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Abstract

Background: We have previously conducted computer-based tournaments to compare the yield of alternative
approaches to deploying mobile HIV testing services in settings where the prevalence of undetected infection may
be characterized by ‘hotspots’. We report here on three refinements to our prior assessments and their implications
for decision-making. Specifically, (1) enlarging the number of geographic zones; (2) including spatial correlation in
the prevalence of undetected infection; and (3) evaluating a prospective search algorithm that accounts for such
correlation.

Methods: Building on our prior work, we used a simulation model to create a hypothetical city consisting of up to
100 contiguous geographic zones. Each zone was randomly assigned a prevalence of undetected HIV infection. We
employed a user-defined weighting scheme to correlate infection levels between adjacent zones. Over 180 days,
search algorithms selected a zone in which to conduct a fixed number of HIV tests. Algorithms were permitted to
observe the results of their own prior testing activities and to use that information in choosing where to test in
subsequent rounds. The algorithms were (1) Thompson sampling (TS), an adaptive Bayesian search strategy; (2)
Besag York Mollié (BYM), a Bayesian hierarchical model; and (3) Clairvoyance, a benchmarking strategy with access
to perfect information.

Results: Over 250 tournament runs, BYM detected 65.3% (compared to 55.1% for TS) of the cases identified by
Clairvoyance. BYM outperformed TS in all sensitivity analyses, except when there was a small number of zones (i.e.,
16 zones in a 4 × 4 grid), wherein there was no significant difference in the yield of the two strategies. Though
settings of no, low, medium, and high spatial correlation in the data were examined, differences in these levels did
not have a significant effect on the relative performance of BYM versus TS.

Conclusions: BYM narrowly outperformed TS in our simulation, suggesting that small improvements in yield can
be achieved by accounting for spatial correlation. However, the comparative simplicity with which TS can be
implemented makes a field evaluation critical to understanding the practical value of either of these algorithms as
an alternative to existing approaches for deploying HIV testing resources.

Background
Of the estimated 37 million people currently infected with
the human immunodeficiency virus (HIV) worldwide, as
many as 14 million remain unaware of their infection and
unable to avail themselves of the antiretroviral therapy
that could both prolong their lives and prevent the further
spread of the virus to their sexual or needle-sharing part-
ners [1]. Rates of undetected HIV infection are highly vari-
able from one setting to the next, exceeding 60% in many

parts of Africa, Eastern Europe, and the Middle East [2].
These sobering facts justify continued investigation of
novel, cost-effective strategies to focus HIV screening ef-
forts where they will maximize the yield of newly detected
cases and to identify areas of concentrated recent infec-
tion (so-called HIV ‘hotspots’).
As we have described in previous work, the deploy-

ment of scarce resources to optimize the return on in-
vestment in HIV screening can be portrayed as an
‘explore-versus-exploit’ problem [3]. This canonical for-
mulation, which emerges from the field of statistical de-
cision theory, adopts the perspective of a decision-maker
whose long-term objective is to maximize yield by
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making a sequence of short-term choices either to ac-
quire better information about the prevailing state of a
system (i.e., to explore) or to make the best possible de-
cision based on the information already at hand (i.e., to
exploit) [4, 5]. Under highly stylized conditions simulat-
ing a mobile HIV testing service, we have demonstrated
that a simple, adaptive search algorithm consistently
outperforms more traditional approaches used to deploy
disease screening resources.
In this paper, we once again conduct a computer-based

tournament to compare the performance of different ap-
proaches to targeted mobile HIV testing in a hypothetical
city of geographic zones with differing rates of undetected
HIV infection. As in our prior work [3], our aim is to
understand the circumstances under which different
search algorithms may or may not outperform one an-
other. We report here on three important refinements to
our prior assessment and their implications for
decision-making. First, we have greatly enlarged the num-
ber of geographic zones considered. Second, we have ad-
mitted the possibility of spatial correlation in the
prevalence of undetected HIV infection between adjacent
zones. Finally, we have introduced and evaluated a new
search algorithm that accounts for and capitalizes upon
spatial correlation between zones.

Methods
Analytic overview
We used a computer simulation to compare the per-
formance of three strategies for targeting mobile HIV
testing services. We created a hypothetical city consist-
ing of contiguous geographic zones, each with its own
(unobserved) prevalence of undetected HIV infection.
Over each of 180 sequential rounds of play, hereafter

referred to as days or days of testing, strategies were re-
quired to choose a single geographic zone in which to
conduct a fixed number of HIV tests. Strategies were
permitted to observe and remember the results of their
own prior testing activities and to use that information
in choosing where to test in subsequent rounds.
We define a ‘tournament run’ as a fixed number of se-

quential days. In the main analysis, all outcome mea-
sures used to evaluate the relative performance of one
strategy against another are reported over a tournament
run length of 180 days. Stable estimates of these per-
formance measures and their variance are obtained by
repeating each 180-day tournament run 250 times.

HIV infection, hotspots, and spatial correlation
We constructed a hypothetical city consisting of geo-
graphic zones on a n x n grid. For the main analysis,
consisting of the base case assumptions, we assumed
that there were 36 zones (i ∈ {1,…, 36}) on a 6 x 6 grid.
In sensitivity analyses considering alternative data

simulation settings, we varied the total number of zones
between 16 and 100.
The prevalence of undetected HIV infection, establish-

ing the initial number of infected and uninfected per-
sons, in a given zone was simulated using the following
model:

logit pið Þ ¼ β0 þ ϕi; i ¼ 1;…; n2

where pi is the prevalence for zone i, β0 is an intercept
term that describes the center of the distribution of all
prevalences, and ϕi is a value specific to zone i that de-
termines how much zone i’s prevalence differs from the
center of the distribution (large values indicate hotspots
while lower values indicate cool spots or non-hotspots).
For all data simulation settings, we fixed β0 to be − 5.00,
centering the distribution of prevalences on 0.007. The
ϕi values were simulated from a multivariate normal dis-
tribution, centered at zero, with a covariance matrix that
allowed for the possibility of spatial correlation depend-
ing on the choice of an associated correlation parameter
(large value indicates spatial independence while small
value indicates high spatial correlation). Once the ϕi

values were generated, we standardized them (the vector
centered at zero with a standard deviation of one) in
order to create a distribution of prevalence values with
similar center/variability across all data simulation set-
tings and, therefore, allowing us to more accurately attri-
bute differences in the performance of each method to
changes in the underlying data assumptions. We then
multiplied each ϕi value by an inflation factor in order
to create greater/fewer hotspots depending on the data
simulation setting. Finally, once ϕi and β0 were selected,
we calculated pi for each zone using the inverse logit
transformation and set all prevalences larger than 0.03
(the maximum hotspot value) equal to 0.03. Recognizing
that not all persons with undetected HIV infection will
be amenable to the offer of HIV testing, we capped the
maximum prevalence of detectable HIV infection at 3%.
This is slightly below the estimated prevalence of un-
detected HIV infection in high-risk African settings (e.g.,
Lusaka, Zambia). A new set of zone prevalences was
generated using this framework for each of the 250 tour-
nament runs of a given data simulation setting. Popula-
tions for each zone, mi, were drawn from a lognormal
distribution based on the population of districts in the
same representative African urban area (Lusaka,
Zambia). Based on these final starting values for HIV
prevalence of undetected HIV infection for each zone
and the populations assigned initially to them, each zone
thus began the simulation with a fixed number, rounded
up to integer values, of infected (pi ×mi) and uninfected
persons (mi − [pi ×mi]) .
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The main analysis was run over 180 days of testing
and is meant to reflect the real-world potential use of
these methods in the daily decision-making of HIV test-
ing providers. We used the following notation to denote
some useful population levels:

� Ui(t), the number of uninfected persons in zone i on
day t. This was given by the sum of OUi(t) and
UUi(t), namely the number of observed and
unobserved uninfected persons.

� Ii(t), the number of infected persons in zone i on
day t. This was given by the sum of OIi(t) and UIi(t),
namely the number of observed and unobserved
infected persons.

� I iðtÞ
IiðtÞþUiðtÞ, the prevalence of HIV infection in zone i
on day t;

� UPi(t), the prevalence of HIV infection among
persons whose HIV infection status is unknown in
zone i on day t. This was given by UIiðtÞ

UIiðtÞþUUiðtÞ� Xi(t), the number of previously undetected cases
identified by screening in zone i on day t.

The yield of HIV testing, Xi(t), follows a binomial
distribution with success probability UPi(t). Implicit in
this formulation was the assumption that HIV tests
are conducted only on persons with unknown HIV
infection. In reality, a great deal of HIV testing takes
place among persons whose infection status is already
known. Our simplifying assumption could be relaxed
to include repeat testing and to produce an
across-the-board reduction in the effectiveness of
screening; however, this would have no impact on the
relative yield of different strategies (our performance
measure of interest). We also assumed that the popu-
lation in a given zone greatly exceeds the number of
HIV tests that can be performed in that zone in a
single day. This permitted us to make the additional
simplifying assumption that sampling for HIV on any
given day occurs ‘with replacement’. This assumption
too could be relaxed without overly complicating the
analysis but would not likely have a material impact
on the performance results of interest.
At the end of each day, the prevalence of HIV in-

fection among persons whose status is unknown,
UPi(t), was updated to account for three different
considerations. First, ‘shelf life’, where the reliability
and relevance of a negative result declines with the
passage of time. We assumed that observed unin-
fected individuals eventually return to the pool of un-
observed uninfected individuals. Second, ‘new arrivals’,
where, as described above, we permitted the arrival of
persons with unobserved HIV infection status (both
infected and uninfected). Finally, ‘new HIV testing’,
through which, if m HIV tests were conducted in

zone i on day t, the unknown prevalence the follow-
ing day was updated as follows:

UPi t þ 1ð Þ ¼ UIi tð Þ−Xi tð Þ
UIi tð Þ−Xi tð Þ½ � þ UUi tð Þ− m−Xi tð Þð Þ½ � :

Strategy 1: Thompson sampling (TS)
TS is an adaptive algorithm whose actions aim to
maximize expected value based on random sampling
from prior probability distributions on the prevalence of
undetected HIV in each zone. These prior distributions
are themselves the ex post result of updates based on
previous rounds of observation. The user seeds the algo-
rithm with initial probability distributions for the preva-
lence of undetected HIV in each zone at time 0. At the
start of each day, TS samples randomly from its current
probability distribution for each zone. It then elects to
conduct testing in whichever zone yields the largest real-
ized value (note that the zone selection process is based
on random sampling from prior probability distributions
– the algorithm’s ‘belief structure’ – and not from any
actual HIV testing in a zone; this indirect selection
mechanism ensures that every zone has a non-zero
probability of being chosen for testing on any given day
while, at the same time, ensuring that a zone will be se-
lected with a probability that is proportional to the
strength of the algorithm’s beliefs about how much un-
detected HIV infection exists in that zone). If a zone is
selected for testing on a given day, the results of those
testing activities will be employed to update the algo-
rithm’s prior beliefs for that zone; the posterior distribu-
tion that results from that updating process will become
the sampling distribution for zone selection on the sub-
sequent day.
We used a Beta(αi, βi) distribution to describe TS’s be-

liefs about the prevalence of undetected HIV infection
in zone i. The Beta, a continuous distribution on the
interval (0, 1), is a natural choice for this purpose; first,
because it is conjugate to the binomial distribution (i.e.,
a Beta prior and Binomial likelihood will yield a Beta
posterior) and, second, because its two parameters are
easily interpreted as ‘total observed positive HIV tests’
and ‘total observed negative HIV tests’, respectively.
Thus, if m new HIV tests yield x new cases detected in
zone i, the posterior probability will follow a Beta(αi + x,
βi + (m–x)) distribution (see Additional file 1 for more
details).

Strategy 2: Besag York Mollié model (BYM)
Conditional autoregressive (CAR) models are used to ac-
count for spatial correlation in areal data when what is
observed in neighboring regions is assumed to be more
similar than observations occurring at larger distances
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[6]. They can be incorporated into Bayesian hierarchical
models and the Besag York Mollié (BYM) framework
used here employs an intrinsic CAR (ICAR) distribution
(improper version of the CAR model) for the spatial ran-
dom effects and exchangeable, normally distributed ran-
dom effects to account for non-spatial heterogeneity in
the data [7].
Similar to TS, our BYM modeling strategy begins the

sampling process by assuming independent Beta(αi, βi)
prior distributions for the prevalence of undetected HIV
infection in each of the zones. During an initial ‘learning’
period, the BYM model proceeds in the same way as TS,
selecting a zone for testing on a given day by sampling
from its current probability distribution for each zone’s
prevalence of undetected HIV prevalence and then
choosing the zone that yields the largest realized value.
Using TS, when the number of completed days is low,
zones are selected almost at random. This is because TS
assumes an uninformative, independent Beta(1, 1) prior
distribution for the prevalence of undetected HIV infec-
tion in each zone and little new information across all
zones is collected at the beginning of the simulations. As
a result, on average, we observe a mix of low and high
prevalence zones that are used to fit the BYM model for
the first time. At the end of the learning period, the
BYM model is fitted to the total set of collected data
from each individual zone (number of identified infected
individuals versus total number of sampled individuals
in each zone). The choice of 10 zones for the initial
learning period was made to ensure we had a reasonable
number of spatial data points with which to fit the BYM
model. For instance, it would be impossible to learn
about the spatial correlation in the data using only data
from a single spatial region. Once the BYM model is fit-
ted to the current set of observed data, the marginal
posterior predictive distribution of the underlying preva-
lence of undetected HIV cases at each zone is obtained
via Markov chain Monte Carlo (MCMC) posterior sam-
pling. We then randomly select a single value from each
of these zone-specific distributions and identify the zone
that corresponds to the largest value. This zone is se-
lected for sampling on the subsequent day. This process
is then repeated until the end of the simulation time
period.
Unlike TS, which only gathers information as it visits a

given individual zone, the BYM model can leverage
inter-zone correlation to take what it observes in one zone
and use that information to draw useful inferences about
the prevalence of undetected HIV in neighboring zones.
The model for the underlying prevalence at each zone is a
function of a shared intercept, a spatially correlated ran-
dom effect (ICAR distribution), and an exchangeable, nor-
mally distributed random effect (logistic regression model
assumed). Because the intercept is shared across all zones,

as data are gathered about a particular zone, the
model is simultaneously learning about the value of
the intercept and, therefore, about all zone preva-
lences. Similarly, because the spatial random effect as-
sumes similarity between neighboring zones a priori,
as data are gathered on a particular zone, the model
is also learning about that zone’s neighbors (and be-
yond). The exchangeable random effect ensures that
all variability in the prevalences is not attributed to
spatial similarity and therefore prevents the model
from oversmoothing the data. In the case of no
spatially correlated variability and complete independ-
ence between data from the different zones, the BYM
model will collapse to something very similar to TS
(see Additional file 1 for more details).

Strategy 3: Clairvoyance
For purposes of benchmarking, we sought to establish a
credible upper-bound on the number of new HIV cases
that any search strategy could possibly detect. To that
end, we developed the Clairvoyance strategy, an algo-
rithm that chooses to test in whichever zone has the
greatest underlying prevalence of undetected HIV infec-
tion on any given day. Clairvoyance has access to perfect
current information about new arrivals/departures,
about individuals whose previous test results have
exceeded their shelf life, and about the results of its pre-
vious testing activities. This permits it to select the most
promising zone for testing on any given day. We
emphasize, however, that it has no special knowledge
about the HIV-infection status of any individuals se-
lected for testing within that zone. Like any other strat-
egy, it samples with replacement within whichever zone
it selects.

Parameter estimates, main analysis, and sensitivity
analyses
Initial parameter values as well as those used in the sen-
sitivity analyses are described in Tables 1 and 2. Our goal
was to understand the performance of strategies under a
broad variety of plausible data simulation settings. We
therefore defined parameter ranges that reflected obser-
vations drawn from a multiplicity of international set-
tings. Areas differ in terms of population size. Numbers
of infected and uninfected persons in a zone were
assigned via random realizations from a lognormal dis-
tribution (rounded to the nearest integer) that was itself
estimated using 2010 census data on the number of
adults aged 15–59 years living in urban wards of Lusaka,
Zambia [8]. We explored values ranging from less than
0.5% to 3.0%, for the underlying prevalence of un-
detected HIV infection, reflecting zones with lower
numbers of undetected individuals and zones that can
be considered hotspots. The prevalence of undiagnosed
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HIV infection in some settings, including sub-Saharan
Africa, can be larger than 3%. For instance, 12.3% of
Zambian adults (15–59) are HIV positive, but 32.7% of
them do not know their serostatus, and thus 4% of
adults are still undiagnosed [9, 10]. However, we chose
the 3% ceiling of undetected HIV prevalence in this
simulation to represent a fraction of this population, as
not all undiagnosed individuals will necessarily come
forward for testing.
We considered different rates of population move-

ment, setting in-migration of new HIV-negative individ-
uals at an annual 3.4% of a zone’s population in the
main analysis, so that the daily number of new
HIV-negative individuals entering a zone was 3.4% times
the zone’s population divided by 365 days. The main
analysis data simulation setting was derived from projec-
tions from the 2010 Zambian census for Lusaka [8]. In
the sensitivity analyses, we doubled this number in each
zone to reflect fast-growing settings but we also consid-
ered a case with half of the base case values and with no
in-migration in sensitivity analyses. In the main analysis,
zones were assigned HIV incidence rates based on an-
nual incidence rates for Lusaka and daily new infections
took the annual incidence figure (0.66%), multiplied it by
the population of each zone and divided it by 365 days
[9]. In the sensitivity analyses, we doubled this figure to
represent faster growing epidemics, and also considered
a case with half of the base case values and with no new
infections. Finally, we also examined the case where no
new HIV-negative and no new HIV infections occurred
daily in each zone.
Other HIV testing program parameter ranges were se-

lected to correspond roughly to values reported in the
literature. We relied on two South African studies to as-
sume that a mobile testing service could conduct m = 25
tests in a given zone on a given day; daily values ranging
from 10 to 40 tests were considered in sensitivity ana-
lyses [11, 12]. We further assumed that individuals who
are found to be uninfected return to the unobserved un-
infected pool after 45 days, with values ranging from 10
to 90 days in the sensitivity analysis [13, 14]. Finally, we
conducted the main analysis over 180 days (sensitivity
analyses range, 90–365 days), reflecting our assumption
that decision-makers might devote a half year to experi-
menting with new approaches to deploying HIV testing
resources.
In the main analysis, the spatial correlation was set in

the ‘low’ setting, where we defined ‘low’ as the correl-
ation between prevalences from the two closest zones
(i.e., based on distance between zone centroids) equal to
0.20. Spatial correlation was defined as a function of dis-
tance between zone centroids, with increasing distance
leading to decreasing correlation. In subsequent sensitiv-
ity analyses, we varied the spatial correlation as follows:

Table 1 Parameter main analysis values

Parameters Values

Overall population Simulate from lognormal distribution
based on 2010 Lusaka, Zambia census

Grid dimensions 6 × 6

Level of correlation, percentage
of hotspots in grid

Low, 20% (on average)

Percentage of new infections
(times zone population divided
by 365 days)

0.66%

Percentage of new HIV-negative
arrivals (times zone population
divided 365 days)

3.4%

Days until return to unobserved,
uninfected pool

45

Initial observed HIV+/HIV–

(priors for TS)
Beta(1, 1)

Initial observed HIV+/HIV–

(priors for ICAR/BYM during
learning period)

Beta(1, 1)

Intercept (priors for ICAR/BYM) Normal(0, 2.85)

Priors for ICAR and
exchangeable random effects

Inverse-Gamma(3, 2)

Days of testing 180

Tests per day 25

BYM Besag York Mollié, ICAR intrinsic conditional autoregressive, TS
Thompson sampling

Table 2 Parameter values for sensitivity analysis

Parameters Values

Grid dimensions 4 × 4; 5 × 5; 10 × 10

Percentage of new HIV-negative
arrivals (times zone population
divided 365 days)

0, 1.7%, 6.8%

Percentage of new infections
(times zone population divided
by 365 days)

0, 0.33%, 1.32%

No arrivals or infections 0

Level of correlation, percentage
of hotspots in grid

None, 20% (on average)

Level of correlation, percentage
of hotspots in grid

Low, 10% (on average)

Level of correlation, percentage
of hotspots in grid

Low, 30% (on average)

Level of correlation, percentage
of hotspots in grid

Medium, 20% (on average)

Level of correlation, percentage
of hotspots in grid

High, 20% (on average)

Days until return to unobserved,
uninfected pool

10, 90

Days of testing 90, 365

Tests per day 10, 40
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1. None: Maximum correlation capped at 1 × 10–100

(independence);
2. Low: Maximum correlation capped at 0.20;
3. Medium: Maximum correlation capped at 0.50;
4. High: Maximum correlation capped at 0.90.

In addition, for the main analysis, we scaled the ϕi

value by 1.80 (on average 20% of the zones were hot-
spots) while, for sensitivity analyses, we increased this
value to 2.90 (30% hotspots) to create more extreme
prevalence values and decreased it to 1.20 (10% hot-
spots) to create less variability (i.e., fewer hotspots) in
the distribution of prevalences across all zones.
Both the TS and BYM strategies require the user to spe-

cify their ‘initial beliefs’ – that is, the probability distribu-
tions for the prevalence of undetected HIV infection in
each zone at t = 0. For TS, we applied uniform(0, 1), unin-
formative Beta(1, 1) distributions to all zones. This reflected
the highly conservative assumptions that virtually nothing
is known about the starting prevalence of HIV infection in
any of the zones. For the BYM strategy, we also assumed
Beta(1, 1) prior distributions for the zone prevalences at
the outset of the learning period. The intercept term was
given a N(0, 2.85) prior distribution while the variance pa-
rameters associated with the ICAR and exchangeable ran-
dom effects were each assigned inverse-gamma(3, 2) prior
distributions. The prior distribution for the intercept re-
sulted in an approximately uniform(0, 1) prior distribution
for zone prevalences under the assumption of no additional
variability.
To ensure we could statistically differentiate the per-

formance of each of the methods, the tournament was
run 250 times for each of the data simulation settings.
Performance statistics reported in the Results section
below represent averages across these 250 tournament
runs as well as an examination of the absolute number
of new diagnoses (minimum, first quartile, median, third
quartile, and maximum) detected during these 250 tour-
nament runs by each strategy. A strategy was deemed to
have outperformed another in a head-to-head compari-
son if it detected a greater number of new cases in at
least 55.25% of the 250 tournament runs. This signifi-
cance value represents the threshold for a difference in
proportions with p < 0.05 in a one-sided Z-test. We also
examined the difference in the mean number of cases
detected by each strategy, assessing significance with a
one-side Welch’s t test.

Results
Main analysis
Figure 1 shows a representative 6 × 6 grid from the main
analysis, consisting of 36 zones with low spatial correl-
ation in the data and with 30% of the zones being hot-
spots. Across the 250 tournament runs, the average

proportion of hotspots was roughly 20%. While a new
grid of prevalences for the zones is generated for each
set of 250 tournament runs of a given data simulation
setting, Fig. 1 is meant to offer an example of what the
underlying structure of probabilities looks like at t = 0
before the 180 days of testing begin. In each of the 250
tournament runs, all strategies begin with the same
underlying grid of prevalences. Figure 2 shows the esti-
mated prevalence of undetected HIV infection assumed
by each strategy in the main analysis at five time-points
(t = 5, 45, 90, 135, and 180 days). Figure 2 shows that the
TS and BYM estimates of the underlying prevalence of
undetected HIV infection shifts over time but in differ-
ent ways. BYM’s estimation of the underlying prevalence
of undetected HIV infection among the zones declines
over time, but the algorithm maintains estimates that
are higher than those of TS across all 180 days of testing
in more zones than TS. With TS, estimates of preva-
lences among the zones, particularly non-hotspots, de-
clines earlier on. This can be seen in the shift from reds
to blues in the top panel (TS) of Fig. 2 in contrast to the
middle panel where reds still predominate (BYM) as the
number of days of testing in the simulation mounts. The
Clairvoyance strategy in Fig. 2 has perfect information
on the prevalence of undetected HIV infection on each
day and thus its ‘estimate’ represents the actual values
on the grid and impact over time of new, incident HIV
infections, new HIV-negative in-migration, the ‘shelf life’
of HIV-negative test results, and its own success at find-
ing new cases of HIV infection. Figure 3 shows the ag-
gregate visits to each zone up until each of the same five
time-points for all strategies. BYM visits and exploits
hotspots more often than TS over time (conversely
spending less time in non-hotspots than TS), while TS
continues to explore more zones, even those that are
non-hotspots, over the course of the 180 days. Clairvoy-
ance visits all the hotspots of 3.00% prevalence in rota-
tion throughout the 180 days and spends no time
elsewhere. Clairvoyance does not even visit hotspots
with slightly lower prevalence values (e.g., 2.70%). We
provide versions of these three figures for data simula-
tion settings with medium and high spatial correlation
as additional files for readers interested in seeing the
performance of the three strategies under these condi-
tions (Additional file 2: Figure S1–S6).
Figure 4 shows the key results for the main analysis,

indicating the absolute number of new diagnoses de-
tected by each strategy over 180 days (minimum, first
quartile, median, third quartile, and maximum) in 250
tournament runs of the simulation. Clairvoyance outper-
formed all other strategies in overall mean number of
new HIV diagnoses detected, identifying 141.87 (SD
11.83) new cases over the course of the 250 tournament
runs, while TS uncovered 78.24 (SD 11.44) and BYM
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found 92.59 (SD 12.37). These results are also shown in
Table 3 and Additional file 3: Table S1. The differences
in the mean number of cases detected over 250 tourna-
ment runs between TS and BYM, TS and Clairvoyance,
and BYM and Clairvoyance were all significant by
Welch’s t test (p < 0.0001). This indicates that TS and
BYM identified 55.1% and 65.3%, respectively, of the
total infections detected by the Clairvoyance strategy. Fi-
nally, over the course of 250 tournament runs in the
main analysis in pairwise head-to-head competition,
BYM won 80% of the time over TS, with Clairvoyance
winning 100% of the time against TS and BYM. These

results are significant by a one-sided Z-test of a differ-
ence in proportions (p < 0.0001).

Sensitivity analyses
We re-evaluated all findings using the settings specified
in Tables 1 and 2. The mean number (and SD) of new
diagnoses detected by TS and BYM in the main analysis
and in all sensitivity analyses are described in Table 3.
Under every scenario we examined in sensitivity analysis,
Clairvoyance detected the greatest number of new
HIV-positive cases (see Additional file 3: Table S1 for
mean number of new diagnoses detected by Clairvoyance

Fig. 1 Example of grid of true underlying prevalences of undiagnosed HIV infection. The values in the individual squares represent the starting
value (t = 0) of prevalences of undiagnosed HIV infection (UP, (t)) for each zone. Each iteration of a given data simulation setting starts with a new
formulation of this grid and this is a representative sample of a grid for the base case with low correlation and 20% hotspots on average
(although this single example from the base case has 30% hotspots). All strategies start with the same grid in any given iteration
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in the main analysis and in all sensitivity analyses). BYM
almost always outperformed TS. TS narrowly defeated
BYM when we considered a smaller grid size (e.g., 4 × 4)
but this margin of victory (i.e., differences in the number
of new diagnoses) was not statistically significant.
Sensitivity analysis revealed that the margin of victory

between TS and BYM remains small under almost all
circumstances. Averaging across all sensitivity analyses,
the difference in the number of cases detected between
TS and BYM was just over 12 cases. By contrast, Clair-
voyance’s average margin of victory over its competitors
exceeded 50 cases.

Discussion
In our previous work, we introduced TS as a potential
method for more efficiently deploying mobile HIV testing
services and suggested that this algorithm could be useful in
improving the detection and diagnosis of other infectious or
chronic diseases [3]. In that study, TS was pitted against, and
consistently outperformed, a winner-take-all strategy that

sampled each geographic zone consecutively before deciding,
based upon the zone with the largest yield of new diagnoses,
where to devote all of its remaining testing resources. This
winner-take-all strategy will not work for a larger collection
of zones since a stepwise approach is time-consuming, with
initial sampling periods quickly exceeding number of days of
testing in the simulation. Thus, we were interested in finding
other algorithms that could be compared against TS in an
expanded setting and in particular where spatial correlation
may exist in terms of the probability of finding new cases of
undetected HIV infection in neighboring zones.
While BYM is a widely used method in spatial statistics

and epidemiology, used to map disease occurrence and to
predict outbreaks, it has not generally been deployed in pub-
lic health as a spatial sequential decision-making tool and we
can consider this a novel potential use for it [15, 16]. In other
settings, particularly environmental management and com-
mercial applications such as oil exploration, related methods
have been used to model space-structured sequential
decision-making under uncertainty [17–19].

t=90t=45t=5 t=135 t=180

Thompson 
Sampling

BYM

Clairvoyance

Fig. 2 Estimated prevalence of undiagnosed HIV infection by strategy at five time points. Each strategy, except for clairvoyance, which knows the
true underlying probability of undiagnosed HIV infection at all times, updates its estimates of each zone’s prevalence during the course of the
simulation as it gathers new information. This is a representative set of grids for the estimates made by the three strategies at t = 5, 45, 90, 135,
and 180 days
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The BYM model deployed here represents an improve-
ment on the yield of new diagnoses over TS in our tourna-
ment. In almost all cases it outperforms TS, except when
the number of zones is smaller (i.e., when the grid size is
4 × 4). This is not surprising as during the BYM model’s
learning period (up until 10 zones), the algorithm is fol-
lowing the same procedural steps as TS. With 16 zones,
BYM has only just begun to incorporate information
about neighboring zones into its decision-making process.
What is surprising is that, while BYM outperforms TS

in all other settings, there does not seem to be an advan-
tage for BYM in settings with higher spatial correlation
in the data. This may be because the number of zones
considered in this work is too small to fully exploit the
benefits of modeling the spatial correlation. In cases
where there is a larger number of zones and fewer hot-
spots, it may be more important to model the spatial
correlation to avoid spending excess time in low preva-
lence areas. However, BYM’s stronger performance
overall may be due to the fact that BYM continues to

incorporate information across zones during estimation
even in the absence of spatial correlation. The intercept
parameter and exchangeable random effect variance par-
ameter are shared across all zones. This should allow the
BYM model to quickly learn about low prevalence areas
and avoid spending time in them. In fact, this is demon-
strated in Fig. 3, as BYM makes fewer visits to lower
prevalence areas than TS.
There are several implications of these findings. First,

the BYM model in simulation is a better tool for detect-
ing new cases of undetected HIV infection in most set-
tings than TS. Second, because it is difficult to make
assumptions about whether there is indeed correlation
in the data (is the probability of finding new cases of un-
detected HIV infection from one zone to another linked
neighbor-to-neighbor?) there is a strong rationale to rely
on BYM as it is functionally similar to TS in the absence
of spatial variability.
However, there are operational complexities with BYM

that might make it less attractive as a tool for use in the

Fig. 3 Cumulative visits to each zone by strategy at five time points. Each strategy, over the course of the simulation, visits multiple zones as it
attempts to converge on hotspots of undiagnosed HIV infection. This is a representative set of grids for cumulative visits made to each zone by
the three strategies at t = 5, 45, 90, 135, and 180 days
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field. TS is a simple algorithm that can be implemented in
a spreadsheet with a few formulas and requires only a daily
report of new HIV-positive and HIV-negative diagnoses for
the Bayesian updating process. By contrast, the BYM model
can be computationally demanding in comparison to TS
(depending on the number of zones) because of its reliance
on MCMC model fitting techniques; the convergence of
the MCMC algorithm must be assessed, it requires the abil-
ity to determine the neighborhood structure of the data
(e.g., shapefiles for different regions are needed) and a cer-
tain number of zones need to be visited before estimation
stabilizes [20, 21]. Integrated Nested Laplace Approximation
often represents a computationally convenient alterna-
tive to Bayesian model fitting and provides approxi-
mations to marginal posterior distributions for model
parameters. It can also be used to fit the BYM model
if MCMC techniques become computationally difficult
due to an extremely large number of zones in a par-
ticular application. However, both MCMC and Inte-
grated Nested Laplace Approximation still remain
more complex to utilize than TS, which can be imple-
mented using a spreadsheet program or by hand [22, 23].

While BYM performs better than TS in simulation, its
modest margin of victory (~ 10%) in yield of new infections
diagnosed must be weighed against these practical difficul-
ties. In resource-poor settings (in fact, any settings without
sufficient computing infrastructure and statistical support)
the logistical simplicity of implementation might commend
TS as the preferred tool for locating HIV testing services.
Because TS and BYM only detected 55.1% and 65.3%, re-

spectively, of the total infections detected by Clairvoyance
there may be room for improvement in the yield of new
diagnoses. This work represents a bridging of several
different fields, including sequential decision-making,
reinforcement learning, spatial statistics, and epidemiology,
all in a Bayesian context. However, thus far, only two
algorithms from these fields, TS and BYM, have been tested
in simulation in the context of mobile HIV testing. The
current simulation code allows for the addition of new
strategies as modules on top of the larger evaluative frame-
work; therefore, exploring additional algorithms can be
easily undertaken in future work, which may allow us to
identify new strategies that preserve simplicity of imple-
mentation and offer greater yields of new diagnoses.

Fig. 4 Basic statistics for yield of new HIV diagnoses by strategy. The minimum, first quartile, median, third quartile, and maximum number of
new diagnoses detected by each strategy over 180 days in 250 iterations of the simulation for the main analysis
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Our study has several limitations. While we have
expanded the number of zones in this paper to ex-
plore the performance of these algorithms beyond the
small set of uncorrelated geographic locations in the
earlier toy model, we have not yet included a tem-
poral component to our analyses. Hotspots for detect-
ing new cases of undetected HIV infection may shift,
not only in space, but in time, both in the short-term
(e.g., with opening and closing of social venues) and
the longer term (e.g., as neighborhood demographics
change). In addition, the ICAR prior in the BYM
model requires an assumption about contiguous
zones, namely that observations in immediate neigh-
bors will be correlated [24]. However, this correlation
by virtue of adjacency in the setting of HIV testing
may not hold. For instance, a gay bar may exist in
the context of a neighborhood that does not share
the demographic characteristics of its patrons. This
problem where geographic proximity exists among
zones but the probability of finding undetected cases
of HIV infection among them may be disparate can
be addressed by spatial boundary detection methods,
but a discussion of them is beyond the scope of this
paper [25]. Finally, the simulation study results sug-
gest that the choice of 10 unique zones for the initial
learning strategy for the BYM strategy works well in
comparison to TS under our specific HIV testing data
settings. However, in future applications of the model,
these choices may need to be revisited based on
problem-specific prevalences and zonal geography.
Our portrayal of the epidemiology of HIV infection

and the mechanics of HIV testing is, admittedly, sim-
plistic. Among the many details that it omits are the
use of testing services by people who already know
their infection status; the possibility that infection risk
may influence an individual’s decision to obtain an
HIV test; the costs of moving a mobile testing facility
from one location to another; more complicated
forms of immigration and emigration, including daily
travel between zones, via either public or private
transportation, for work or other activities; and the
possibility that even a few HIV tests on a single day
might have a material influence on the prevalence of
infection and the success of continued testing in a
given zone on a given day. Each of these simplifica-
tions can be accommodated within the current ana-
lytic framework if circumstances suggest that they are
more important than we have argued here.

Conclusions
TS and the BYM algorithm both offer ways to manage
the exploration–exploitation trade-off in deciding where
to locate mobile HIV testing services from day to day.
TS may be more suitable for settings where there are

resource constraints in terms of computing power and
statistical support. Spatial algorithms could be important
tools, particularly if their execution could be simplified
for use by non-experts in the field.
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