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ABSTRACT
The vagina is an excellent site for topical passive immunization, as access is relatively easy, and it is an 
enclosed space that has been shown to retain bioactive antibodies for several hours. A number of sexually 
transmitted infections could potentially be prevented by delivery of specific monoclonal antibodies to the 
vagina. Furthermore, our group is developing antisperm antibodies for vaginally delivered on-demand 
topical contraception. In this article, we describe physical features of the vagina that could play a role in 
antibody deployment, and antibody modifications that could affect mAb retention and function in the 
female reproductive tract. We also review results of recent Phase 1 clinical trials of vaginal passive 
immunization with antibodies against sexually transmitted pathogens, and describe our current studies 
on the use of anti-sperm mAbs for contraception.
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Passive immunization, the transfer of antibodies to an unpro-
tected individual for the prevention or treatment of diseases, 
has been used in humans for over a century, but has only 
recently become accepted as a highly reliable clinical proce-
dure. This medical breakthrough is attributable to advances in 
monoclonal antibody (mAb) technology which can now pro-
duce reagent grade mAb reagents. Just in the past 10 years, over 
100 mAbs have been approved for clinical use. The majority of 
clinical applications entail systemic administration of antibo-
dies, but topical antibody applications are increasingly being 
explored, especially for mucosal surfaces that may not be 
adequately accessed by systemically administered antibodies 
or antibodies elicited by active systemic immunization. 
Topical passive immunization has the advantage of delivering 
mAbs in high concentrations to desired target surfaces. 
A number of groups are investigating passive immunization 
of the human vagina to prevent sexually transmitted infections 
(STIs), particularly the transmission of pathogenic viruses such 
as HIV-1 and HSV-2. In addition, vaginal application of anti-
sperm antibodies, under development in our laboratory, could 
provide a mechanism for on-demand contraception. In this 
article we describe physical features of the vagina that could 
affect the efficacy of passive immunization, and antibody mod-
ifications that could affect mAb retention and function in the 
female reproductive tract. We also review results of recent 
Phase 1 clinical trials of vaginal passive immunization with 
antibodies against sexually transmitted pathogens, and 
describe our current studies on the use of anti-sperm mAbs 
for contraception.

Physical characteristics of the human vagina that may 
influence passive immunization

The human vagina is a tube-shaped structure extending from 
the introitus (vaginal opening) to the cervical os; it is usually 

a potential space with anterior and posterior walls in apposi-
tion. There are few published reports on the dimensions of the 
human vagina. In one study that used MRI to image the 
contours of vaginas of 28 reproductive aged women, the aver-
age length was determined to be 6.2 cm (range: 4.0–9.5 cm), 
and average width 3.25 cm (range: 1.5–3.6 at midvagina, and 
2.6–8.3 at the fornix).1 This group also demonstrated that the 
radiopaque gel used for imaging ascended from the vagina into 
the endocervical canal. In another study of 62 women that were 
administered vinyl polysiloxane casts, the surface area of the 
vagina was determined to range from 65 to 107 cm2.2 Factors 
affecting vaginal shape and size included age, height, weight, 
race, and parity.1,3 In addition, the vaginal wall contains many 
rugae (folds) which allow it to distend during sexual inter-
course and childbirth. As a consequence, the surface area and 
volume of the human vagina can be highly variable. 
Furthermore, the volume of secretions in the vagina varies 
between individuals and is affected by age, menstrual cycle 
stage, intercourse, and other factors. The volume of vaginal 
secretions ranged from 300 µl to 700 µl in reproductive-aged 
women from Africa and the US.4,5 Sexual excitation can 
increase blood flow to the vagina, resulting in serum exudation, 
and stimulate the release of secretions from the Skene’s and 
Bartholin’s glands, located near the introitus;6 semen can add 
up to 10 ml of volume to vaginal secretions after intercourse.7 

All of these factors could affect the distribution and final con-
centration of passively administered antibodies in the vagina.

The vaginal wall is comprised of a stratified squamous 
epithelium, approximately 30 cell layers thick, that transitions 
to a simple columnar epithelium (single-cell layer) at the 
endocervix. Basal epithelial cells in the vaginal mucosa express 
the immunoglobulin (Ig) transport molecule FcRn which 
transports IgG from the basal compartment into the lumen, 
but probably not in the other direction8 (Figure 1a). The 
epithelial cells in the topmost layer of the vaginal mucosa, the 
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stratum corneum, absorb and retain Igs until they are exfo-
liated, at which time the Igs are released9 (Figure 1b).

Mucin glycoproteins constitute a large proportion of the 
apical glycocalyx that covers the vaginal surface. The vaginal 
mucosa expresses membrane-bound mucins (e.g., MUC 1, 
MUC 4), but does not contain glands that secrete high MW 
gel-forming mucins. On the other hand, the endocervix con-
tains numerous glands that secrete high MW mucins (e.g., 
MUC2, MUC5AC, MUC5B, and MUC6) that flow into the 
vaginal cavity.10 At least one of these, MUC5B, is under hor-
monal control and is secreted in abundance at midcycle.11 

Vaginal and endocervical mucins may play an important role 
in vaginal passive immunization. Various studies have shown 
that mucins can interact with Igs to impede the penetration of 
antibody-coated pathogens and sperm.12–14

The vaginal epithelium contains innate immune cells that 
express Fc receptors (FcR); these receptors bind to the Fc 
region of immunoglobulins and confer a variety of antibody- 

dependent protective functions on the immune cells.15 In par-
ticular, macrophages and neutrophils in the FRT express FcRγ 
and FcRα, respectively, conferring the ability to phagocytose 
pathogens coated with IgG and IgA.16 FcR functions of innate 
immune cells in the FRT have been implicated in the protective 
effects of antibodies following the administration of HIV 
vaccines,17 and in animal studies of passive immunization to 
prevent HIV-1 transmission (described below).

The vagina is profoundly affected by its rich and varied 
microbiome. A majority of women in the US have 
a predominance of “healthy” lactobacillus species which create 
an acidic environment and support a healthy vaginal mucus. 
Antibodies function well and are relatively stable under these 
conditions.18 However, many women worldwide have a more 
complex vaginal microflora, often referred to as dysbiosis or 
bacterial vaginosis (BV).19,20 This condition is associated with 
an elevation in vaginal pH, and degradation of vaginal mucus 
which adversely affects antibody trapping defense 

Figure 1. (a) FcRn (IgG transport molecule) expression by basal epithelial cells in the human vaginal epithelium, as visualized by immunohistology. FcRn-positive cells 
appear purple. (b) IgG uptake by apical epithelial cells in the stratum corneum of the human vaginal epithelium. Cy3-labeled (red) IgG, which had been added to the 
apical surface of vaginal tissue, was visualized by fluorescence microscopy in the apical cells.
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mechanisms.21 Other sexually transmitted pathogens such as 
trichomonas vaginalis also produce glycosidases and other 
enzymes that degrade vaginal mucins.22 The enzymes asso-
ciated with abnormal vaginal flora (e.g. glycosidases, sialydases, 
sulphatases and proteases) could also directly affect the activity 
and stability of antibodies in the vagina.

Engineering antibodies to improve efficacy in the 
vagina

The overwhelming majority of FDA-approved mAbs for clin-
ical use are dimeric IgG1 antibodies. This is the most common 
antibody type found in blood and vaginal secretions, and has 
a number of immunological functions including viral neutra-
lization, mucus trapping, complement fixation, and other FcR- 
mediated effects. However, there is increasing interest in using 
molecularly engineered antibodies for passive immunization to 
enhance retention and function. Common modifications entail 
engineering the Fab (antigen binding) region, engineering the 
Fc region (FcR-dependent mechanisms), and creating multi-
valent antibodies and antibody fragments.

Fab alterations are a common way to increase affinity for 
a target to improve binding and pathogen neutralization. An 
example of this is VRC07-523, a clonal relative of the anti-HIV 
mAb VRC01, engineered to have increased affinity; this anti-
body protected non-human primates from SHIV challenge at 
a 5-fold lower concentration compared to VRC01.23 Increasing 
the valence of an antibody is another method to increase 
avidity and breadth. Techniques are currently being developed 
for the manufacture of s-IgA and IgM multivalent mAbs. In 
addition, bispecific antibodies potently and broadly neutralize 
HIV due to their ability to bind multiple epitopes.24 The 
trispecific antibody VRC01/PGDM1400-10E8v4 also has 
broad specificity and neutralization potential.25

Another approach to antibody engineering entails alteration 
of the Fc region. The LALA-PG variant is comprised of a series 
of point mutations (L234A,/L235A/P329G) that inhibit mAb 
binding to FcγRs and complement to limit effector functions 
and possible inflammation.26 An anti-HIV antibody engi-
neered with these mutations, b12-LALA-PG, was shown to be 
less effective than wild type b12 in protecting rhesus macaques 
from low-dose repeated vaginal SHIV challenge.27 On the 
other hand, the GASDALIE variant (G236A/S239D/A330L/ 
I332E) confers enhanced Fc function, and anti-HIV antibodies 
engineered with these mutations were more protective in SHIV 
mucosal challenge studies.28,29 In humanized mice, anti-HIV 
antibodies with the GASDALIE mutations also demonstrated 
enhanced protection against viral challenge.30 These studies 
provide evidence that FcR-mediated immune functions play 
an important protective role in the vagina.

LS point mutations in the Fc region (M428L/N434S) 
increase antibody affinity for the FcRn receptor and increases 
serum half-life of systemically administered mAbs. In a recent 
clinical trial, VRC0-LS had an average half-life of 71 days in 
serum, about four times longer than wild-type VRC01 
(15 days).31 It is unknown whether the LS mutation would 
enhance mAb half-life in the vagina, as FcRn is only expressed 
on the basolateral side of the epithelium and appears to only 
transport IgG into the lumen.32

Alterations to glycosylation in the Fc region can also 
improve certain antibody functions. IgG molecules without 
the core fucose residue have an increased affinity for FcγRIIIa 
and enhanced antibody-dependent cellular cytotoxicity 
(ADCC);33 nonfucosylated HIV antibodies have also demon-
strated these effects.29 Furthermore, a recent study demon-
strated that nonfucosylated antibodies interact better with 
MUC16, a mucus glycoprotein found in the FRT, and therefore 
could enhance mucus trapping protective functions.12

Antibody fragments that still bind to antigens but do not 
have Fc regions may have enhanced pharmacokinetics and 
penetration into tissues due to their smaller size47. Common 
antibody fragments are Fab and F(ab’)2 regions, single-chain 
variable fragments (scFv), and single-domain antibodies. It is 
currently unknown whether the use of these antibody frag-
ments would confer an advantage in the FRT.

Clinical trials demonstrating passive vaginal 
immunization for protection against STIs in women

A number of vaginal passive immunization studies have been 
conducted in nonhuman primates and mice using mAbs 
against HIV-1 and HSV-2. They have for the most part demon-
strated efficacy of the passive immunization approach in pre-
venting HIV/SHIV and HSV-2 infections (reviewed in 
Anderson et al.34). However to date only 3 Phase 1 clinical 
trials have been reported that describe the safety of mAbs 
delivered to the human vagina. They also provide data on 
pharmacokinetics and efficacy of the mAbs. We will review 
these reports in depth as they provide important information 
about the feasibility of vaginal passive immunization in 
women.

MABGEL is a vaginal microbicide developed by the 
European Microbicides Programme, containing three broadly 
neutralizing HIV antibodies: 4E10, 2F5, and 2G12.35 The anti-
bodies were formulated into 20 mg/mL high dose and 10 mg/ 
mL low-dose gels which were applied vaginally for 12 conse-
cutive days. No serious adverse effects were reported by the 
women in the study and effective concentrations of the anti-
bodies were detected in cervicovaginal secretions up to 8 hours 
after application. Antibody activity was not assessed. There 
also appeared to be no systemic uptake of the antibodies. 
A trial by another European consortium conducted a first-in- 
human clinical trial of vaginal application of an anti-HIV anti-
body, 2G12, manufactured in Nicotiana tobacum.36 In this 
trial, 11 participants were randomized into mAb vs. placebo 
groups and received either a single dose of 28 mg of 2G12 mAb 
in 1 ml of saline, or saline alone. None of the women reported 
serious adverse events, and no systemic absorption was 
observed. Pharmacokinetic data were not reported for this 
study.

Our group recently reported the results of a Phase 1 clinical 
trial that tested the safety, acceptability, pharmacokinetics, and 
ex vivo efficacy of MB66, a vaginal film containing 10 mg each 
of VRCO1 (anti-HIV mAb) and HSV8 (anti-HSV-1 and −2 
mAb). The mAbs were produced by transfection into 
Nicotiana benthamina (a species of tobacco plant). Women 
received one dose of the film on one day only (n = 9), or 
daily for 7 days (n = 14 placebo film, n = 15 active film). The 
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product was generally safe and well-tolerated with no serious 
adverse events recorded. Acceptability and willingness to use 
the product were high in post-use interviews. Antibody levels 
peaked 1 hour post dosing with active film (median concentra-
tion 1,008 µg/ml in the midvagina), and remained significantly 
elevated at 24 hours after film use (median concentration 88ug/ 
ml in the midvagina). Importantly, vaginal samples collected 
24 hrs after MB66 insertion neutralized both HIV an HSV2 ex 
vivo providing evidence that antibodies remain stable and 
active in the vaginal environment for at least 24 hours. This 
study provides further data to confirm the safety and accept-
ability of vaginal passive immunization in women, and is the 
first study to demonstrate detailed pharmacokinetics and anti-
body activity of a mAb-based multipurpose prevention tech-
nology (MPT) product.37

Topical administration of antisperm mAbs for 
contraception

Our research team has produced an antisperm mAb in 
Nicotiana that shows excellent potential for topical contracep-
tion. The Human Contraception Antibody (HCA) was derived 
from an IgM antisperm mAb made by fusing lymphocytes 
from an infertile woman with mouse hybidoma cells.38 We 
combined the variable sequence of this antibody with invariant 
IgG1 sequences to produce an IgG1 mAb for potential clinical 
use. Preclinical testing indicates that this mAb has potent 
sperm agglutination activity, and immobilizes sperm in the 
presence of complement.39 Studies are underway to determine 
whether HCA traps sperm in cervical mucus and affects other 
sperm functions such as the acrosome reaction and oocyte 
fertilization. IND enabling studies including tissue cross reac-
tivity, rabbit vaginal irritation and rat toxicology tests were 
successfully completed, and an IND for HCA film (ZB-06) 
was recently approved. A Phase I Clinical Trial testing ZB-06 
for safety and efficacy in postcoital tests is underway.

General comments

Pharmacokinetic data from the MB66 clinical trial described 
above and presented in detail in Table 1 provide important 
information on mAb concentrations in vaginal secretions 
achieved through passive topical immunization. Antibody con-
centrations at the one-hour time point following administra-
tion of 10 mg of VRC01 IgG1 were comparable to levels of 
natural IgG found in vaginal secretions of normally cycling 

women, which range from 70 to 200 ug/ml,40 and levels of 
specific IgG antibodies found in female genital secretions fol-
lowing systemic immunization with tetanus toxoid (up to 59 
ug/ml)41 or HIV vaccines (range: 10 to 1,000ug/ml; median 
100ug/ml).42 A number of studies have compared HPV anti-
body levels in serum to those in cervicovaginal secretions 
following parenteral immunization with HPV vaccines.43 

Overall, levels of HPV-specific IgG and IgA antibodies in 
cervicovaginal secretions were much lower than those in 
serum (1–2%), but were correlated indicating that genital anti-
bodies are transudated from the serum. Antibodies were 
detectable in genital secretions for at least 2 years after HPV 
immunization.44 Clearly, in certain cases such as the HPV 
vaccine, a durable and effective antibody response can be 
elicited in the genital tract with parenteral vaccination that is 
superior to topical passive immunization. However, apart from 
HPV and hepatitis B vaccines, efforts to produce vaccines 
against other leading STI pathogens such as Chlamydia tracho-
matis, Neisseria gonnorhea, HIV-1, and Herpes simplex virus, 
have been unsuccessful. Until such vaccines are available, pas-
sive immunization with mAbs at the time of intercourse is 
a promising option to prevent STI transmission.

The data from the MB66 trial indicate that on average 
approximately one-tenth of the applied antibody remained in 
vaginal secretions after 1 hr, and 1/100 of the antibody 
remained after 24 hours. This information, while preliminary, 
begins to provide guidance for determining doses of antibodies 
required for passive vaginal immunization in future clinical 
trials. For example, since median antibody concentrations in 
midvaginal secretions were approximately 1/10 of the starting 
dose one hour after film insertion, one could multiply the 
target antibody concentration 10-fold to approximate the start-
ing dose needed to achieve an effective concentration after 
one hour. However, there are two important caveats to apply-
ing this approach. First, antibody concentrations differed 
according to sample site, with highest concentrations detected 
in midvaginal secretions, and lowest concentrations detected at 
the cervical os and distal vagina (vaginal opening). Therefore, 
the proposed site of action of the mAbs must be taken into 
account when calculating the effective dose. Second, there was 
considerable interindividual variation in the amount of anti-
body present in vaginal secretions after film use. For example, 
midvaginal secretions contained the highest antibody concen-
trations of all the sites tested after 1 hour (median: 1,000ug/ml), 
but VRC01 antibody concentrations ranged from 15 to 3,174 
ug/ml at this site amongst the 15 women in the active film 

Table 1. MAb pharmacokinetic data from the MB66 trial.

Cervical Os Ectocervix Mid vagina Distal vagina

Time point Median* Min Max Median Min Max Median Min Max Median Min Max

Baseline <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6
1 hr Post Film 846.9 73.4 4911.3 748.8 131.4 6768.3 1008.0 15.3 3174.2 31.3 1.6 1480.0
4 hrs Post Film 630.8 1.6 3788.9 541.4 112.1 3185.7 387.4 71.4 2622.0 168.1 1.6 8548.5
24 hr Post Film 18.6 1.6 128.2 27.1 1.6 162.3 88.0 5.0 746.9 52.8 1.6 509.2

*µg/mL; corrected for dilution factor (1:20) 
Fifteen women received a vaginal film containing 10 mg of VRC01 and 10 mg of HSV8 monoclonal antibodies; four vaginal sites [cervical os, ectocervix, midvagina and 

distal vagina (vaginal opening)] were sampled by tear-flo wicks 1 hr, 4 hrs and 24 hrs post film insertion. VRC01 antibody concentrations in vaginal fluid over time are 
shown in this table. All 4 vaginal sites had significantly elevated antibody concentrations at 1 hr, 4 hrs and 24 hrs following insertion of film compared to baseline 
(p < 0.0001 for all except 24hr cervical os which was p < 0.01).
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group at this time point. Variables such as film placement 
location, vaginal wetness and other factors could affect mAb 
concentrations in vaginal fluid after film insertion and should 
be further explored.

Future directions

● Multivalent variants of HCA are being developed that 
could reduce the amount of mAb needed for sperm 
immobilization.45 More potent antibodies may make it 
feasible to deliver mAbs to the vagina via vaginal rings or 
other devices for long-term protection.

● It may be possible to deliver mAbs to the penis to deliver 
contraception and/or protection against STIs in men. The 
mAbs could potentially be applied to the penis as 
a lubricant or fast drying film. This is technically feasible 
because the lubricant/film can contain up to 20 mg/ml of 
mAb, and mAbs effectively inactivate viruses and sperm 
at concentrations below 10 ug/ml. The penile product 
could be billed as a male contraceptive or microbicide, 
and would protect both partners.

● We hope to eventually combine antisperm mAb(s) with 
HIV and HSV-2 mAbs in a single product to deliver 
mAb-based multipurpose technology for protection of 
women, and potentially men, against both STIs and 
unplanned pregnancies.
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