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Abstract
The assumption in the twin model that genotypic and environmental variables are uncorrelated is primarily made to ensure 
parameter identification, not because researchers necessarily think that these variables are uncorrelated. Although the biasing 
effects of such correlations are well understood, a method to estimate these parameters in the twin model would be useful. 
Here we explore the possibility of relaxing this assumption by adding polygenic scores to the (univariate) twin model. We 
demonstrate that this extension renders the additive genetic (A)—common environmental (C) covariance (σAC) identified. 
We study the statistical power to reject σAC = 0 in the ACE model and present the results of simulations.
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Introduction

The classical twin design (CTD; Eaves et al. 1978; Jinks and 
Fulker 1970) has been one of the most productive geneti-
cally informative designs in the study of human traits (Pol-
derman et al. 2015). Twin studies have contributed greatly 
to our knowledge concerning genetic and environmental 
contributions to individual differences in psychological and 
medical traits, disease phenotypes and ’omics’ variables (van 
Dongen et al. 2012). Multivariate and longitudinal exten-
sions of the CTD have provided insights into the etiology of 

comorbidity and stability of traits and disorders. It is well 
understood that the correct interpretation of results based 
on the CTD depend on the tenability of the model assump-
tions (Eaves et al. 1977; Jinks and Fulker 1970; Plomin et al. 
2016). The main assumptions of the CTD concern genotype-
environment covariance (assumed to be absent), genotype-
environment interaction (assumed to be absent), the equal 
environment assumption (environment does not cause larger 
resemblance in MZ than in DZ twins), and parental mating 
(assumed to be random, or that parental resemblance is due 
to social homogamy rather than phenotypic assortment). 
Given these assumptions, the results from the CTD can pro-
vide unbiased estimates of additive genetic (A), unshared 
environmental (E), and common environmental (C) and 
dominance (D) variance components. The effect of viola-
tions of these assumptions are well understood (Verhulst and 
Hatemi 2013; Purcell 2002; Keller et al. 2010), so that esti-
mates of variance components obtained in the twin model 
may be interpreted in the light of possible model violations.

Many papers have been devoted to the detection and 
accommodation of model violations, either within the 
CTD (e.g., Purcell 2002; Molenaar et al. 2012; Eaves and 
Erkanli 2003; Carey 1986; Dolan et al. 2014; Beam and 
Turkheimer 2013), or in extended designs (e.g., Plomin et al. 
1985; Narusyte et al. 2008; Neale and Fulker 1984; Fulker 
1988; D’Onofrio et al. 2003; Keller et al. 2009; Heath et al. 
1985; Maes et al. 2006). The aim of the present paper is to 
demonstrate that the incorporation of polygenic risk scores 
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(PRSs) in the classical twin design allows one to estimate the 
covariance between A and C (σAC). In the study of childhood 
intelligence, σAC > 0 is considered plausible, stemming from 
a process of cultural transmission (Keller et al. 2009; Fulker 
1988), which gives rise to passive genotype-environment 
covariance in children (Plomin et al. 1977; Scarr and McCa-
rtney 1983, Knafo and Jaffee 2013; Kendler 2011; Rutter 
and Silberg 2002).

Measured genetic variables have been incorporated in 
genetically informative designs with various aims, apart 
from the gene finding of traditional linkage or combined 
linkage-association analysis (e.g., Fulker et al. 1999; Neale 
2000). For instance, van den Oord and Snieder (2002) pre-
sented an extended twin model with measured genetic vari-
ables to test association in the presence of population strati-
fication and to test causal relationships. Neale et al. (2000) 
partitioned variation in serum APOE levels into that associ-
ated with the APOE locus and residual genetic variance. 
In a study of attention problems, van Beijsterveldt et al. 
(2011) incorporated measured candidate gene information 
on SNPs in the serotonergic, dopaminergic system and the 
BDNF gene. The effect of SNPs was tested on a latent factor 
that summarized multiple assessments of attention problems 
across childhood. Minică et al. (2018) presented an integra-
tion of the CTD and Mendelian randomization method, in 
which PRSs feature as genetic instruments.

The use of measured genetic information specifically 
to study genotype-environment covariance is relatively 
new. Bates et al. (2018) and Kong et al. (2018) proposed 
the use of polygenic scores based on transmitted and non-
transmitted alleles from parents to offspring to detect the 
effects of non-transmitted alleles on phenotype outcomes in 
their children. Warrington et al. (2018) used structural equa-
tion modeling to determine the fetal and maternal effects 
of measured genetic variants on birthweight, thus revealing 
genotype-environment covariance. Cheesman et al. (2020) 
applied PRSs in an adoption design to detect (passive) gene-
environment correlation in educational attainment. Selzam 
et al. (2019) used PRSs measured in DZ twin pairs to dem-
onstrate the presence of gene-environment correlation for 
cognitive abilities, and the mediating role of social economic 
status therein. Wertz et al. (2018) used PRSs in a parent and 
offspring design to demonstrate the gene-environment cor-
relation originating in parental behavior.

The present aim is to incorporate PRSs in the twin design 
with the aim of estimating A–C covariance. This approach 
allows us to determine the presence of A–C covariance, 
but sheds no light on the process that gave rise to the A–C 
covariance. For instance, the A–C covariance may be due 
to active (e.g., niche picking), passive (e.g., cultural trans-
mission) or evocative processes (Plomin et al. 1977). The 
outline of this paper is as follows. First, we present the 
classical twin model, and the model extended with PRSs. 

Second, given the model for PRSs in MZ and DZ twins, 
we address the issues of identification and statistical power. 
Third, we present the results of a small simulation to deter-
mine the effects of using estimated weights in calculating 
PRSs (i.e., the standard procedure) in comparison to exact 
known weights.

The Twin Model with Polygenic Risk Scores: 
A–C Covariance

Let Ph denote the phenotype of interest, and let GVk denote 
the k-th genetic variant (GV) contributing to the variance of 
Ph, where k = 1…K, and K is the number of GVs. We limit 
our presentation to diallelic GVs (e.g., SNPs) with additive 
effects (additively coded, e.g., 0, 1, or 2). The phenotype Ph 
is modeled as follows:

where b0 is the intercept, bk is the k-th regression coefficient, 
subscript i denotes person, and E and C represent unshared 
and shared environmental factor scores of individual i. In 
the classical twin model, under the assumptions mentioned 
in the introduction, the variance of Ph is decomposed, in the 
ACE model, into the components σ2

A, σ2
C, and σ2

E:

The additive genetic variance equals the sum of the 
contributions of the individual GVs and their covariances 
(σGVk,GVl) attributable to linkage disequilibrium:

Given σAC ≠ 0, we have (assuming no AE covariance)

where σAC is the covariance of A and C. In this model, the 
parameter σAC is not identified. If we assume σAC = 0, while 
in truth σAC > 0, the variance σ2

C is biased in the twin model, 
as σAC acts as C, thus inflating the estimate of σ2

C in the 
standard ACE model (see Purcell 2002; Verhulst and Hatemi 
2013). If in truth, σAC < 0, the MZ and DZ twin correlations 
suggest the presence of dominance variance (D).

Given estimates of the regression coefficients (bk) 
obtained in independent genome-wide association studies 
(GWASs), the PRS can be calculated 

∑L

l=1
bl GVli (Purcell 

et al. 2009; Evans et al. 2009; Dudbridge 2013), where the 
set of L GVs is a subset of the K GVs. The set of L GVs may 
be chosen on the basis of the p value of the individual GVs 
or other considerations. Let the PRS equal p*Ap, with vari-
ance p2*σ2

Ap. The scaling parameter p accommodates the 
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fact that the phenotype Ph and the PRS are not measured on 
the same scale. Let Aq denote the residual additive genetic 
variable. The model is now:

The variance decomposition of the additive genetic vari-
able A and the phenotype Ph are:

where σAC = σApC + σAqC. The parameters σApC and σAqC are 
the covariances of Ap and C and of Aq and C, respectively. 
The parameter σApAq is the covariance of the additive vari-
ables Ap and Aq. We parameterize the covariance terms σApC 
and σAqC as a function of the single covariance term σAC 
as follows. We derive the coefficient γp by tracing from C 
to A (C ↔ A with coefficient σAC), and then from A to Ap 
(A → Ap) where γp is the regression coefficient in the regres-
sion of Ap on A. We do the same with Aq using γq. The path 
diagram is shown in Fig. 1.

We thus obtain the constraints:

where

PRSi = pApi

PPhi = b0 + Api + Aqi + Ci + Ei,

σ
2
PRS

= p2σ2
Ap

σ
2
A
= σ

2
Ap

+ σ
2
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+ 2σApAq

σ
2
Ph

= σ
2
Ap

+ σ
2
Aq

+ σ
2
C
+ σ

2
E
+ 2σAC,

σApC = γpσAC,

σAqC = γqσAC,

Note that σAC = σApC + σAqC, as γ1 + γ2 = 1. At this point 
two comments are in order. First, it is not possible to esti-
mate both the scaling parameter p and the parameter σApAq. 
We therefore set σApAq to equal zero. Given this identifying 
constraint, γp = σ2

Ap/σ2
A and γq = σ2

Aq/σ2
A. We demonstrate 

below that the constraint σApAq = 0 has no bearing on the 
likelihood ratio test of σAC = 0, or on the maximum likeli-
hood estimates of σAC, σ2

A, and σ2
C. Second, we recognize 

that if σAC ≠ 0, the PRS weights (bl) obtained in meta-anal-
yses of the results of independent GWASs, which are used 
to calculate the PRS, will be upwardly (downwardly) biased 
given σAC > 0 (σAC < 0). This raises the question of whether 
this has any effect on the estimate of σAC. We address this 
question below. The model is depicted in Fig. 2. We have 
parameterized this model in terms of variance components, 
i.e., we fixed the path coefficients terminating in the pheno-
type to one, and estimated the variance components (σ2

Ap, 
σ2

Aq, σ2
C, σ2

E, along with the parameter p). One may also 
consider fixing the variance components to one, and esti-
mating the path coefficients. However, this parameterization 
may complicate statistical tests of the variance components 
(see Verhulst et al. 2019, for details).

Simulation I: Power

In this model, the observed statistics are the 3 × 3 MZ (PRS, 
phenotype twin 1, phenotype twin 2) and the 4 × 4 DZ 
(PRS1, PRS2, phenotype twin 1, phenotype twin 2) covari-
ance matrices (ΣMZ and ΣDZ, respectively), and the 3- and 
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Fig. 1   The covariance between 
C and Ap and Aq are derived 
as σACγp and σACγq, respec-
tively, where γp = σ2

Ap/σ2
A and 

γq = σ2
Aq/σ2

A
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4-dimensional mean vectors. The MZ covariance matrix 
ΣMZ is 3 × 3, as MZ twins, being genetically identical, have 
identical polygenic scores. We do not consider the mean 
structure of the phenotype data beyond noting that we adopt 
the standard (testable) assumptions that the means are equal 
over twins within a pair and over zygosity. Let the vector θ 
contain the six parameters of the covariance structure model:

The vector θ does not include σApC and σAqC explicitly, 
because these parameters depend on the parameters σ2

Ap, 
σ2

Aq, and the total covariance σAC, as shown above. We 
evaluated local identification numerically using the OpenMx 
function mxCheckIdentification (written by Michael 
Hunter). The model is locally identified if the Jacobian 
matrix, J(θ), is full column rank (Bekker et al. 1994). The 
Jacobian matrix contains the first-order derivatives of the 
non-redundant elements in the matrices ΣMZ(θ) and ΣDZ(θ) 
with respect to the parameters in θ. Given 6 + 10 elements in 
ΣMZ(θ) and ΣDZ(θ), and 6 parameters J(θ) is a 16 × 6 matrix. 
The mxCheckIdentification function is convenient as it does 
the necessary calculations automatically, and can be applied 
directly to the OpenMx script that one uses to fit the model.

Having established local identification, we proceeded 
to address the question of resolution by considering the 

� =

[

p σ
2
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σ
2
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σ
2
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σ
2
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2
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]

.

statistical power to reject σAC = 0 given various parameter 
settings. We used exact data simulation (van der Sluis, 
et al. 2008), which is equivalent to analyzing the expected 
(true) covariance matrices. We used normal theory maxi-
mum likelihood estimation throughout, and based our 
power calculations on the non-centrality parameter (NCP) 
associated with the (non-central) chi-square distribution 
(Martin et al. 1978). Given exact data simulation, the NCP 
equals the loglikelihood ratio (LLR) test of σAC = 0. We 
used the OpenMx library (Boker et al. 2011; Neale et al. 
2016) in the R program (R Core Team 2018), and we 
used R for data simulation, and power calculations. In the 
power analyses, we set the MZ and DZ sample sizes equal 
(Nmz = 1000, Ndz = 1000), and we report the power given 
Nmz = Ndz = 1000, and the required sample sizes to achieve 
a power of 0.80, given α = 0.05.

Results I

The numerical check of model identification demonstrated 
that the model is locally identified, bearing in mind that we 
have set σApAq = 0. That is, given the 3 × 3 MZ and the 4 × 4 
DZ phenotypic covariance matrices, ΣMZ(θ) and ΣDZ(θ), we 
can obtain unique estimates of the six parameters p, σ2

Ap, 
σ2

Aq, σ2
C, σ2

E, and σAC. From the perspective of the path 

Fig. 2   ACE twin model with PRSs, including A–C covariances 
σApC and σAqC (dashed double headed arrows). This is the model in 
DZ twins (i.e., rz = 0.5). The covariance between Ap and Aq is fixed 

to zero, but, as demonstrated in the text, this has no bearing on the 
derived estimate of the total A, C covarianc (σA,C)
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model (Fig. 2), the key to the identification is the covari-
ance between the phenotype and the PRS, which does not 
depend on zygosity. This covariance equals p*σAp

2 + p*σApC 
or p*γ1*(σA

2 + σAC), where p, γ1 and σA
2 are identified based 

on the phenotypic and PRS MZ and DZ twin covariances. 
Table 1 contains the results of the power study. This table 
includes the 16 parameter settings and the power to reject 
σAC = 0.

Table 1 contains the proportions of genetic and pheno-
typic variance explained by the PRS (prPRS and prPh in 
Table 1). These range from 0.2 to 0.4 (prPRS) and 0.050 to 
0.177 (prPh). The correlation between A and C (rAC) was 
chosen to equal 0.2 or 0.3. In addition to this correlation, we 
express the σAC effect size as the proportion (2σAC)/σ2

Ph (i.e., 
pr2σAC in Table 1), where σ2

Ph = σ2
A + σ2

C + σ2
E + 2σAC. 

This proportion ranges from 0.088 to 0.189. The proportion 
of A variance is ~ 0.26 or ~ 0.40; the proportion of C variance 
is ~ 0.18 or ~ 0.25, and the proportion of E variance varies 
between 0.09 and 0.44). The settings, which are limited, 
were chosen merely to identify some circumstance in which 
the power to reject σAC = 0 is acceptable, given the present 
sample sizes.

The greatest power is obtained in settings 8, 14, and 
16: 0.906 (8), 0.793 (14), and 0.950 (16). Here, the PRS 
accounts for 10.1% (8), 16.8% (14), and 16.2% (16) of the 
phenotypic variance, and 2σAC accounts for 15.3% (8), 
15.9% (14), and 18.9% (16) of the phenotypic variance. 
We see the lowest power given settings 1 (0.216) and 9 
(0.238). Unsurprisingly, these are associated with relative 
low values of pr2σAC (8.8% and 11.2%) and prPh (5.4% 
and 8.8%). The relative contributions of pr2σAC and prPh 
to the power are apparent in the correlations of these with 
the power: 0.71 and 0.53, respectively. Regressing the 
power on these parameters, we found that they explain 
65% of the variance in power (β pr2σAC: 0.625 and β prPh 
0.400). Both are important, but the contribution of pr2σAc 
to the power is greater. The comparison of the σ2

A = 0.3 
and the σ2

A = 0.5 conditions show that the magnitude of 
σ2

A does not greatly influence the power. In terms the 
ratio of the N (power = 0.80) are about 1.1–1.2 (favoring 
the σ2

A = 0.5 conditions). Finally, to determine the effect 
of the sign of σAC, we repeated the power analysis with 
rAC set to equal − 0.2 or − 0.3, and all other parameters 
unchanged. Figure 3 displays the plot of the power given 
positive and negative rAC. We note that the difference in 
power is small suggesting that the sign of rAC is unimpor-
tant in calculating power.

Table 1   Statistical power 
to reject the null hypothesis 
that A–C covariance is zero 
(alpha = 0.05)

Given σ2
A = σ2

Ap + σ2
Aq, prPRS equals σ2

Ap/σ2
A, i.e., the proportion of additive genetic variance attribut-

able to the PRS, and prPh is the proportion of phenotypic variance attributable to the PRS, σ2
Ap/σ2

Ph; rAC 
and σAC are the correlation and covariance of A and C, σ2

Ph is the phenotypic variance; pr2*σAC is the pro-
portion of phenotypic variance due to 2*σAC

The standardized A, C, E variance components are given in parentheses. For instance, in setting 16, the raw 
variance is 0.5 + 0.3 + 0.2 + 0.116*2 = 1.23, and the standardized variance is 0.41 + 0.24 + 0.16 + 0.188 =  ~ 
1
The power is given for Nmz = Ndz = 1000, given α = 0.05; N(0.80) is the sample size (N = Nmz + Ndz, 
where Nmz = Ndz) associated with a power of 0.80, given α = 0.05

prPRS prPh σ2
A σ2

C σ2
E σAC rAC σ2

Ph pr2σAC Power N (0.80)

1 0.2 0.054 0.3 (0.27) 0.2 (0.18) 0.5 (0.45) 0.048 0.2 1.09 0.088 0.216 11,420
2 0.2 0.052 0.3 (0.26) 0.2 (0.17) 0.5 (0.43) 0.073 0.3 1.14 0.128 0.415 5158
3 0.2 0.053 0.3 (0.27) 0.3 (0.26) 0.4 (0.36) 0.060 0.2 1.12 0.107 0.323 6971
4 0.2 0.050 0.3 (0.25) 0.3 (0.25) 0.4 (0.34) 0.090 0.3 1.18 0.153 0.606 3161
5 0.4 0.109 0.3 (0.27) 0.2 (0.18) 0.5 (0.45) 0.048 0.2 1.09 0.088 0.402 5352
6 0.4 0.104 0.3 (0.26) 0.2 (0.17) 0.5 (0.43) 0.073 0.3 1.14 0.128 0.724 2408
7 0.4 0.107 0.3 (0.27) 0.3 (0.26) 0.4 (0.36) 0.060 0.2 1.12 0.107 0.595 3241
8 0.4 0.101 0.3 (0.25) 0.3 (0.25) 0.4 (0.34) 0.090 0.3 1.18 0.153 0.906 1462
9 0.2 0.088 0.5 (0.44) 0.2 (0.18) 0.3 (0.27) 0.063 0.2 1.12 0.112 0.238 10,107
10 0.2 0.084 0.5 (0.42) 0.2 (0.17) 0.3 (0.25) 0.094 0.3 1.18 0.159 0.455 4594
11 0.2 0.086 0.5 (0.43) 0.3 (0.26) 0.2 (0.17) 0.077 0.2 1.15 0.134 0.362 6084
12 0.2 0.081 0.5 (0.40) 0.3 (0.24) 0.2 (0.16) 0.116 0.3 1.23 0.189 0.661 2784
13 0.4 0.177 0.5 (0.44) 0.2 (0.18) 0.3 (0.26) 0.063 0.2 1.12 0.112 0.465 4481
14 0.4 0.168 0.5 (0.42) 0.2 (0.17) 0.3 (0.25) 0.094 0.3 1.18 0.158 0.794 2028
15 0.4 0.173 0.5 (0.43) 0.3 (0.26) 0.2 (0.17) 0.077 0.2 1.15 0.133 0.682 2650
16 0.4 0.162 0.5 (0.41) 0.3 (0.24) 0.2 (0.16) 0.116 0.3 1.23 0.188 0.950 1206
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Simulation II: Bias and Type I Error Rate

As noted above, the weights (bl) used to calculate the PRS 
are expected be biased upwards if σAC > 0. We investigated 
the effects of this in a simulation study. Specifically, we 
simulated data according to the nuclear twin family (NTF) 
design (Fulker 1988; Keller et al. 2009), which comprises 
MZ and DZ twins and their parents. This model includes 
cultural transmission, i.e., the direct contribution of the 
parental phenotype to the twin’s environment (parameter m 
in the notation of Keller et al. 2009 notation). This contribu-
tion gives rise to a shared environmental variable (F in the 
notation of Keller et al. 2009), and to covariance between 
this variable (F) and the additive genetic factor (A), σAF. In 
addition to the shared variance due to F, the model includes 
a shared environmental variance term, due to shared influ-
ences other than cultural transmission. We denote this C* 
to distinguish it from the C in the standard ACE model. The 
original NTF model accommodates phenotypic assortative 
mating. However, here we assume that mating is random. 
The MZ and DZ expected phenotypic covariance matrices 
are shown in Table 2. It is not possible to resolve F and C* 
in the absence of parental phenotypes. Thus, in the stand-
ard ACE model and in the model with PRSs, we estimate 
a single shared environmental variance, σ2

C which actually 
equals σ2

C* + σ2
F.

First, we considered the model without cultural transmis-
sion, i.e., cultural transmission parameter (m) was zero. This 
implies that σ2

F and σAF are zero, as the parameter m is 
the source of the A–C covariance. However, we included 

σ2
C* > 0. Thus, there is shared (by the twins) environmen-

tal variance, but it is not due to cultural transmission. This 
model allows us to determine the Type I error rate associated 
with the test of σAC = 0. As an aside, in this simulation, the 
inclusion of σ2

C* > 0 also allows us to establish the power to 
detect C variance in a twin model with PRS, in addition to 
checking the Type I error rate in test of σAC = 0. Second, we 
considered a model with cultural transmission, with m > 0, 
so that σAF > 0 and σ2

F > 0. In this model we set σ2
C* to zero, 

so that there are no shared environmental influences other 
than those stemming from the cultural transmission. Third, 
we considered a model with cultural transmission (m > 0), 
so that σAF > 0 and σ2

F > 0, and σ2
C* > 0. As mentioned, we 

cannot resolve σ2
F and σ2

C*, so we fitted a single shared 
environmental factor, representing C and F. In summary, 
given σ2

C = σ2
F + σ2

C*, we have the following settings. Simu-
lation 1: m = 0, σ2

F = 0, σ2
C* > 0, σ2

C = σ2
C*, σAC = σAF = 0. 

Simulation 2: m > 0, σ2
F > 0, σ2

C* = 0, σ2
C = σ2

F, σAC = σAF 
and σAF > 0. Simulation 3: m > 0, σ2

F > 0, σ2
C* > 0, 

σ2
C = σ2

F + σ2
C*, σAC = σAF and σAF > 0.

In each simulation study based on these three models, we 
carried out 500 replications. Each data set comprised geno-
typic and phenotypic data in parents and twins. The parental 
data were discarded, and the twin data were used to fit the 
model. The additive genetic variable comprised 100 uncor-
related diallelic genetic variants, of which 40 were used to 
calculate the PRS. We carried out the simulation twice: once 
with exact, unbiased PRS weights (i.e., the parameters b 
in the expression PRSi = 

∑L

l=1
bl GVli), and once with esti-

mated weights b. We estimated the weights in independent 
data (not the data used to fit the actual model) by regressing 
the phenotype on the genetic variants. Given the absence 
of A–C covariance, the estimated weights are unbiased. In 
each replication the sample sizes were N = 2000 to estimate 
the parameter weights b, and Nmz = 1000 and Ndz = 1000 
(in total 2000 pairs) to fit the actual model. Parameter values 
and effect sizes are given in Table 3. In simulations 1–3, the 
true values of prPh are 0.2, 0.141, and 0.147, and the true 
values of pr2σA,C*+F are 0.0, 0.353, and 0.368, respectively.

In summary, the aims were (1) to establish that the Type 1 
error rate was correct and (2) to investigate the effects, if any, 
of biased weights on the Type I error rate and the parameter 
estimates (bias), (3) to determine whether the presence of 
PRS, given zero A–C covariance, increases the power to 
detect C variance.

Results II

We first discuss the parameter estimates and then the log-
likelihood ratio (LLR) test statistics. Table 3 contains the 
true parameter values and the mean and standard deviation 
of the parameter estimates based on the 500 replications. 

Table 2   The expected covariance matrices in simulations 1–3

Parameter m is the regression coefficient in regression of parental 
phenotype on F in twins (shared environmental factor attributable to 
cultural transmission)
σ2

F is shared environmental variance due to cultural transmission (see 
Keller et al. 2009, for the derivation)
σ2

C* is shared environmental variance, not due to cultural transmis-
sion
σ2

E is unshared environmental variance
σ2

A additive genetic variance
σAF covariance of A and F (see Keller et al. 2009, for the derivation)
Note in fitting the model we estimate σ2

C (i.e., σ2
F + σ2

C*)

MZ 1 MZ 2

MZ 1 σ2
A + σ2

C* + σ2
F + 2σAF + σ2

E σ2
A + σ2

C* + σ2
F + 2σAF

MZ 2 σ2
A + σ2

C* + σ2
F + 2σAF σ2

A + σ2
C* + σ2

F + 2σAF + σ2
E

DZ 1 DZ 2
DZ 1 σ2

A + σ2
C* + σ2

F + 2σAF + σ2
E ½σ2

A + σ2
C* + σ2

F + 2σAF

DZ 2 ½σ2
A + σ2

C* + σ2
F + 2σAF σ2

A + σ2
C* + σ2

F + 2σAF + σ2
E

σF
2 = 2m2(σ2

A + σ2
C* + σ2

F + 2σAF+ σ2
E) = 2m2σ2

Ph

σAF = (mσA)/(1−σF m)
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In simulation 1, given exact PRS weights, the parameter 
estimates are unbiased, as expected. Given estimated PRS 
weights, the estimates of σ2

Ap and σ2
Aq are biased: the mean 

values are 0.184 (underestimated; true 0.2) and 0.316 (over-
estimated; true: 0.3), respectively. The estimate of the covar-
iance term σAC is unbiased: the mean value is 0.001 (true: 
0.0). In simulation two, given exact weights, the parameter 

estimates are again unbiased, and given estimated PRS 
weights, the estimates of σ2

Ap and σ2
Aq are again biased: the 

mean values are 0.189 (underestimated; true 0.2) and 0.315 
(overestimated; true: 0.3), respectively. The estimate of σAC 
is unbiased: mean value 0.124 (true 0.125). Simulation three 
produced the same results as simulation two, in terms of 
parameter bias stemming from using estimated PRS weight. 

Table 3   Means and standard 
deviation of parameter estimates 
in simulation 1–3 based on 
500 replications (Nmz = 1000; 
Ndz = 1000)

Values shown in bold are the true parameter values
Simulation 2a: subject to constraints of positive definiteness of the Ap–C and Aq–C covariance matrices
b est: weights for PRS estimated (yes), or fixed to true values (no)
Simulation 1: r(A,F + C) = 0; σ2

Ph = 0.20 + 0.30 + 0.20 + 0.30 = 1; r(MZ) = 0.70 & r(DZ) = 0.45; prPH = 0.2; 
pr2σAC = 0.0
Simulation 2: r(A,F + C) = 0.125/sqrt(0.5*0.091) = 0.586; σ2

Ph = 1.141; r(MZ) = 0.74 & r(DZ) = 0.52; 
prPH = 0.141; pr2σAC = 0.353
Simulation 3: r(A,F + C) = 0.125/sqrt(0.5*0.308) = 0.318; σ2

Ph = 1.358; r(MZ) = 0.78 & r(DZ) = 0.59; 
prPH = 0.147; pr2σAC = 0.368
*Deviation from true value is significant given α = 0.01
Note in fitting the model we estimated the single variance term σ2

C, which equals σ2
F + σ2

C*. In simula-
tions 1, σ2

F is zero and σAC = 0; in simulation 2 σ2
C* is zero, σAC > 0; in simulation 3, σ2

F > 0, σ2
C* > 0, and 

σAC > 0

b
est

σ2
Ap σ2

Aq σ2
C* σ2

F σ2
C = 

σ2
C* + σ2

F

σ2
E σA,C

Simulation 1
True 0.20 0.30 0.20 0 0.20 0.30 0.00
 Mean No 0.199 0.298 0.197 – – 0.301 0.003
 s.d. 0.026 0.045 0.058 – – 0.013 0.033
 s.e.(mean) 0.0012 0.0020 0.0026 0.0006 0.0015
 Mean Yes 0.184* 0.316* 0.199 – – 0.300 0.001
 s.d. 0.026 0.047 0.063 – – 0.013 0.036
 s.e.(mean) 0.0012 0.0021 0.0028 0.0006 0.0016

Simulation 2
True 0.20 0.30 0 0.091 0.091 0.30 0.125
 Mean No 0.200 0.300 – 0.087 – 0.301 0.126
 s.d. 0.026 0.047 – 0.078 – 0.013 0.037
 s.e.(mean) 0.0012 0.0021 0.0035 0.0006 0.0017
 Mean 2 Yes 0.189* 0.315* – 0.090 – 0.300 0.124
 s.d. 0.025 0.046 – 0.079 – 0.013 0.038
 s.e.(mean) 0.0011 0.0021 0.0035 0.0006 0.0017

Simulation 3
True 0.20 0.30 0.20 0.108 0.308 0.30 0.125
 Mean No 0.200 0.302 – – 0.302 0.300 0.126
 s.d. 0.026 0.045 – – 0.077 0.013 0.039
 s.e.(mean) 0.0012 0.0020 0.0034 0.0006 0.0017
 Mean Yes 0.185* 0.320* – – 0.304 0.299 0.125
 s.d. 0.026 0.050 – – 0.087 0.013 0.041
 s.e.(mean) 0.0012 0.0022 0.0039 0.0006 0.0018

Simulation 2a

 True 0.20 0.30 0 0.091 0.091 0.30 0.125
 Mean Yes 0.189* 0.314* – 0.095 – 0.299 0.122
 s.d. 0.025 0.045 – 0.061 – 0.013 0.032
 s.e.(mean) 0.0011 0.0020 0.0027 0.0006 0.0014



244	 Behavior Genetics (2021) 51:237–249

1 3

The main finding is that using estimated PRS weights results 
in biased estimates of the variance components σ2

Ap and 
σ2

Aq, but has little effect on the estimate of the covariance 
term σAC.

Table 4 contains the results of the LLR tests. We tested 
the hypotheses σA,C = 0, and σ2

C = 0 given σA,F+C = 0 in the 
twin model with the PRSs. In addition, we tested the hypoth-
esis σC

2 = 0 in the standard univariate ACE model. The test 
of σ2

C = 0 is of interest in simulation 1, as the comparison of 
σ2

C = 0 given σA,F+C = 0 (in the full model) and hypothesis 
σ2

C = 0 in the standard univariate ACE model tell us whether 
the presence of PRSs helps to resolve C. The LLR statistic 
associated with the test of σA,F+C = 0 in simulation 1, where 
in truth σA,F+C = 0, should follow central chi2(1) distribution, 
which is characterized by a mean of 1 and a standard devia-
tion of √(2) = 1.414. Given exact PRS weights, the mean 
and standard deviation of the LLR statistic are 0.970 and 
1.423 (see Table 4). These do not differ from the expected 

values of 1 and √2 (LLR test: 0.27, df = 2, p = 0.87). The 
Type I error rate equaled 0.049 (CI95: 0.032–0.072). Given 
estimated weights, the values are 1.041 and 1.515. While 
these do not appear to deviate from the expected values 
(LLR test: 5.18, df = 2, p = 0.075), the variance is larger 
(1.515 vs. 1.414), as is the Type I error rate: 0.063 (CI95: 
0.043–0.088). In terms of the mean LLR test, we note that 
the test of σC

2 = 0 is more powerful in the full model (given 
σA,C = 0) than in the standard univariate ACE twin model. 
With exact PRS weights, the mean LLR test statistics equal 
22.2 (with PRSs) and 16.06 (standard ACE model), and with 
estimated PRS weight, 21.5 and 15.6.

The results of simulation 2 and 3 are comparable. The test 
of σAC = 0 suffers slightly given estimated PRS weights: the 
mean LLR test statistics equal 15.10 and 13.5 (simulation 
2) and 13.48 and 11.96 (simulation 3). The effect of the test 
of σ2

C = 0 given σAC = 0 is slight (in simulation 3: 78.8 vs 
74.6). We note that the test of C in the standard twin model 
appears to be more powerful. However, given σAC > 0, this 
is a combined test of σC

2 = 0 and σAC = 0.
In simulation 2, we set σ2

C* = 0 and σ2
F = 0.091 (6.4% of 

the phenotypic variance). This relatively low value does not 
rule out a considerable contribution of σAC to the phenotypic 
variance (35%). The true twin correlations in the simulation 
2 (rMZ = 0.74, rDZ = 0.52) suggest a considerable contribution 
of C (~ 30%). This implies that (1) substantial C in the classi-
cal twin model may be mainly due to A–C covariance, while 
(2) the C variance, which in simulation 2 comprised only 
σ2

F, may be small. Given that this variance may be small, its 
estimate may, given the present variance component param-
eterization, assume negative values. Indeed, in simulation 2, 
we encountered a negative variance component estimate in 
about 11% (exact PRS weights) and 13% (estimated weights) 
of the replications (we did not remove these cases in calcu-
lating the results in Tables 3 and 4 to avoid the bias caused 
by truncating the distribution of the parameters to the admis-
sible solutions). The problem of negative variance can be 
solved by imposing the constraint that the 2 × 2 covariance 
matrix of Ap and C and the 2 × 2 covariance matrix of Aq 
and C be positive definite. This means that the eigenvalues 
of the covariance matrices are constrained to be larger than 
zero. This PD constraint is simple to implement in OpenMx 
using an mxAlgebra statement, as OpenMx includes a func-
tion to calculate eigenvalues (see the OpenMx script). Only 
constraining σ2

C to be greater than zero is insufficient, as 
this by itself does not ensure that the covariance matrix of 
Ap (or Aq) and C is positive definite. In addition, if σ2

C were 
to hit the lower bound, the parameter σAC would no longer 
be defined. We repeated simulation 2 with these PD con-
straints to gauge the effects on the parameters. The results, 
as obtained with estimated PRS weights, are included in 
Tables 3 and 4. These results are largely consistent with 
those obtained without the PD constraints. We do note that 

Table 4   Means and standard deviation of loglikelihood ratio tests 
simulation 1–3 based on 500 replications (Nmz = 1000; Ndz = 1000)

Means are the mean of the 1-df likelihood ratio test
b est: weights for PRS estimated (yes), or fixed to true values (no)
Simulation 1: r(A,C) = 0; σ2

Ph = 0.20 + 0.30 + 0.20 + 0.30 = 1; 
r(MZ) = 0.70 & r(DZ) = 0.45; prPH = 0.2; pr2σAC = 0.0
Simulation 2: r(A, C) = 0.125/sqrt(0.5*0.091) = 0.586; σ2

Ph = 1.141; 
r(MZ) = 0.74 & r(DZ) = 0.52; prPH = 0.141; pr2σAC = 0.353
Simulation 3: r(A,C) = 0.125/sqrt(0.5*0.308) = 0.318; σ2

Ph = 1.358; 
r(MZ) = 0.78 & r(DZ) = 0.59; prPH = 0.147; pr2σAC = 0.368
a Expected mean value = 1, expected stdev = √2 = 1.414
b Subject to constraints of positive definiteness of the Ap–C and Aq–C 
covariance matrices

b est σA,C = 0 σ2
C = 0

given σA,C = 0
σ2

C = 0 in
ACE model

Simulation 1
 Mean No 0.970a 22.2 16.06
 sd 1.423 8.88 7.344
 Mean Yes 1.041a 21.52 15.62
 sd 1.515 8.94 7.49

Simulation 2
 Mean No 15.11 25.12 37.16
 sd 7.47 10.13 11.23
 Mean Yes 13.51 25.99 36.63
 sd 7.38 9.66 11.25

Simulation 3
 Mean No 13.48 78.87 78.98
 sd 7.16 15.40 15.96
 Mean Yes 11.96 74.59 78.43
 sd 6.65 16.93 17.05

Simulation 2b

 Mean Yes 13.92 25.54 36.66
 sd 7.49 9.92 12.11
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the PD constraints affect the distribution of the estimates of 
σ2

C positively skewed, as shown in Fig. 4. Without the posi-
tive definiteness constraints, this distribution is normal. In 
contrast, the distribution of the estimates of σAC appear to 
be quite normal, which suggests that, at least in the present 

scenario, the LLR test of σAC = 0 will not be affected by the 
PD constraints. 

The Identifying Constraint σApAq = 0

As mentioned above, we have constrained σApAq to equal 0, 
because it is not possible to estimate the scaling parameter 
p (in σ2

PRS = p2σ2
Ap) and the covariance simultaneously. 

This raises the question how the results are affected if in 
fact σApAq > 0, as σApAq = 0 is implausible given linkage 
disequilibrium. In fact, the constraint σApAq = 0 has no 
effect of the estimates of σAC, σ2

A, and σ2
C. To demon-

strate this, we used simulation exact data with σApAq > 0, 
and fitted the model twice. Once with σApAq fixed to its 
true value, and once σApAq fixed to zero. Specifically, 
we chose the parameter values shown in Table 5. Fit-
ting the model with σApAq fixed to equal its true value 
(σApAq = 0.1224; correlation: ρApAq = 0.5), we recovered 
the parameter values, including σAC = 0.077, and the total 
additive genetic variance 0.2 + 0.3 + 2*0.1224 =  ~ 0.745 
(i.e., σ2

Ap + σ2
Aq + 2σApAq). The power to reject σAC = 0 

equals 0.742 (α = 0.05). Fixing σApAq = 0, we obtain 
identical results, except for the values of σ2

Ap and σ2
Aq. 

The total genetic variance is now composed as follows 
0.5199 + 0.2250 = 0.745 (i.e., σ2

Ap + σ2
Aq). We checked 

this result with a wide variety of parameter values. So in 
principle, one can constrain σApAq to equal any sensible 
value. However, while the estimates and tests of σAC, σ2

A, 
Fig. 3   Power of the LLR test to reject σAC = 0 given positive and neg-
ative σAC. The parameter settings are given in Table 1. The only dif-
ference is the sign of σAC. The power to reject σAC = 0 given positive 
σAC is given in Table 1

Fig. 4   Distribution of estimates of σ2
F (left) and σAF (right) given positive definiteness constraints (simulation 2). The true values are σ2

F = 0.091 
and σAF = 0.125
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and σ2
C are unaffected, we note that the values of σ2

Ap and 
σ2

Aq do depend on this sensible value.

Discussion

The present aim was to estimate A–C covariance in the clas-
sical twin model with PRS. To this end, we proposed the 
model depicted in Fig. 1, in which the covariance between 
Ap (PRS) and Aq and C are modeled as a function of the 
single covariance of A (Ap + Aq) and C. We found that the 
power to reject σAC = 0 depends mainly on the proportion 
of phenotypic variance due to the covariance term (σAC) 
and the PRS, where the former is more important than the 
latter. We investigated the influence of using estimated PRS 
weights. The use of estimated weights resulted in down-
wards bias of σAp and an upwards bias of σAq. However, 
the estimate of σAC was not affected. The use of estimated 
weights had a small effect of the Type I error rate in the test 
of σAC = 0.

In the most favorable settings qua power (8, 14, and 16 in 
Table 1), the proportions pr2σAC (phenotypic variance due 
to σAC) equaled 0.153, 0.159, and 0.189, and the propor-
tions prPh (phenotype variance due to the PRS) equaled 
0.101, 0.168 and 0.162. We consider these values (prPh) to 
be generally large by today’s standards, but note that, while 
pr2σAC is given, the proportion prPh is likely to increase 
with the ongoing progress of GWAS meta analyses of many 
phenotypes. For instance, at present PRSs explain ~ 15% of 
the variance of educational attainment and ~ 11% of the vari-
ance of IQ (Allegrini et al. 2019).

The results of the power study and simulations shed some 
light on the viability of the model. But the results of simula-
tion 2 also demonstrated that positive cultural transmission 
can result in large C in the standard ACE model, while most 
of this C variance is due to σAC. The actual C variance (with-
out σAC) can be quite small. It is therefore advisable to fit 
the model with the positive definiteness constraint, outlined 
above. In this connection, we note that the finding that C 
variance in cognitive abilities is large in young children, 
but declines quickly in magnitude as children grow older 

(Haworth et al. 2010; Tucker-Drob and Bates 2016) may 
well be due to a decline in the magnitude of cultural trans-
mission, in combination with an increase in genetic vari-
ance. This may be testing by extending the present model to 
include age as a moderator in the manner of Purcell (2002). 
This is relatively simple to do in OpenMx. In this connec-
tion, we also note that the estimate of σAC obtained using 
the present model may tell us that σAC is present. It does 
not, unlike other models, reveal the source of the σAC. For 
instance, in the NTF design, cultural transmission is the 
source the covariance between A and F, where the distinc-
tion is made between F (shared environmental effects due 
to cultural transmission) and residual C, which we denoted 
C* above.

We considered negative σAC in the power study, and 
found that the power to reject σAC = 0 was about the same 
regardless of the sign of σAC. We note that negative σAC 
(e.g., originating in negative cultural transmission) tends to 
produce twin correlations, which are suggestive of an ADE 
model (2*rDZ < rMZ). This is to be expected as − σAC lowers 
the MZ and DZ correlations to the same extent. Finally, the 
present results demonstrated that the addition of PRSs to 
the ACE model increases the power to detect C variance, 
assuming σAC = 0. This may be of interest, as in the classi-
cal twin model, the power to detect C variance is known to 
be generally poor (Visscher et al. 2008; Martin et al. 1978).

In closing, we note the following limitations. We have 
assumed that dominance variance (D) is absent, and 
acknowledge that the twin univariate design is limited to 
ACE or ADE. As demonstrated by Keller et al. (2010), a 
well fitting ACE model does not rule out the represent of D. 
It is possible that the addition of PRSs may aid in resolv-
ing D (in an ACDE) model, but we consider this beyond 
the present scope. Boomsma et al (2020; see this issue) 
showed that it is possible to estimate all four variance com-
ponents (A, C, D, and E) in special cases of the multivari-
ate twin model. Second as mentioned above, the settings of 
the power study and the simulations are limited in scope. 
In addition, we considered only equal MZ and DZ sample 
sizes (Nmz = Ndz = 1000). The ratio Nmz/Ndz has a general 
bearing on the power in the twin design (Visscher 2004). 

Table 5   Results with σApAq 
fixed to its true value (row A), 
and σApAq fixed to equal zero 
(row B)

σApAq = 0.122 corresponds to a correlation of 0.1224/sqrt(0.20*0.30) = 0.5
σAC = 0.077 corresponds to a correlation of 0.077/sqrt(0.745*0.2) = 0.2
Power: to reject σAC = 0 is given α = 0.05, and Nmz = 1000, Ndz = 1000, based on the LLR statistic
*Fixed parameters
a σ2

A = 0.745 = 0.30 + 0.30 + 2*0.1224
b σ2

A = 0.745 = 0.5199 + 0.2250

σ2
Ap σ2

Aq σApAq σ2
A σ2

C σ2
E σAC LLR Power

A 0.20 0.30 0.1224* 0.745a 0.2 0.3 0.077 6.81 0.742
B 0.5199 0.2250 0* 0.745b 0.2 0.3 0.077 6.81 0.742
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However, power calculations with unequal MZ and DZ sam-
ple sizes are simple to carry out. Third, the simulations that 
we carried out to gauge the effect of using estimated PRS 
weights, involved only a small number of associated GVs 
with relatively large effects. Simulation studies with more 
realistic designs will provide additional information con-
cerning the effects of using estimated PRS weights. Fourth, 
we assumed that phenotypic mating is random. However, we 
note that the PRSs in the DZ twins offer the means to tests 
this, as the correlation between the additive genetic PRSs 
will equal 0.5 given phenotypic random mating. In addition, 
the present model may be extended to include parental data 
to accommodate phenotypic assortative mating as outlined 
in Keller et al. (2009). Fifth, we have not considered the 
effect of violations of other standard twin design assump-
tions on the estimate of σAC (Eaves et al. 1977; Purcell 2002; 
Keller et al 2010). Genotype—unshared environment covari-
ance (σAE) is not identified in the present model. Unmodeled 
(positive) σAE and A × C interaction contribute to A. We do 
not see how either could result in spurious σAC. A × E and 
C × E interaction contribute to E, which has no bearing on 
A, C, or σAC. Sixth, we have not considered the possibility 
that the σAC is due to stratification. We know that spatial 
(geographical) allele frequency gradients may given rise to 
spurious C variance in the classical twin design (Tamimy 
et al. 2020; see this issue). A positive spatial correlation 
between C effects and allele frequencies, may given rise 
to A–C covariance. One way to detect this by including as 
fixed covariates principal components that reflect the allele 
frequency gradient (Price et al. 2006). If this kind of strat-
ification is an issue, then the size of the C variance (see 
Tamimy et al. 2020) and the size of the A–C covariance 
should decline following the introduction of these covari-
ates. Finally, we have assumed that the PRSs weights were 
obtained from GWASs of the phenotype of interest. Whether 
the present approach can be adapted to handle PRSs weights 
based on a genetically correlated phenotype (i.e., correlated 
with the phenotype of interest) remains to be seen.

Supplementary Information  The online version of this article (https​://
doi.org/10.1007/s1051​9-020-10035​-7) contains supplementary mate-
rial, which is available to authorized users.

Acknowledgements  CVD acknowledges NWO top-talent grant 406-
12-124 (awarded to the late Janneke de Kort); DIB acknowledges 
KNAW Academy Professor Award (PAH/6635); MCN, CVD, DIB 
and CCM were supported by National Institute on Drug Abuse grants 
(DA049867 & DA018673; PI: MCN). CCM acknowledges grant 5R37 
MH107649. We thank the editor David Evans, and the reviewers Matt 
Keller, Yongkang Kim, and Brad Verhulst for their helpful comments.

Compliance with ethical standards 

Conflict of interest  Conor V. Dolan, Roel C. A. Huijskens, Camelia 
C. Minică , Michael C. Neale, & Dorret I. Boomsma declare that they 
have no conflicts of interest related to the publication of this article.

Ethical approval  This article does not contain any studies with human 
participants or animal subjects performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Allegrini AG, Selzam S, Rimfeld K, von Stumm S, Pingault JB, Plo-
min R (2019) Genomic prediction of cognitive traits in child-
hood and adolescence. Mol Psychiatry 24(6):819–827. https​://
doi.org/10.1038/s4138​0-019-0394-4

Bates TC, Maher BS, Medland SE et al (2018) The nature of nurture: 
using a virtual-parent design to test parenting effects on children’s 
educational attainment in genotyped families. Twin Res Hum 
Genet 21(2):73–83. https​://doi.org/10.1017/thg.2018.11

Beam CR, Turkheimer E (2013) Phenotype–environment correlations 
in longitudinal twin models. Dev Psychopathol 25:7–16

Bekker PA, Merckens A, Wansbeek TJ (1994) Identification, equiv-
alent models, and computer algebra: statistical modeling and 
decision science. Academic Press, New York

Boker SM, Neale MC, Hermine H, Maes HH, Wilde MJ, Spiegel 
M, Brick TR, Spies J, Estabrook R, Kenny S, Bates TC, Mehta 
P, Fox J (2011) OpenMx: an open source extended structural 
equation modeling framework. Psychometrika. https​://doi.
org/10.1007/s1133​6-010-9200-6

Boomsma DI, van Beijsterveldt CEM, Odintsova VV, Neale MC, 
Dolan CV (2020) Genetically informed regression analy-
sis: application to aggression prediction by inattention and 
hyperactivity in children and adults. Behav Genet. https​://doi.
org/10.1007/s1051​9-020-10025​-9. (Online ahead of print).

Carey G (1986) Sibling imitation and contrast effects. Behav Genet 
16:319–341. https​://doi.org/10.1007/BF010​71314​

Cheesman R, Hunjan A, Coleman JRI et al (2020) Comparison of 
adopted and nonadopted individuals reveals gene-environ-
ment interplay for education in the UK Biobank. Psychol Sci 
31(5):582–591. https​://doi.org/10.1177/09567​97620​90445​0

D’Onofrio BM, Turkheimer EN, Eaves LJ, Corey LA, Berg K, Solaas 
MH et al (2003) The role of the children of twins design in 
elucidating causal relations between parent characteristics and 
child outcomes. J Child Psychol Psychiatry 44(8):1130–1144

Dolan CV, de Kort JM, van Beijsterveldt TC, Bartels M, Boomsma 
DI (2014) GE covariance through phenotype to environment 
transmission: an assessment in longitudinal twin data and appli-
cation to childhood anxiety. Behav Genet 44(3):240–253. https​
://doi.org/10.1007/s1051​9-014-9659-5

Dudbridge F (2013) Power and predictive accuracy of polygenic 
risk scores. PLoS Genet 9(3):e1003348. https​://doi.org/10.1371/

https://doi.org/10.1007/s10519-020-10035-7
https://doi.org/10.1007/s10519-020-10035-7
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41380-019-0394-4
https://doi.org/10.1038/s41380-019-0394-4
https://doi.org/10.1017/thg.2018.11
https://doi.org/10.1007/s11336-010-9200-6
https://doi.org/10.1007/s11336-010-9200-6
https://doi.org/10.1007/s10519-020-10025-9
https://doi.org/10.1007/s10519-020-10025-9
https://doi.org/10.1007/BF01071314
https://doi.org/10.1177/0956797620904450
https://doi.org/10.1007/s10519-014-9659-5
https://doi.org/10.1007/s10519-014-9659-5
https://doi.org/10.1371/journal.pgen.1003348


248	 Behavior Genetics (2021) 51:237–249

1 3

journ​al.pgen.10033​48. Epub 2013 Mar 21. Erratum in: PLoS 
Genet 2013 Apr;9(4)

Eaves LE, Erkanli A (2003) Markov Chain Monte Carlo Approaches 
to Analysis of Genetic and Environmental Components of Human 
Developmental Change and G × E Interaction. Behav Genet 
33:279–299. https​://doi.org/10.1023/A:10234​46524​917

Eaves LJ, Last K, Martin NG, Jinks JL (1977) A progressive 
approach to non-additivity and genotype-environmental covari-
ance in the analysis of human differences. Br J Math Stat Psy-
chol 30(1):1–42

Eaves LJ, Last KA, Young PA, Martin NG (1978) Model-fitting 
approaches to the analysis of human behavior. Heredity 
41:249–320

Evans DM, Visscher PM, Wray NR (2009) Harnessing the informa-
tion contained within genome-wide association studies to improve 
individual prediction of complex disease risk. Hum Mol Genet 
18:3525–3531

Fulker DW (1988) Genetic and cultural transmission in human behav-
ior. In: Weir BS, Eisen EJ, Goodman MM, Namkoong G (eds) 
Proceedings of the second international conference on quantitative 
genetics. Sinauer, Sunderland, MA, pp 318–340

Fulker DW, Cherny SS, Sham PC, Hewitt JKR (1999) Combined link-
age and association sib-pair analysis for quantitative traits. Am J 
Hum Genet 64(1):259–267. https​://doi.org/10.1086/30219​3

Haworth CM, Wright MJ, Luciano M, Martin NG, de Geus EJ, van 
Beijsterveldt CE, Bartels M, Posthuma D, Boomsma DI, Davis 
OS, Kovas Y, Corley RP, Defries JC, Hewitt JK, Olson RK, Rhea 
SA, Wadsworth SJ, Iacono WG, McGue M, Thompson LA, Hart 
SA, Petrill SA, Lubinski D, Plomin R (2010) The heritability of 
general cognitive ability increases linearly from childhood to 
young adulthood. Mol Psychiatry 15(11):1112–1120. https​://doi.
org/10.1038/mp.2009.55

Heath AC, Kendler KS, Eaves LJ, Markell D (1985) The resolution of 
cultural and biological inheritance: informativeness of different 
relationships. Behav Genet 15(5):439–465

Jinks JL, Fulker DW (1970) Comparison of the biometrical genetical, 
MAVA, and classical approaches to the analysis of the human 
behavior. Psychol Bull 73(5):311–349. https​://doi.org/10.1037/
h0029​135

Keller MC, Medland SE, Duncan LE (2010) Are extended twin family 
designs worth the trouble? A comparison of the bias, precision, 
and accuracy of parameters estimated in four twin family mod-
els. Behav Genet 40(3):377–393. https​://doi.org/10.1007/s1051​
9-009-9320-x

Keller MC, Medland SE, Duncan LE, Hatemi PK, Neale MC, Maes 
HHM, Eaves LJ (2009) Modeling extended twin family data 
I: description of the cascade model. Twin Res Hum Genet 
12(1):8–18

Kendler KS (2011) A conceptual overview of gene–environment inter-
action and correlation in a developmental context. In: Kendler 
KS, Jaffee SR, Romer D (eds) The dynamic genome and mental 
health: the role of genes and environments in youth development. 
Oxford University Press, New York, pp 5–28

Knafo A, Jaffee SR (2013) Gene–environment correlation in develop-
mental psychopathology. Dev Psychopathol 25:1–6. https​://doi.
org/10.1017/S0954​57941​20008​55

Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, 
Thorgeirsson TE, Benonisdottir S, Oddsson A, Halldorsson 
BV, Masson G, Gudbjartsson DF (2018) The nature of nurture: 
effects of parental genotypes. Science 359:424–428. https​://doi.
org/10.1126/scien​ce.aan68​77

Maes HH, Neale MC, Kendler KS, Martin NG, Heath AC, Eaves LJ 
(2006) Genetic and cultural transmission of smoking initiation: an 
extended twin kinship model. Behav Genet 36(6):795–808

Martin NG, Eaves LJ, Kersey MJ, Davies P (1978) The power of the 
classical twin study. Heredity 40:97–116. https​://doi.org/10.1038/
hdy.1978.10

Minică CC, Dolan CV, Boomsma DI, de Geus E, Neale MC (2018) 
Extending causality tests with genetic instruments: an integration 
of Mendelian randomization with the classical twin design. Behav 
Genet 48:337–349

Narusyte J, Neiderhiser JM, D’Onofrio BM, Reiss D, Spotts EL, Gani-
ban J, Lichtenstein P (2008) Testing different types of genotype-
environment correlation: an extended children-of-twins model. 
Dev Psychol 44(6):1591–1603. https​://doi.org/10.1037/a0013​911

Neale MC (2000) Flexible QTL mapping with Mx. In: Spector T, 
Snieder H, MacGregor A (eds) Advances in twin and sib pair 
analysis. Greenwich Medical Media, London, pp 219–243

Neale MC, Fulker DW (1984) A bivariate path analysis of fear data on 
twins and their parents. Acta Genet Med Gemellol 33:273–286

Neale MC, de Knijff P, Havekes LM, Boomsma DI (2000) ApoE poly-
morphism accounts for only part of the genetic variation in quan-
titative ApoE levels. Genet Epidemiol 18:331–340

Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpat-
rick RM, Estabrook R, Bates TC, Maes HH, Boker SM (2016) 
OpenMx 2.0: extended structural equation and statistical mod-
eling. Psychometrika 81(2):535–49

Plomin R, DeFries JC, Loehlin JC (1977) Genotype-environment inter-
action and correlation in the analysis of human behavior. Psychol 
Bull 84:309–322. https​://doi.org/10.1037/0033-2909.84.2.309

Plomin R, Loehlin JC, DeFries JC (1985) Genetic and environmen-
tal components of “environmental” influences. Dev Psychol 
21(3):391–402

Plomin R, DeFries JC, Knopik VS, Neiderhise JM (2016) Top 10 rep-
licated findings from behavioral genetics. Perspect Psychol Sci 
11(1):3–23. https​://doi.org/10.1177/17456​91615​61743​9

Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bocho-
ven A, Visscher PM, Posthuma D (2015) Meta-analysis of the 
heritability of human traits based on fifty years of twin studies. 
Nat Genet 47:702–709

Price A, Patterson N, Plenge R et al (2006) Principal components anal-
ysis corrects for stratification in genome-wide association studies. 
Nat Genet 38:904–909. https​://doi.org/10.1038/ng184​7

Purcell S (2002) Variance components models for gene–environment 
interaction in twin analysis. Twin Res 5:554–571

Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sul-
livan PF et al (2009) Common polygenic variation contributes to 
risk of schizophrenia and bipolar disorder. Nature 460(7256):748–
752. https​://doi.org/10.1038/natur​e0818​5

R Core Team (2018) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. 
URL https​://www.R-proje​ct.org/

Rutter M, Silberg J (2002) Gene–environment interplay in relation 
to emotional and behavioral disturbance. Annu Rev Psychol 
53:463–490

Scarr S, McCartney K (1983) How people make their own environ-
ments: a theory of genotype → environment effects. Child Dev 
54:424–435

Selzam S, Ritchie SJ, Pingault J-B, Reynolds CA, O’Reilly PF, Plo-
min R (2019) Comparing within- and between-family polygenic 
score prediction. Am J Hum Genet 105:351–363. https​://doi.
org/10.1016/j.ajhg.2019.06.006

Tamimy Z, Kevenaar ST, Hottenga JJ, Hunter MD, de Zeeuw EL, 
Neale MC, van Beijsterveldt CEM, Dolan CV, van Bergen E, 
Boomsma DI (2020) Multilevel twin models: geographical 
region as a third level variable. Behav Genet. bioRxiv. https​://
doi.org/10.1101/2020.11.11.37782​0.

Tucker-Drob EM, Bates TC (2016) Large cross-national differences in 
gene × socioeconomic status interaction on intelligence. Psychol 
Sci 27(2):138–149

https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1023/A:1023446524917
https://doi.org/10.1086/302193
https://doi.org/10.1038/mp.2009.55
https://doi.org/10.1038/mp.2009.55
https://doi.org/10.1037/h0029135
https://doi.org/10.1037/h0029135
https://doi.org/10.1007/s10519-009-9320-x
https://doi.org/10.1007/s10519-009-9320-x
https://doi.org/10.1017/S0954579412000855
https://doi.org/10.1017/S0954579412000855
https://doi.org/10.1126/science.aan6877
https://doi.org/10.1126/science.aan6877
https://doi.org/10.1038/hdy.1978.10
https://doi.org/10.1038/hdy.1978.10
https://doi.org/10.1037/a0013911
https://doi.org/10.1037/0033-2909.84.2.309
https://doi.org/10.1177/1745691615617439
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/nature08185
https://www.R-project.org/
https://doi.org/10.1016/j.ajhg.2019.06.006
https://doi.org/10.1016/j.ajhg.2019.06.006
https://doi.org/10.1101/2020.11.11.377820
https://doi.org/10.1101/2020.11.11.377820


249Behavior Genetics (2021) 51:237–249	

1 3

van Beijsterveldt CEM, Middeldorp CM, Slof-Op’t Landt MCT, Bar-
tels M, Hottenga JJ, Eka H, Suchiman D, Slagboom PE, Boomsma 
DI (2011) Influence of candidate genes on attention problems in 
children: a longitudinal study. Behav Genet 41:155–164. https​://
doi.org/10.1007/s1051​9-010-9406-5

van den Oord EJCG, Snieder H (2002) Including measured genotypes 
in statistical models to study the interplay of multiple factors 
affecting complex traits. Behav Genet 32(1):1–22

van der Molenaar D, Sluis S, Boomsma DI, Dolan CV (2012) 
Detecting specific genotype by environment interactions using 
marginal maximum likelihood estimation in the classical twin 
design. Behav Genet 42:483–499. https​://doi.org/10.1007/s1051​
9-011-9522-x

van der Sluis S, Dolan CV, Neale MC, Posthuma D (2008) Power 
calculations using exact data simulation: a useful tool for genetic 
study designs. Behav Genet 38:202–211

van Dongen J, Slagboom P, Draisma H et al (2012) The continuing 
value of twin studies in the omics era. Nat Rev Genet 13:640–653. 
https​://doi.org/10.1038/nrg32​43

Verhulst B, Hatemi PK (2013) Gene-environment interplay in twin 
models. Polit Anal 21(3):368–389. https​://doi.org/10.1093/pan/
mpt00​5

Verhulst B, Prom-Wormley E, Keller M, Medland S, Neale MC (2019) 
Type I error rates and parameter bias in multivariate behavioral 

genetic models. Behav Genet 49:99–111. https​://doi.org/10.1007/
s1051​9-018-9942-y

Visscher P (2004) Power of the classical twin design revisited. Twin 
Res 7(5):505–512. https​://doi.org/10.1375/twin.7.5.505

Visscher M, Gordon S, Neale MC (2008) Power of the classical twin 
design revisited: II detection of common environmental vari-
ance. Twin Res Hum Genet 11(1):48–54. https​://doi.org/10.1375/
twin.11.1.48

Warrington NM, Freathy RM, Neale MC, Evans DM (2018) Using 
structural equation modelling to jointly estimate maternal and 
fetal effects on birthweight in the UK Biobank. Int J Epidemiol 
47(4):1229–1241. https​://doi.org/10.1093/ije/dyy01​5

Wertz J, Moffitt TE, Agnew-Blais J, Arseneault L, Belsky DW, Corco-
ran DL, Houts R, Matthews T, Prinz JA, Richmond-Rakerd LS, 
Sugden K, Caspi A (2018) Using DNA from mothers and children 
to study parental investment in children’s educational attainment. 
Child Dev. https​://doi.org/10.1111/cdev.13329​

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10519-010-9406-5
https://doi.org/10.1007/s10519-010-9406-5
https://doi.org/10.1007/s10519-011-9522-x
https://doi.org/10.1007/s10519-011-9522-x
https://doi.org/10.1038/nrg3243
https://doi.org/10.1093/pan/mpt005
https://doi.org/10.1093/pan/mpt005
https://doi.org/10.1007/s10519-018-9942-y
https://doi.org/10.1007/s10519-018-9942-y
https://doi.org/10.1375/twin.7.5.505
https://doi.org/10.1375/twin.11.1.48
https://doi.org/10.1375/twin.11.1.48
https://doi.org/10.1093/ije/dyy015
https://doi.org/10.1111/cdev.13329

	Incorporating Polygenic Risk Scores in the ACE Twin Model to Estimate A–C Covariance
	Abstract
	Introduction
	The Twin Model with Polygenic Risk Scores: A–C Covariance
	Simulation I: Power
	Results I
	Simulation II: Bias and Type I Error Rate
	Results II
	The Identifying Constraint σApAq = 0
	Discussion
	Acknowledgements 
	References




