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Abstract: In this paper, the poly-Si nanowire (NW) field-effect transistor (FET) sensor arrays were
fabricated by adopting low-temperature annealing (600 ◦C/30 s) and feasible spacer image transfer
(SIT) processes for future monolithic three-dimensional integrated circuits (3D-ICs) applications.
Compared with other fabrication methods of poly-Si NW sensors, the SIT process exhibits the
characteristics of highly uniform poly-Si NW arrays with well-controlled morphology (about 25 nm
in width and 35 nm in length). Conventional metal silicide and implantation techniques were
introduced to reduce the parasitic resistance of source and drain (SD) and improve the conductivity.
Therefore, the obtained sensors exhibit >106 switching ratios and 965 mV/dec subthreshold swing (SS),
which exhibits similar results compared with that of SOI Si NW sensors. However, the poly-Si NW
FET sensors show the Vth shift as high as about 178 ± 1 mV/pH, which is five times larger than that of
the SOI Si NW sensors. The fabricated poly-Si NW sensors with 600 ◦C/30 s processing temperature
and good device performance provide feasibility for future monolithic three-dimensional integrated
circuit (3D-IC) applications.

Keywords: silicon nanowire (Si NW); monolithic three-dimensional integrated circuits (M3D-ICs);
spacer image transfer (SIT); sensitivity

1. Introduction

In recent years, the application of semiconductor field-effect transistors (FET) sensors have
attracted a lot of attention because of their ability to translate the interaction with target molecules
on the FET surface to an electrical signal directly [1–4]. Silicon nanowires (Si NW) sensors have been
considered as one of the most promising candidates for biochemical sensors [5–9], due to their large
surface to volume (S/V) ratio, high sensitivity, and good biocompatibility [10,11]. In recent years,
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Si NW field-effect-transistor (FET) sensors have been used for the very high sensitivity detection of
pH [12–14], gases [15–17] and DNA [18–20]. However, the conventional fabrication process with
silicon-on-insulator (SOI) materials is complex and high-cost, and the nanometer patterns are usually
formed by traditional low-efficiency electron beam lithography (EBL) process, which does not meet
the demands of future mass production with a low cost and low efficiency. The spacer image transfer
(SIT) process (also named self-aligned double or quadruple patterning) could achieve nanometer array
with high efficiency and low cost, which are widely used in foundries [21–23]. In addition, there are
no reports on the design or fabrication of Si NW sensors for monolithic three-dimensional integrated
circuits (3D-ICs) application, which is one of the most convincing candidates for future application
(see Figure 1). In order to achieve better performance of the system, the fabrication of top devices
(Si NW sensor) usually need low-temperature processes to avoid a degradation on characteristics of
bottom circuits (logic circuits and memory in Figure 1) [24]. However, there are no reports on the
design or fabrication of Si NW sensor for monolithic 3D-ICs application.
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Figure 1. Illustration of monolithic three-dimensional integrated circuits (3D-ICs): bottom logic circuits;
middle memory and top silicon nanowire (Si NW) sensors.

In this paper, poly-silicon NW sensors with low cost and high efficiency are designed and fabricated
using advanced spacer image transfer (SIT) [22–24] and low-temperature silicide techniques for
monolithic 3D-IC application. The highest annealing temperature is not over 600 ◦C, which overcomes
the problems of overheating the bottom transistor and the wires. The achieved poly-silicon NW sensors
have good electrical properties, such as over six orders of magnitude in on-off ratio and 932 mV/dec of
subthreshold swing (SS) by bias back-gate voltages.

2. Materials and Methods

Two types of Si NW sensors (poly-silicon and silicon-on-insulator (SOI)) were designed and
fabricated, and the detailed fabrication flow is illustrated in Figure 2. The poly-silicon NW sensors were
manufactured on p-type 200 mm Si (100) silicon wafers (see Figure 2a): Firstly, 145 nm SiO2 and 40 nm
poly-silicon were deposited, respectively (see Figure 2b). The SOI Si NW sensors were manufactured
on 200 mm SOI wafers featured with a 145-nm-thick buried oxide layer (BOX) and a 40-nm-thick top
silicon layer. The fabrication process of the two types of devices was all the same in the flowing steps.
During the fabrication of the Si NWs, a spacer image transfer (SIT) technology was chosen to form NW
arrays patterns with high efficiency [25–27], and the detailed fabrication process flow is described as
follows: sequential multi-layer SiO2/amorphous Si (α-Si)/Si3N4 films were deposited (see Figure 2c).
Next, the conventional photolithography process (i-line) and dry etching processes were used to
form rectangular arrays of Si3N4 and α-Si films (see Figure 2d). The top Si3N4 hard masks (HMs)
were removed by a hot H3PO4 solution at 140 ◦C (see Figure 2e). A 30 nm Si3N4 film was deposited by
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plasma-enhanced chemical vapor deposition (PECVD) approach and then the corresponding Si3N4

reactive ion etching (RIE) was performed to form two SiNx spacers on both sides of α-Si (see Figure 2f,g).
The α-Si material between two Si3N4 spacers was removed by tetramenthylammonium hydroxide
(TMAH) (see Figure 2h). In order to obtain Si NW arrays, dry etching processes of SiO2 and Si
were carried out, respectively (see Figure 2h). Afterward, the top HMs were removed using hot
phosphoric acid and diluted hydrofluoroacid (DHF) solution, respectively (see Figure 2i). After the
Si NW formation, a 5-nm-thick SiO2 was deposited on the Si NW followed by the deposition of a
thick layer of Si3N4 (see Figure 2j,k). The Si3N4 film was etched by dry etching processes. A nickel
platinum alloy (Ni0.95Pt0.05) was used to form metal silicide in the source and drain regions to reduce
the parasitic of Si nanowires (see Figure 2l,m). Afterward, BF2+ ions with a heavy dose and low
energy were implanted into the top silicided Si NWs and activated by low temperature rapid thermal
annealing (RTA) to form Schottky barrier source and drain (SBSD) (about 600 ◦C/30 s annealing). For a
better combination, the aluminum electrode was prepared by a sputtering process and the RIE process
was performed (see Figure 2n,o). Subsequently, a layer of thick SiO2 was deposited, and the source
drain contact holes were opened by photolithography and etching processes (see Figure 2p,q). Finally,
the gate with different channel lengths (5, 10 and 15 µm) was defined by photolithography and the open
gate trench of the sensor to expose the sensitive area was achieved by RIE processes. The bounding of
SD contact was carried out and a layer of 20-nm-thick HfO2 was deposited on the surface of the device
(see Figure 2r). Figure 2s is a schematic top view of the device. Except for the source drain and gate
trench of the devices, other areas were covered by a thick SiO2, which helps to improve the stability
and reliability of the solution.
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Figure 2. Fabrication flow of Si NW sensors. (a) 200 mm a p-type (100) silicon wafers, (b) deposition of
SiO2 and α-Si films, (c) deposition of multi-layer SiO2/α-Si/Si3N4 films, (d) conventional lithography
and reactive ion etching (RIE) of Si3N4/α-Si, (e) removal of photoresist (PR) and Si3N4 hard mask,
(f) deposited of Si3N4 thin film, (g) anisotropic RIE of Si3N4 to form nanometer Si3N4 spacers, (h) remove
the α-Si and RIE SiO2 and Si films, (i) removal of top hard masks (HMs), (j) deposition of 5 nm SiO2

film, (k) deposition of Si3N4 and i-line lithography, (l) RIE of Si3N4, (m) RIE of Si3N4 and forms metal
silicide, (n) sputter metal, (o) RIE of metal, (p) deposition of HfO2 film, (q) formation of source and
drain contact hole, (r) formation of Si NW channel and bonding and (s) top view of the designed Si
NW sensors.

The cross-sectional views and top views of the device’s structures were observed using S-5500 and
S-4800 scanning electron microscopes (SEM, Hitachi, Tokyo, Japan), respectively. The cross-sectional
profiles of the final device were performed using transmission electron microscopy (TEM, FEI Talos,
Brno, Czech) and energy-dispersive X-ray spectroscopy (EDX, FEI Talos, Brno, Czech). The electrical
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characterization was performed using a B1500A (Keysight, Santa Rosa, CA, USA) semiconductor
parameter analyzer.

3. Results and Discussion

The images of the fabricated poly-Si NWs sensors by the SIT process are shown in Figure 3.
Figure 3a,b shows top views of poly-Si NW arrays by SEM measurement. As can been seen from the
images, highly uniform poly-Si NW arrays without any landing pads are achieved. The achieved
poly-Si NW arrays using the SIT approach have high efficiency, low cost and smaller sizes compared
with that of fabricated using the EBL process. Figure 3c shows a cross-sectional view of poly-Si NWs.
Contrasted with previous work [28,29], the dimensions and the morphology of the fabricated Si
NW arrays are well controlled and extraordinarily small, theoretically providing higher sensitivity
for the fabricated poly-Si NW sensor. Figure 3d,e shows top views of poly-Si NW sensors arrays.
The length of the electrode is 2 mm; the gate lengths (LGs) of poly-Si NW FETs are 5 µm, 10 µm,
and 15 µm, respectively. The sensor current is increased and the device’s variations are reduced for the
multi-channel poly-Si NW sensors.
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Figure 3. Images of poly-Si NW sensors. (a,b) SEM images of poly-Si NW array in top view,
(c) cross-sectional SEM image of poly-Si NWs, (d) top view of poly-Si NW arrays sensor by optical
microscope, (e) SEM image of the final poly-Si NW arrays sensor in top view.

Figure 4 shows the cross-sectional TEM image and the electron scattering spectrum (EDS) elemental
mappings of the poly-Si NWs channel. According to the TEM image, the thicknesses of HfO2/SiO2

layers are 19.34 nm and 5.25 nm, respectively. The sizes of the well-controlled regular rectangle poly-Si
NW is about 25 nm in width and 35 nm in length. Furthermore, the EDS analysis of Hf, O, poly-Si,
and N elements demonstrates that the HfO2 and SiO2 films are very uniform and the interfaces are
clear and flat without inter-diffusion. The well-controlled insulation layer could reduce the leakage
current from liquid to device, providing a robust detection environment in the liquid.

Initial measurements of transfer and output curves (ID-VG and ID-VD) were performed by applying
a bias gate voltage. In the measurement of the ID-VG curve, ID was measured at constant drain voltages
(VD = −0.2 V, −1.2 V, −2.2 V), and the gate voltage was swept from 0 to −30 V. In the measurement of
the ID-VD curves, the drain current was measured at constant gate voltages (VG from 0 to −20 V with a
−2 V step), and the VD was swept from 0 to −5 V with a −0.2 V step.
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Figure 4. (a) TEM image of poly-Si NW channel of the device, (b) EDS elemental mappings of O, Si,
Hf and N, respectively.

The ID-VG and ID-VD curves by bias gate voltages of the p-type poly-Si NW sensors are shown in
Figure 5. Figure 5a–c shows typical ID-VG curves of 5-µm-LG, 10-µm-LG and 15-µm-LG poly-Si NW
devices, respectively. As can be seen from the images, smooth and uniform p-type MOSFET curves
were achieved for the sensors fabricated at low temperature. The Ion/Ioff ratios of poly-Si NW devices
with the 5-µm-LG, 10-µm-LG and 15-µm-LG are 5.68 × 106, 2.84 × 106 and 2.31 × 106, respectively.
The corresponding extracted values of subthreshold swing (SS) are estimated to be 1070 mV/dec,
965 mV/dec and 956 mV/dec, respectively. Figure 5d depicts the ID-VD curves of poly-Si NW device
10-µm-LG. The drain current increases with increasing VG bias, implying that the carrier’s concentration
inside Si NWs can be linearly adjusted, and devices prepared at low temperatures exhibit good FET
electrical performance.
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The ID-VG and ID-VD curves of the SOI Si NW for 5-µm-LG, 10-µm-LG and 15-µm-LG are shown
in Figure 6, respectively. As can be seen from the images, smooth p-type MOSFET curves are achieved
for the sensors fabricate at low temperature. The Ion/Ioff ratios of 5-µm-LG, 10-µm-LG and 15-µm-LG

SOI Si NW devices are 1.47 × 108, 1.29 × 107 and 6.34 × 104, respectively, and extracted values of SSs
are estimated to be 686 mV/dec, 767 mV/dec and 1120 mV/dec, respectively. Figure 6d depicts the
ID-VD curves of the 10-µm-LG poly-Si NW device.
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Figure 7 shows the extracted typical parameter comparison between the poly-Si NW and SOI Si
NW sensors, e.g., the threshold voltage (Vth), SS, on-stage current (Ion) and Ion/off ratio, respectively.
The Vths of 5-µm-LG, 10-µm-LG and 15-µm-LG poly-Si NW devices are −8.06 V, −8.125 V and −7.87 V,
respectively. The Vth of 5-µm-LG, 10-µm-LG and 15-µm-LG SOI Si NW devices are −7.67 V, −7.95 V
and −7.8 V, respectively. The values of Vths of poly-silicon devices with different LGs are similar
to those of the SOI devices. The values of SSs of SOI devices are smaller than those of poly-Si
devices and the Ion/Ioff is also larger. The performance of SOI devices is slightly better than that of
low-temperature poly-silicon devices, which is caused by the monocrystalline silicon channel with a
low channel resistance. The achieved results imply that the poly-Si NW sensors could be applied for
future monolithic 3D-IC application.

Figure 8 shows the typical sensing characteristics of the poly-silicon nanowire sensors by analyzing
different stranded pH solutions. In the measurement of the ID-VG curve and the gate voltage was swept
from 0 to −10 V by top solution (see Figure 8a inserted image). The detection principle is to convert the
sensor surface potential change introduced by a different pH solution into the current change in the
semiconductor Si NW channel. The actual amount of charges depends on the concentration of specific
ions in the solution (the concentration of H+ ion in the manuscripts). Therefore, the pH of the solutions
could modulate the surface charge of the insulator/semiconducting interface consequently, resulting in
a shift of the threshold voltage. The scheme of the test using the top liquid gate is shown in the inserted
figure of Figure 8a. Due to the change of film surface potential of the channel, the poly-silicon nanowire
sensors exhibit Vth shifts (see Figure 8a). If the added solution is acidic (alkaline), the ID-VG curve
will shift to the right (left). After adding different pH buffers, the real-time response of ID is shown in
Figure 8b. Taking the buffer solution with pH = 7 as a reference, when the pH buffer is acidic, a positive
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charge is introduced and the current of the p-type poly-silicon nanowire sensor increases. When the pH
buffer is alkaline, a negative charge is introduced and the current decreases. The results are consistent
with the transfer curve of the p-type poly-silicon nanowire sensor increases. The extracted change
values of Vth and ID as a function of pH values are shown in Figure 8c,d, respectively. The changes
of Vth and ID have approximate linearity with the pH values, and the sensitivity as high as about
178 ± 1 mV/pH, which is caused by the small size in Si NW and large surface to volume ratio.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 11 
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Figure 9 shows the typical sensing characteristics of the SOI nanowire sensors by analyzing
different stranded pH solutions. In the measurement of the ID-VG curve, the gate voltage was swept
from 0 to −4 V by the top solution. Figure 9a shows that the threshold voltage shifts with the pH of the
solution. The extracted threshold change is linear with the pH of the solution (see Figure 9b). A similar
trend of Vth shift is obtained, but the values of changes are only about a fifth of the poly-silicon nanowire.
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Table 1 shows system parameters comparison of the relevant reported results in recent years
and our fabricated poly-silicon nanowire sensors. The SIT technique is used to form poly-silicon NW
sensor arrays with 25 nm in width and 35 nm in length, which exhibits high efficiency and low cost
than that of formed by EBL. Furthermore, the resistance and the device performance- the poly-silicon
NW sensor is greatly improved by introducing SBSD techniques, which is attributed to achieve a larger
Ion/Ioff ratio and smaller values of SSs. The results indicate that the poly-silicon NWs sensor fabricated
by low-temperature annealing has much better characteristics than those of the sensors prepared by
other methods, which attributed to its application for future monolithic 3D-IC applications.

Table 1. A comparison of silicon nanowire sensors in recent years.

2011 [30] 2012 [31] 2014 [32] 2016 [33] 2020 [34] This Work

Insulation material SiO2 SiNx SiO2 SiO2/Si3N4 SiO2/Si3N4/SiO2 SiO2 SOI

Insulation thickness 100 nm - 80 nm 50/65 nm -/150/7 nm 145 nm

NWs material Si Si poly-Si poly-Si poly-Si poly-Si Si

Si NWs fabrication
approach VLS RIE sidewall spacer RIE EBL SIT SIT

Processing temperature - - - 600 ◦C 1050 ◦C 600 ◦C 600 ◦C

NWs size ~90 nm - - ~40 nm 40~50 nm ~30 nm ~30 nm

LG - - 100 nm 10 µm 400 nm 10 µm 10 µm

Ion/Ioff ~105 ~104 - 2.03 × 105 2.5 × 105 2.84 × 106 1.29 × 107

SS (mV/dec) 2500 2300–3000 - 975 1030 965 767

Vth change (V) - - 0.087 0.0437 - 0.178 0.0688

4. Conclusions

In summary, low cost poly-Si NW sensors arrays are fabricated through an advanced SIT process
with high efficiency than that formed by electron beam lithography, and the morphology of Si NW
is well controlled with small sizes. Furthermore, a low-temperature flow (600 ◦C) with silicide
and implantation is designed and carried out. Benefiting from the silicide and isolation processes,
the poly-Si NW FET sensors show six orders of magnitude in switching ratio and a SS of 965 mV/dec,
which is similar to the counterpart of the SOI Si NW sensor. In addition, the poly-Si NW FET sensors
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show the Vth shift as high as about 178 ± 1 mV/pH, which is five times larger than that of the SOI Si
NW sensors. Therefore, the design and fabricated poly-Si NW sensor arrays approach provides a good
option for its potential application of the monolithic 3D-ICs in the future.
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