macrolides
accumulating within cells, they may interact with receptors
or second messengers responsible for the regulation of cell
cycle and cellular immunity.

However, the anti-inflammatory effects observed with
macrolides are modest if compared to the anti-inflammatory
effects of corticosteroids and require much higher doses,
questioning their real use as an anti-inflammatory agent.
Further studies are needed.

4. Macrolides and Respiratory Viral Infections

As macrolides have anti-inflammatory and immunomod-
ulatory effect, the scenario thus depicted is sufficiently
suggestive to consider the possible use of these drugs
in respiratory viral infection presenting an inflammatory
basis. The common causes of respiratory viral infection
include rhinovirus (RV), respiratory syncytial virus (RSV),
adenovirus, metapneumovirus, influenza virus, and parain-
fluenza virus. Recent studies have shown that the high
mortality rate of respiratory virus infections is a result
of an overactive inflammatory response. Respiratory viral
infections are characterized by the appearance of cytokine
storms which is extreme production and secretion of
numerous proinflammatory cytokines. Severity of infection
is closely related with virus-induced cytokine dysregulation
which is responsible for the development of fatal clinical
symptoms, such as massive pulmonary edema, acute bron-
chopneumonia, alveolar hemorrhage, reactive hemophago-
cytosis, and acute respiratory distress syndrome. Numer-
ous in vitro, in vivo, and clinical studies have established
that viruses are potent inducers of various cytokines and
chemokines including TNF-α, interferon (IFN)-γ, IFN-
α/β, IL-6, IL-1, MIP (macrophage inflammatory protein)-1,
MIG (monokine induced by IFN-γ), IP (interferon-gamma-
inducible protein)-10, MCP (monocyte chemoattractant
protein)-1, RANTES, and IL-8 [12–17].

It is known that macrolides downregulate the inflamma-
tory cascade, they attenuate excessive cytokine production
in viral infections, and they may reduce virus-related exac-
erbation. Furthermore, macrolides may influence phago-
cyte activity by modifying their miscellaneous functions
including chemotaxis, phagocytosis, oxidative burst, bacte-
rial killing, and cytokine production [18]. It has also been
reported that macrolides could interfere with the influenza
virus replication cycle, resulting in the inhibition of virus
production from infected cells, mainly by inhibiting intra-
cellular hemagglutinin HA0 proteolysis [19, 20]. There are
still controversies in the effects of macrolides in respiratory
viral infections. The following review will introduce recent
research findings regarding the effectiveness of macrolides
antibiotic on different forms of respiratory viral infections
(Table 1).

4.1. Cell Culture Studies. Among in vitro, in vivo, and
clinical studies, in vitro studies, especially cell culture studies,
were most frequently performed to evaluate the effect of
macrolides on respiratory viral infection. Numerous in
vitro studies with various respiratory virus revealed that
macrolides are effective on respiratory viral infections.

RV is the most common cause of viral upper respiratory
tract infections (URIs) and is responsible for about one half
of all cases of the common cold. Although RV does not cause
necrosis of epithelial cells or substantial histological changes
in nasal mucosa, RV infection induces the hypersecretion
of mucus, as well as the increased expression and secretion
of various cytokines, including interleukin (IL)-6, IL-8, IL-
9, IL-1b, IL-11, and TNF-α, and the influx of neutrophils,
which correlate with the severity of cold symptoms [35, 36].
It is well known that approximately 90% of more than 100
different RV serotypes bind to ICAM-1, and RV infection
upregulates ICAM-1 expression on airway epithelial cells,
thus facilitating further viral attachment and entry [36, 37].
As ICAM-1 is the receptor for the major RV and since IL-1b,
IL-6, and IL-8 play significant roles in the pathophysiology
of RV infection, macrolides which are known to have
inhibitory effect on those cytokines may be able to modulate
inflammatory processes during RV infection. Studies have
been done to determine anti-inflammatory properties of
macrolide antibiotics against RV infection.

Among these macrolides, erythromycin is the first drug
which was studied about their efficacy on RV. Erythromycin
is a macrolide antibiotic with potent anti-inflammatory
effects that is used for treating chronic lower respiratory tract
infections. Suzuki et al. examined the effects of erythromycin
on RV (RV2 and RV14) infection in airway epithelium [23].
In their study, erythromycin reduced the supernatant RV14
titers, RV14 RNA, the susceptibility to RV14 infection, and
the production of ICAM-1 and cytokines which was upregu-
lated by RV14. Erythromycin also reduced the supernatant
RV2 titers, RV2 RNA, the susceptibility to RV2 infection,
and cytokine production, although the inhibitory effects of
erythromycin on the expression of the low-density lipopro-
tein receptor, the minor RV receptor, were small. In addition,
erythromycin may also modulate airway inflammation by
reducing the production of proinflammatory cytokines and
ICAM-1 induced by RV infection. Erythromycin reduced
the NF-κB activation by RV14 and decreased the number of
acidic endosomes in the epithelial cells.

Another type of macrolide antibiotics, bafilomycin A1
also inhibits infection of RV, in human airway epithelial cells
by the reduction of ICAM-1 and by affecting the acidification
of endosomes, where RV RNA enters into the cytoplasm of
infected cells [22]. Bafilomycin A1 and erythromycin could
reduce proinflammatory cytokines including IL-6 after RV
infection in airway epithelial cells [22, 38].

Jang et al. investigated the effect of clarithromycin on RV
infection in A549 cells [24]. In their study, clarithromycin
treatment inhibited the RV-induced increase in ICAM-1
mRNA and protein, as well as the RV induced secretion
of IL-1β, IL-6, and IL-8. These effects were greater in cells
treated with 10 μM than in those treated with 100 μM CM,
and the maximum effect was observed 3 days after viral
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infection. In contrast, secretion of IL-8 was not inhibited
significantly when clarithromycin was added at the time of
viral infection. In their study, RV titer, as measured by culture
on MRC-5 cells, was reduced by clarithromycin, with the
degree of reduction being greater when clarithromycin was
added 3 days before infection than it was added at the time
of infection. Through these findings, they suggested that, in
A549 cells, clarithromycin inhibits the induction of ICAM-1
expression, cytokine elaboration, and viral infection.

Secondary bacterial infection by respiratory viral infec-
tion is important pathogenic mechanism in rhinosinusitis.
Wang et al. investigated the inhibitory effects of clar-
ithromycin on secondary bacterial infection after RV infec-
tion [26]. RV-induced URIs may enhance secondary bacterial
infections via upregulation of cell adhesion molecules in
the nasal mucosa, leading to acute bacterial rhinosinusitis.
Staphylococcus aureus binds to human fibronectin (Fn) and
Haemophilus influenza adheres to the carcinoembryonic
antigen-related cell adhesion molecules (CEACAMs) of
epithelial cells. In their study, clarithromycin treatment alone
had no effect on the baseline levels of mRNA and protein
expression of Fn and CEACAM, but significantly reduced the
RV-induced increases in the mRNA and protein levels of Fn
and CEACAM to the levels found in noninfected controls.
They also demonstrated clarithromycin treatment-induced
reduction of bacterial adhesion to RV-infected human nasal
epithelial cells. Thus, they suggested that clarithromycin
may be effective at preventing secondary acute bacterial RS
following RV infection.

Several macrolide antibiotics are reported to inhibit
airway mucus hypersecretion induced by several stimuli.
The main component of mucus is mucin. MUC5AC and
MUC5B are reported to constitute 95–98% of secreted mucin
in airways. Mucus with a high concentration of MUC5AC
or MUC5B has a high viscosity and is likely to cause
airway narrowing. Erythromycin attenuated RV14-induced
MUC5AC production and secretion in cultured human tra-
cheal epithelial cells [25]. MUC5AC mRNA expression was
also attenuated by erythromycin treatment, suggesting that
erythromycin affects pretranscriptional mechanisms. Fur-
thermore, erythromycin attenuated RV14-induced p44/42
MAPK activation.

Gielen et al. investigated the anti-RV (RV 1B and
RV16) potential of macrolides including azithromycin, ery-
thromycin, and telithromycin, through the induction of
antiviral gene mRNA and protein [27]. Azithromycin, but
not erythromycin or telithromycin, significantly increased
RV 1B- and RV 16-induced IFNs and IFN-stimulated
gene mRNA expression and protein production. Fur-
thermore, azithromycin significantly reduced RV repli-
cation and release. RV-induced IL-6 and IL-8 protein
and mRNA expressions were not significantly reduced by
azithromycin before treatment. These results demonstrated
that azithromycin has antirhinoviral activity in bronchial
epithelial cells by increasing the production of IFN-
stimulated genes.

In addition, the duration of macrolide therapy could
affect the immune response. Ex-vivo studies seem to indicate
that short-term administration of macrolides may enhance

the immune response, whereas long-term administration
results in immunosuppression [39].

RSV bronchiolitis is the most common lower respiratory
tract infection in infancy, occurring in 90% of children of
2 yrs or under. Development of an effective therapy against
the short-term morbidity by RSV bronchiolitis could be
important in reducing subsequent morbidity. RSV causes
widespread damage to bronchial epithelium and stimulates
epithelial cells to secrete a wide range of pro-inflammatory
cytokines and chemokines. IL-8 is a key chemokine produced
by RSV-infected airway cells and is involved in the activation
and recruitment of neutrophils. Neutrophils play a major
role in the pathophysiology of RSV bronchiolitis.

Several reports showed that macrolide antibiotics may
also modulate airway inflammation induced by RSV infec-
tion [28–30]. Suppressive effects of macrolides on the plasma
IL-4, IL-8, and eotaxin levels may have a role in suppression
of airway hyperresponsiveness or may inhibit cholinergic
neuroeffector transmission in human airway smooth muscle,
thereby influencing bronchial tone [31, 39–43]. Macrolides
attenuate the release of eotaxin, granulocyte-macrophage
colony-stimulating factor (GMCSF), and RANTES. It may
also protect epithelial cells at inflamed sites by inhibiting the
release of reactive oxygen species from eosinophils [32, 44].

In the RSV infection, RhoA, isoform A of the Ras-
homologus (Rho) family, has various functions including
stimulus-evoked cell adhesion and motility, enhancement
of contractile response, and cytokine production. The
activated form of RhoA moves to the cell membrane and
is implicated in the RSV infection [30, 45, 46]. Asada et al.
reported that bafilomycin A1 and clarithromycin inhibit
infection by RSV and decrease the susceptibility of cultured
human tracheal epithelial cells to RSV infection, partly
through the reduced expression of activated RhoA which
is an RSV F protein receptor [30]. Because activated RhoA
interacts with the RSV F protein, these findings suggest that
clarithromycin may inhibit RSV infection, partly through
the reduction of activated RhoA in the cells. Clarithromycin
also reduced baseline and RSV infection-induced release of
proinflammatory cytokines in supernatant fluids including
IL-1β, IL-6, and IL-8 [30]. It has been shown that viral
titers in supernatant fluids and RNA of RSV in the
human tracheal epithelial cells increased with time, and
clarithromycin reduced viral titers of RSV in supernatant
fluids concentration-dependently, RNA of RSV replication,
and the susceptibility to RSV infection.

Influenza virus is another common cause of respiratory
viral infection. Human influenza virus infection causes rapid
onset constitutional symptoms, including fever and lower
respiratory tract symptoms, and also induces exacerbations
of bronchial asthma and chronic obstructive pulmonary
disease (COPD) in the winter. Human influenza viruses
attach to sialic acid with an α2,6linkage (SAα2,6Gal) on
the airway epithelial cells. The viruses are then deliv-
ered into the cytoplasm, and ribonucleoproteins (RNPs)
of viruses, which include viral RNA, are released from
acidic endosomes into the cytoplasm of the cells. There
are several reports which showed the efficacy of macrolide
antibiotics on influenza virus infection. Miyamoto et al.
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showed the ability of clarithromycin in inhibition of human
influenza A virus production in vitro at a middle-to-late stage
of viral replication cycle [20]. They found that treatment
with clarithromycin at a final concentration of 25 μg/mL
had a strong inhibitory effect on plaque reduction of the
tested human influenza A viruses. In addition to decrease of
progeny virus production, clarithromycin decreased apop-
totic cell numbers of infected host cells. These findings
suggested that clarithromycin acts directly on virus-infected
cells and contributes to the prevention of virus production
by inhibiting viral replication in infected host cells. The
influenza virus replication cycle can be divided into 5 steps:
(1) binding of viral hemagglutinin to sialic acid receptor
on host cell surface (adsorption step), (2) internalization
of virus by receptor-mediated endocytosis and fusion of
viral HA2 with endosomal membranes triggered by influx of
protons through M2 channel (endocytosis and fusion step),
(3) release of viral genes into the cytoplasm (uncoating step),
(4) packaging of viral proteins with viral genes after viral
RNA replication, transcription and translation, and budding
of new viruses (packaging and budding step), and (5) release
of new viruses by sialidase cleaving sialic acid receptors
(release step) [20]. Clarithromycin had no or little inhibitory
effect on hemagglutination, hemolysis activity (membrane
fusion), and sialidase activity. These results suggest that
decrease of progeny virus production is not due to inhibition
of viral hemagglutinin and sialidase activities, which play
an important role at the beginning and the end of viral
replication, respectively. After clarithromycin was incubated
with virus-infected cells at different times, it has been found
that clarithromycin predominantly inhibited viral replication
after viral adsorption to host cells at about the 4–7th hour
[20]. Clarithromycin therefore might act on middle-to-late
stage of viral replication cycle, presumably via blockage of
producing viral protein. These findings strongly encourage
the potential use of clarithromycin as an anti-influenza virus
chemotherapeutic agent.

4.2. Animal Studies. Compare to in vitro studies, in vivo
studies were relatively rare. Further in vivo animal studies are
needed with various respiratory viruses.

There were several reports which evaluated the effects
of macrolide on influenza-virus-induced respiratory
infection. Sato et al. evaluated the effects of erythromycin
on influenza-virus-induced pneumonia in mice infected
with a lethal dose of influenza virus A/Kumamoto/Y5/67
(H2N2) [31]. In their report, erythromycin may have
substantial therapeutic value for various acute inflammatory
disorders such as influenza-virus-induced pneumonia. The
effects were by inhibiting inflammatory cell responses and
suppressing nitric oxide (NO) which plays critical role in
the pathologic events of various inflammatory diseases,
overproduced in the lung. Regarding the NO, erythromycin
treatment resulted in a dose-dependent decrease in the level
of nitrite/nitrate (metabolites of NO) in the serum and
the NO-synthase-(NOS-) inducting potential in the lungs
of the virus-infected mice. As a result, administration of
erythromycin significantly improved the survival rate of mice
infected with influenza virus, and the survival rate of the

virus-infected mice increased in a dose-dependent fashion.
It has also been found in their study that the induction of
IFN-γ in the mouse lung was inhibited and the number
of inflammatory cells after virus infection was significantly
reduced by erythromycin treatment on day 6 after infection.

In addition to being an antibiotic able to prevent com-
plications and aggravation of symptoms, clarithromycin has
been reported to alleviate pneumonia secondary to influenza
virus infection in mice [32]. In their study, clarithromycin
has been shown to suppress the inflammatory cytokines
such as TNF-α, but augment IL-12 production, resulting in
alleviation of influenza infection itself in infected mice [32].
These studies indicated that clarithromycin may play a role in
vivo as an immunomodulator for influenza virus infection.

The protective role of IL-12 against influenza infection
was assessed by analyzing the efficacies of orally administered
clarithromycin as an immunomodulator and intranasal
administration of recombinant IL-12 in influenza-virus-
infected mice. Tsurita et al. reported that, in infected mice,
clarithromycin at 20 mg/mouse/day significantly elevated the
levels of IL-12 and IFN-γ in the bronchoalveolar lavage on
days 2 and 3, respectively, but the levels in the sera were
not affected [32]. In accordance with the locally elevated
level of f IL-12, clarithromycin reduced virus yield and the
number of infiltrated cells, the severity of pneumonia, and
mortality of the treated mice. Thus, the augmentation of
IL-12 production in the respiratory tract was essential in
reducing virus yield in the early phase of influenza and may
be crucial for recovery from influenza infection [32].

There is another report which revealed the effect of
macrolides on reducing the receptor for virus on the airway
epithelial cells and reducing entry of virus into the cyto-
plasm. Human seasonal influenza viruses and classical H1N1
swine influenza viruses bind to SAα2,6Gal, and most avian
and equine viruses bind to SAα2,3Gal [47]. Clarithromycin
reduced the expression of SAα2,6Gal, a receptor for human
influenza, on the mucosal surface of human tracheae, and
reduced the number of acidic endosomes from which viral
RNPs enter into the cytoplasm. These findings suggest that
a clinically used clarithromycin may inhibit type A seasonal
human influenza virus infection via reducing its receptor
on the airway epithelial cells and reducing entry of viral
RNPs, into the cytoplasm. Although the mechanisms for
the reduction of SAα2,6Gal expression by clarithromycin are
uncertain, these effects are similar to those of clarithromycin
on the reduced expression of activated RhoA, one of
receptors for RSV, and on inhibition of RSV infection [30].
These effects are also similar to those of erythromycin on the
reduced expression of ICAM-1, a receptor for RV, and on
inhibition of the RV infection.

Recently, Yamaya et al. demonstrated that clarithromycin
reduces FluA viral titers and cytokines secretion in super-
natant fluids and susceptibility of the cells to infection by the
virus [34].

4.3. Clinical Studies. Although numerous in vivo studies
have established that macrolides have inhibitory effects on
respiratory viral infections, the outcomes of clinical studies
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are controversial and the clinical benefits of macrolides in
respiratory virus infection are still uncertain.

In in vitro study, Jang et al. reported that clarithromycin
inhibits the RV-induced induction of ICAM-1 expression,
cytokine elaboration, and viral infection in A549 cells [24].
However, there is a controversial report performed in a
double-blinded clinical trial showing that clarithromycin
treatment had little or no effect on the severity of
cold symptoms or the intensity of neutrophilic nasal
inflammation [21]. The discrepancy between the results
of in vitro study by Jang et al. and those of the in vivo
clinical trial may be due to differences in dosage or mode of
treatment. For example, in the clinical trial, 1,000 mg·day−1

of clarithromycin, a higher dose than the 250 mg·day−1

usually used for low-dose, long-term treatment [48], was
started 24 h before inoculation of RV. However, it was found
that clarithromycin started 3 days before RV infection was
more effective than clarithromycin started at the time of
infection and that 10 μM clarithromycin, the usual blood
level in clinical use, was more effective than 100 μM in
reducing viral titer and cytokine secretion.

In addition, there are controversies about the effective
duration of macrolide therapy. Ex vivo studies seem to
indicate that short-term administration of macrolides may
enhance the immune response, whereas long-term admin-
istration results in immunosuppression [39]. However,
other study described that short-term administration of a
macrolide is not beneficial for acute uncomplicated colds
caused by RV infection [21].

Severe RSV infections during early infancy are associated
with the excessive production of Th2 cytokines, which has
been suggested as a risk factor for the later development
of asthma and allergic sensitization [49]. Macrolides may
normalize the Th1/Th2 lymphocyte balance [50]. They
regulate immunologic activities by enhancing production
of IFN-γ and by reducing production of IL-4 and IL-5.
Treatment that restores the Th1/Th2 cytokine balance to
the relative type 1 predominance may ameliorate short-
and long-term effects of RSV disease. Tahan et al. studied
the use of 3 weeks of macrolide therapy in the treatment
of RSV bronchiolitis in a double-blind, randomized,
placebo-controlled trial [28]. In their study, treatment with
clarithromycin daily for 3 weeks was associated with a
statistically significant reduction in the length of hospital
stay, the duration of need for supplemental oxygen, the need
for β2-agonist treatment, and readmission to the hospital
within 6 months after discharge. Furthermore, there were
significant decreases in plasma IL-4, IL-8, and eotaxin levels
after 3 weeks of treatment with clarithromycin. As previously
described, RSV is the leading cause of viral lower respiratory
tract disease (LRTD) in infants and young children. Nearly
half of all hospitalized infants with RSV LRTD are treated
with antibiotics. In contrast to favorable effects of macrolides
on RSV infection reported in number of papers, Kneyber et
al., however, reported that the use of macrolide antibiotics
would not lead to a reduced duration of hospitalization
in mild-to-moderate RSV LRTD [29]. In their study,
azithromycin was not associated with a stronger resolution
of clinical symptoms represented by the RSV symptom score.

Various inflammatory mediators are suggested to be
associated with the pathogenesis and severity of influenza
virus infection [42]. Increases in proinflammatory cytokines
and monokines, including interleukin IL-1, IL-6, and IL-8,
are observed in the serum in the patients and in the lung
of mice infected with influenza virus [41, 42]. Although the
clinical benefits of macrolides in influenza virus infection
are still uncertain, reduction of proinflammatory cytokines
by clarithromycin may modulate influenza-virus-induced
inflammation and severity of the disease and may prevent
COPD exacerbations. Clarithromycin inhibits the activation
of NF-κB, migration of neutrophils, and the production of
proinflammatory cytokines by interfering with extracellular
signal-regulated kinases [39]. It also promotes the induction
of sIgA and IgG in the airway fluids of mice infected
with influenza A virus [51]. Sawabuchi et al. investi-
gated the immunomodulatory effects of clarithromycin on
mucosal immune responses in the nasopharyngeal aspi-
ration of pediatric patients with influenza [33]. In their
study, low induction of antiviral sIgA which represents
the first immunological barrier to pathogens was observed
in the oseltamivir, an antiviral neuraminidase inhibitor,
treatment group. However, the addition of clarithromycin to
oseltamivir augmented sIgA production and restored local
mucosal sIgA levels, indicating that clarithromycin boosted
the nasopharyngeal mucosal immune response in children
presenting with influenza A, even in those treated with
oseltamivir who had low production of mucosal anti-viral
sIgA [33].

5. Conclusions

Macrolides possess anti-inflammatory and immunomodula-
tory properties extending beyond their antibacterial activity.
They downregulate the inflammatory cascade, attenuate
excessive cytokine production in viral infections, and they
may reduce virus-related exacerbations. Based on existing
evidence, macrolides may be considered as promising treat-
ment option in treatment of respiratory viral infections.
However, confirmation in larger series, as well as identifi-
cation of their precise mechanism affecting virus-induced
inflammation or viral replicationn, is still awaited.
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