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Abstract: Diabetes is well established as a chronic disease with a high health burden due to mortality
or morbidity from the final outcomes of vascular complications. An increased duration of hyper-
glycemia is associated with abnormal metabolism. Advanced glycation end products (AGEs) are
nonenzymatic glycated forms of free amino acids that lead to abnormal crosslinking of extra-cellular
and intracellular proteins by disrupting the normal structure. Furthermore, the interaction of AGEs
and their receptors induces several pathways by promoting oxidative stress and inflammation. In
this review, we discuss the role of AGEs in diabetic vascular complications, especially type 2 DM,
based on recent clinical studies.

Keywords: diabetes mellitus; hyperglycemia; chronic complication; oxidative stress; glycation end
products; advanced

1. Introduction

Type 2 diabetes mellitus (DM) has become increasingly prevalent over the past several
decades, with an estimated prevalence of over 366 million by 2030 and over 693 million
by 2045 [1–3]. Moreover, DM is a multifactorial and chronic metabolic disease caused by
impaired metabolism of carbohydrates, fats, and proteins and ranks as the 11th leading
cause of death caused by chronic complications worldwide [4]. DM is associated with
morbidity and mortality due to its vascular complications. Recent studies have reported
that young-onset type 2 DM (diagnosis at <40 years) has been correlated with an increased
risk and higher burden of emerging complications [5,6]. As a result, the identification of
diabetic complications is of considerable importance. Over the decades, research has been
conducted on several alternative methods for preventing diabetic complications. Acute
complications, such as hypoglycemia and hyperglycemia with ketoacidosis or hyperosmo-
lar hyperglycemic status combined into the most serious acute life-threatening condition,
can have a sudden onset [7]. In contrast, chronic complications are associated with the
duration of DM (long-term exposure to hyperglycemia) and the degree of glycemic con-
trol and are categorized as microvascular complications, due to damage to small blood
vessels, and macro-vascular complications due to damage to the arteries. Microvascular
complications include diabetic kidney disease, diabetic retinopathy, and neuropathy. Dia-
betic complications such as coronary artery disease (CAD), cerebrovascular disease, and
peripheral vascular disease (PVD) are categorized as macrovascular complications.

A near-normal level of intensive glycemic control helps to prevent diabetic vascular
complications. Classic, established, and large-scale randomized controlled studies, such as
the Diabetes Control and Complications Trial (DCCT) [8], United Kingdom Prospective
Diabetes Study (UKPDS) [9], Action in Diabetes and Vascular Disease: Preterax and Di-
amicron Modified Release Controlled Evaluation (ADVANCE) [10], and Action to Control
Cardiovascular Risk in Diabetes (ACCORD) [11], have investigated whether intensive
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glycemic control resulted in risk reduction for chronic microvascular complications. Inten-
sive glycemic control, defined as glycated A1c (HbA1c) below 6.5–7.0%, contributes to a
reduction in long-term outcomes of microalbuminuria, macroalbuminuria, polyneuropathy,
and photocoagulation for DM retinopathy [8–11]. Early-stage control of DM reduces the
long-term effect of hyperglycemic metabolic memory [9]. Thus, intensive glycemic control
in the early stage of DM is emphasized as an effective preventive strategy against DM
microvascular complications [8–11]. However, the association between intensive glycemic
control and cardiocerebrovascular diseases is still not clear. In the majority of patients en-
rolled in these studies, the progression of complications from cardiovascular disease (CVD)
was not prevented [12]. Therefore, for the prevention of CVD, consideration of multiple
accompanying factors rather than only the glucose level has been emphasized. Recently,
regarding DM management, multifactorial interventions, including blood pressure control,
and maintenance of ideal body weight have been used [13]. Moreover, there is consensus
for good glycemic control (HbA1c < 6.5%) and recommendations for individualizing HbA1c
targets [14]. HbA1c, which is generated from the nonenzymatic glycation of hemoglobin,
is the well-established standard for assessing glycemic management, and links between
higher HbA1c and diabetic complications have been shown [15,16]. Because the mean
HbA1c provides incomplete information about glycemic variability, long-term glycemic
exposure, and fundamental causes of diabetic complications, markers of complications
that account for the duration of hyperglycemia have been investigated [17]. Thus, the
limitations of HbA1c lead to a focus on complementary methods for predicting diabetic
complications [18].

In contrast to HbA1c, advanced glycation end products (AGEs) are products of glucose–
protein or glucose–lipid interactions through glycation [19]. AGEs induce tissue damage.
The mechanisms, pathogenesis, and consequences of AGEs on diabetic complications are
diverse. The most crucial mechanisms involved in the progression of diabetic complications
are induced by chronic hyperglycemia from decreased carbohydrate, protein, and lipid
metabolism. Regarding hyperglycemia and its metabolism, chronic hyperglycemia induces
an increase in oxidative stress, which is considered a factor of cellular, vascular, and
tissue damage [20]. The concept of “metabolic memory” has been investigated from the
perspective of nonenzymatic glycation of proteins, lipids, and nucleic acids [21]. The
accumulation of AGEs in cells due to nonenzymatic condensation under oxidative stress
conditions and activation of the polyol pathway, hexosamine pathways, and protein kinase
C pathways is greater than that under physiological conditions, and AGE receptors are
overexpressed. Via these pathways, various inflammatory cytokines are activated [22].
AGEs and their related molecules interact through crosstalk and alter the normal function of
proteins [23]. Increased inflammatory cytokines and abnormal and stiffer glycated proteins
contribute to the development of diabetic microvascular complications (retinopathy and
nephropathy) and macrovascular complications. The concentration of circulatory AGEs
was found to be increased in DM patients with CVD complications [24]. Thus, AGEs are
the crucial molecules involved in the development of various diabetic complications.

Since AGEs were discovered in the early 1900s [25], the mechanisms underlying
metabolic memory have remained unclear. There are various sources of AGEs, and few
methods have been used to measure AGEs.

In this review, we summarize the process of AGEs formation and focus on the role of
AGEs and AGEs receptors as pathophysiologic factors for vascular complications in type
2 DM based on clinical and experimental studies.

2. Sources and Formation of AGEs

AGEs originate from either endogenous or exogenous sources [26]. Approximately
30% of AGEs are absorbed into the systemic circulation via gastrointestinal absorption and
the influence of the systemic burden. A high burden of AGEs is related to oxidative stress,
inflammation, impaired innate defense, and insulin resistance [27]. Heterogeneous AGEs
rely on the specific structure of protein-bound AGEs and are divided into protein-bound,
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peptide-bound, or free forms of AGEs. Unabsorbed AGEs in the colon are crucial factors
for compromised glycemic control [28].

In contrast, AGEs are generated predominantly through endogenous processes via
the nonenzymatic reaction of glucose-derived carbonyls with amino groups of lysine and
arginine protein residues by forming unstable Schiff bases and stable Amadori products
or fructosyl lysine, such as glycated hemoglobin, which is used in the diagnosis of DM,
or follow-up modalities, and fructosamine [29]. This process, involving the formation of
Schiff bases and Amadori products, is known as the Maillard reaction [25] (Supplemental
Figure S1). Both of these compounds are reversible and react irreversibly with protein and
peptide to form crosslinks. Then, levels of highly reactive α-dicarbonyl (DC) compounds,
which are downstream products of Amadori and include glyoxal (GO), methylglyoxal
(MGO), glycolaldehyde, and 3-deoxyglucosone (3-DG), are increased. These products
are generated in DM but also under metabolic conditions other than nonenzymatic re-
actions [30]. α-DCs are inevitable in anaerobic glycolysis, the polyol pathway, and lipid
peroxidation [31,32]. Because hyperglycemia in type 2 DM induces glucose toxicity due
to higher glucose fluxes via the glycolytic pathway, excessive glycolysis gives rise to the
accumulation of dihydroxyacetone phosphate due to insufficient triose phosphate iso-
merase activity and an increase in the formation of the highly reactive bicarbonyl MGO [33].
Lipid peroxidation, which is also increased in type 2 DM, results in lipid peroxidation end
products (ALEs). The bicarbonyl products also have a role in the formation of AGEs [34].

AGEs have been categorized into two groups depending on their structure: the
first group includes N-carboxymethyllysine (CML), pentosidine, crossline, pyrraline, and
hydroimidazolone [35]; the second group includes AGE-1 (glucose-derived AGEs), AGE-2
(glyceraldehyde-derived AGEs), AGE-3 (glycolaldehyde-derived AGEs), AGE-4 (MGO/
methylglyoxal-derived AGEs), AGE-5 (glyoxal-derived AGEs), AGE-6 (3-deoxyglucosone-
derived AGEs), and acetaldehyde-derived AGEs (AA-AGEs) [36].

Thus, the formation and biochemistry of AGEs have been well-established elsewhere.
AGEs formation extends the damage to macromolecules in tissue with structural and
functional alterations [37]. Nevertheless, the mechanism of metabolic memory-related
diabetic complications needs to be further investigated.

3. AGEs Interactions with Receptors

Exogenous AGEs and spontaneously produced endogenous AGEs interact through
various signaling pathways and several AGEs receptors. AGEs bind into the extracellular
transmembrane receptor and initiate signaling cascades. Among several receptors, the
receptor for advanced glycation end products (RAGE) is a central transduction receptor of
AGEs. RAGE, which is encoded on chromosome 6 near major histocompatibility complex
III, is incorporated into a member of the immunoglobulin superfamily and recognized
by its three-dimensional form rather than by specific amino acid sequences [38]. RAGE
is expressed everywhere at a low level of RAGE ligand: endothelial cells, macrophages,
monocytes, neurons, vascular smooth muscle cells, or chondrocytes [39,40]. However,
RAGE is activated with an increase in the level of RAGE ligands in inflammation and
its related responses. Thus, RAGE regulates inflammation via NF-kB, TNF-α, oxidative
stress, and dysfunction of endothelial cells in type 2 DM [41]. In addition to the membrane-
bound form of RAGE, there are two types of circulating soluble RAGEs (sRAGE) without
transmembrane and cytoplasmic domains [42]. sRAGE is produced by cleavage of the
cell surface receptor (cRAGE), which is generated by matrix metalloproteinases (MMPs)
or by alternative splicing of endogenous secretory RAGE (esRAGE) [43]. Ligand binding
enhances RAGE shedding, and serum sRAGE is considered representative of tissue RAGE
expression [44]. Isoforms such as sRAGE and esRAGE bind RAGE ligands and block the
interaction between membrane RAGE and cellular responses [45]. However, the exact
function of sRAGE remains uncertain.

There is evidence of an increase in low-grade inflammation in type 2 DM. High levels
of AGEs in type 2 DM patients are correlated with increased RAGE mRNA expression,
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protein carbonyl levels, and lipid peroxidation [46]. Moreover, the activation of signaling
cascades, including NF-kB, and oxidative stress from AGE/RAGE interactions stimulate
inflammation and tissue injury through the expression of vascular cell adhesion molecules,
monocyte chemoattractant protein-1, endothelin-1, and plasminogen activator inhibitor-1
(PAI-1), and these factors are involved in vascular and tissue damage [47,48]. Therefore,
AGEs with RAGE act as surrogate markers of inflammation, and their levels increase in
chronic metabolic-inflammatory disorders [40].

In addition to RAGEs, the other classes of receptors are scavenger receptors, such as
Stab1and Stab2, and AGE receptors (AGERs), such as AGE-R1~AGER [49,50]. These recep-
tors can recognize and bind AGE ligands without the transduction of cellular signaling after
engagement by AGEs. They have a role in the detoxification of AGEs and of AGE-specific
ligand binding with degradation [51]. The expression of AGE-R1 was decreased, and AGE
levels were elevated in DM patients [52,53]. AGE-R3 is hyperactive with hyperglycemia
and high levels of AGEs [54].

4. Pathogenesis of Diabetic Vascular Complications and AGEs in Type 2 DM

Chronic complications of type 2 DM are caused by structural or functional modifica-
tion of the vasculature. Structural modification results from extracellular or intracellular
proteins or polypeptides that are vulnerable to modification by AGEs [55]. AGEs are
found in the serum, the vasculature, the retina, and various renal compartments, such as
the glomerulus and basement membrane [50]. Therefore, AGEs are involved in damage
to multiple tissues or organs in type 2 DM after long-term exposure to hyperglycemia.
Chronic hyperglycemia in uncontrolled type 2 DM accelerates the accumulation of AGE
precursors, such as MGO, and activates the protein kinase C pathway, followed by increases
in oxidative stress and inflammatory cytokine levels. Along with AGE accumulation, the
AGE–RAGE axis is correlated with diabetic complications in patients with type 2 DM.
Long-term DM complications are mainly categorized as microvascular complications, such
as diabetic retinopathy (DR), nephropathy (DN), and peripheral neuropathy (DPN), and
macrovascular complications, including cardiovascular disease, cerebrovascular disease,
and PVD.

4.1. Microvascular Complications and AGEs

Microvascular complications are defined as the presence of retinopathy, nephropathy
with albuminuria, and neuropathy [56,57]. Different organs are linked to these compli-
cations. DN is the leading cause of renal failure and is defined as estimated glomerular
filtration rate (eGFR) < 60 mL/min/1.73 m2, and/or microalbuminuria > 3 mg/g, or an
albumin-to-creatinine ratio (ACR) ≥ 3 mg/mmol in patients with DM [58,59]. The mech-
anism of DN is related to glomerular hypertrophy, renal oxidative stress, and fibrosis.
Glomerular changes such as the thickening of tubular basement membranes, mesangial
hypertrophy, and loss of podocytes are provoked by AGEs. RAGEs are also found in
tubular epithelial cells and glomerular cells, including podocytes and mesangial cells. The
activation of RAGE from AGEs enhances RAGE expression. Therefore, RAGE expression is
prevalent where AGEs accumulate. Tubular cells are exposed to a large amount of AGEs
and increase the activation of intracellular signaling pathways via their highly expressed
RAGE [60]. This process is crucial for the development of interstitial fibrosis and glomeru-
lar dysfunction during the early phase in type 2 DM [60]. Therefore, recent studies have
focused on the therapeutic effects of RAGE blockade in DN [61–64].

The AGE–RAGE pathway is activated via various signaling cascades, such as phos-
phoinositide 3-kinase (PI3K)/protein kinase B (PKB)/IκB kinase (IKK), and NF-κB activa-
tion [51]. NF-κB binds to the RAGE promoter and enhances RAGE expression. Increased
levels of NF-κB in the kidney activate glomerular and tubular cell damage and induce
renal injury. NF-κB also affects adhesion molecules and proinflammatory cytokines such as
interleukin (IL)-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein
(MCP)-1. These factors are involved in the development of DN. IL-6 is involved in patho-
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logic changes in mesangial cells, and MCP-1 plays a role in mesangial cell proliferation.
The AGE–RAGE interaction promotes reactive oxygen species (ROS), and ROS enhances
the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) path-
way [53,65,66]. JAK-STAT signaling has a crucial role in mesangial cells, podocytes, and
epithelial cells and induces glomerular hypertrophy by inducing growth factors, including
tumor growth factor (TGF)-β, platelet-derived growth factor (PDGF)-β, and IGF-binding
protein-related protein-2 [67]. TGF-β regulates inflammation by upregulating MCP-1 and
NF-κB [68].

AGEs themselves are involved in the progression of DN. AGEs form cross-links with
matrix proteins such as collagen, leading to structural changes and inducing DM glomeru-
losclerosis with the accumulation of plasma proteins, lipid proteins, and immunoglobu-
lin [69]. In addition to structural changes, the nonenzymatic glycation of type IV collagen
provokes vascular permeability to albumin and the interaction with negatively charged
proteoglycans [70]. In renal systems, the renin–angiotensin system (RAS), which comprises
renin, angiotensinogen, angiotensin I, angiotensin-converting enzyme (ACE), angiotensin
II, and their receptors, is a key factor in blood pressure and fluid balance. AGEs are in-
volved in activated angiotensin II and trigger mesangial hypertrophy [70]. Angiotensin II
also induces ROS production [71,72].

DR is characterized by abnormal vascular proliferation, which accompanies hem-
orrhage and ischemia in the retina. AGEs and CML are located in retinal vessels, and
the levels are positively correlated with DR according to previous studies [54,73]. The
AGE–RAGE pathway induces the apoptosis of pericytes and increases oxidative stress via
NF-κB production. Increased levels of NF-κB upregulate vascular endothelial growth factor
(VEGF) and allow endothelial permeability [74]. ROS generation, as in DN, can aggravate
angiogenesis and vascular permeability. These pathologic changes cause damage to the
subretinal membrane and microvasculature [75].

The role of AGEs in DPN is well established. DPN is stratified into the endothelium
of the vasa nervorum, the sensory neuron (dorsal root), and Schwann cells [76]. As with
DR, vascular dysfunction via the accumulation of AGEs in the endothelium of the vasa
nervorum causes damage to the vascular structure and ischemia or occlusion. AGEs reduce
the conduction of sensory and motor nerves and nerve blood flow [77]. The glycation of
collagen and laminin induces alterations in the basement membrane and increases the
permeability of vessels. Increased RAGE levels in dorsal root neurons activate the NF-kB
cascade response [78]. The AGE–RAGE pathway promotes the intracellular activation
of NADPH oxidase and the production of ROS. These pathological processes affect the
majority of peripheral nerves [37].

Clinical Studies on Microvascular Complications and AGEs

Recent studies have investigated the association between AGEs and diabetic microvas-
cular complications. Clinical studies have demonstrated that AGEs are positively correlated
with the risk of microvascular complications (Table 1); however, the results in AGEs and
complications remain inconsistent.
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Table 1. Clinical studies—an association between microvascular complications and AGEs/RAGE in
type 2 DM; Investigation of recent research within the past 10 years.

No Authors Year Country Subjects/Study Design Finding

Diabetic nephropathy

1 Skrha J. Jr., Soupal J., Loni
Ekali et al. [79] 2013 Czechoslovakia

41 subjects with type 2 DM
(47 subjects with type 1 DM)

/cross-sectional

Higher AGEs levels were correlated
with the albumin–creatinine ratio

2.
Galleau V.,

Cougnard-Gregoire A.,
Nov S et al. [80]

2015 France 418 subjects/cohort study AGEs accumulation was associated
with renal insufficiency

3 Yozgatli K., Lefrandt, J.D.,
Noordzij M.J et al. [81] 2018 UK 563 subjects/prospective cohort study

Development of microvascular
complications was associated with
HbA1c, not tissue accumulation of

AGEs

4 Farhan S.S. and Hussain
S.A. [82] 2019 Iraq 50 subjects Cross-sectional

There was a positive correlation
between AGEs ratio and urine

albumin/serum ratio in type 2 DM

5 Nishad R., Tahaseen V.,
Kavvuri R. et al. [83] 2021 India 130 subjects with albuminuria ranging

from 150–450 mg/day/cross-sectional

A significant association between
AGEs and impaired kidney function
was observed in type 2 DM patients

using AGE index.

6 Koska J, Gerstein H.C.,
Beisswenger P.J. et al. [84] 2022 USA

Action to Control Cardiovascular Risk
in Diabetes (ACCORD) (n = 1150) and
Veterans Affairs Diabetes Trial (VADT)

(n = 447) participants/cohort study

AGEs in two different type 2 DM
cohorts showed strong correlation with
renal outcomes of reduced eGFR and

macroalbuminuria.

7 Jin Q., Lau E.S., Luk A.O,
Ozaki R, et al. [85] 2022 Hong Kong 3725 subjects/cohort study

AGEs measured by higher skin
autofluorescence level were associated

with kidney disease progression in
type 2 DM

Diabetic retinopathy

1. Ng Z.X., Chua K.H., Iqbal
T, et al. [86] 2013 Malaya 171 type 2 DM subjects versus

235 healthy control/case–control study

Proliferative DR patients had
significantly higher levels of

plasma pentosidine

Diabetic neuropathy

1.
Vouillarmet J.,

Maucort-Boulch D.,
Michon P. et al. [87]

2013 France 66 subjects/prospective cohort study AGEs measured by skin
auto-fluorescence predict diabetic foot.

2. Abuert C.E., Michel P.L.,
Gillery P. et al. [88] 2014 Switzerland 198 subjects/cohort study CML and sRAGE were associated with

DPN in patients with type 2 DM

3. Zhao X.W., Yue W.X.,
Zhang S.W. et al. [89] 2022 China 560 subject/cohort study

Accumulation of AGEs measured
using skin autofluorescence is

correlated with DPN

AGEs, advanced glycation end products; CML, N-carboxymethyllysine; DM, diabetes mellitus; DPN, diabetic
polyneuropathy; RAGE, receptor for advanced glycation end products.

4.2. Macrovascular Complications and AGEs

Atherosclerotic CVDs, including ischemic heart disease, cerebrovascular disease, and
atherosclerosis, are leading causes of death worldwide, including in Korea [90,91]. Periph-
eral artery disease (PAD) with critical limb ischemia is also prevalent in type 2 DM. As
previously mentioned, the etiology of DM complications is based on inflammation and
changes in vasculature. Similar to the microvasculature, immune response and inflam-
mation in vasculature are key factors in the pathogenesis of CVD. AGEs accumulation
has been strongly related to cardiac pathophysiology. Recently, the role of AGEs in dia-
betic cardiomyopathy has been characterized by triggering the production of nitric oxide
(NO) and inducing ventricular remodeling [92,93]. AGEs act in the progression of CVD
through the modification of extracellular and intracellular proteins and signaling cascades
via AGE–RAGE pathways.
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4.2.1. Role of AGEs in Macrovascular Complications

Among extracellular proteins, AGEs alter collagen, elastin, and laminin of the base-
ment membrane and connective tissues [49]. Vascular stiffness is increased by the AGE
crosslinking of collagen and elastin [24]. Glycated collagen changes endothelial cell activity
and forms atherosclerotic plaques [94]. Laminin modified by AGEs alleviates binding to
type IV collagen and inhibits the adhesion to endothelial cells for matrix glycoproteins.
Thus, AGEs change the extracellular matrix function and integrity of arteries. AGEs can
also alter lipids. Lipoproteins are targets of glycation. Low-density lipoproteins (LDLs)
include forms of oxidized LDL, glycated LDL, and glycoxidized LDL. AGEs are linked
to lipids by oxidative modification. LDLs are more often found in the form of glycated
LDL in type 2 DM. Glycated LDLs can evade recognition from LDL receptors and can
approach the arterial wall [95]. These glycated LDLs lead to intracellular accumulation and
foam cell formation [96]. Glycated LDLs decrease the production of NO and clearance of
LDL and promote atherosclerosis [97]. A previous study supported these mechanisms by
investigating the elevated lipid-linked AGE levels in LDL both in vitro and in patients with
DM [98]. Glycated high-density lipoproteins (HDLs) inhibit paraoxonase activity, which
has a role in preventing LDL oxidation [49]. Glycated HDL also influences inflammation
and reduces the removal of cholesterol and cholesterol transport, which are important
processes in atherosclerosis [54,99].

4.2.2. Role of AGEs in Cardiomyopathy and Atherosclerosis

Regarding intracellular AGE functions, AGEs induce crosslinking with intracellular
proteins involved in Ca2+ homeostasis (impaired sarcoendoplasmic reticulum; SR Ca2+-
ATPase pump) and result in cardiomyocyte dysfunction [100]. During the AGEs-RAGE
interaction, Ca2+ levels are decreased by the upregulated ryanodine receptor, which has a
role in balancing ion levels during the systolic and diastolic phases [101]. Overall, these
pathologies result in the promotion of atherosclerosis.

The AGE–RAGE interaction upregulates mitogen-activated protein kinase (MAPK),
PIP3K, p38, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JK), and
JAK/STAT signaling [53]. These cascades activate NF-κB and STAT3 transduction [102].
Thus, the overexpression of inflammatory factors promotes myocardial fibrosis. The
AGE–RAGE interaction also influences vascular smooth muscle cells. Sakaguchi et al.
demonstrated that smooth muscle cell proliferation upon arterial injury was suppressed in
homozygous RAGE null mice compared with wild-type mice [103]. The crosstalk between
oxidative stress and the AGE–RAGE axis is important in the context of diabetic macrovascu-
lar complications [104]. AGE–RAGE, as mentioned previously, results in signaling cascades
downstream of MAPK, PIP3K, p38, and NF-κB and generates ROS with the acceleration
of oxidative stress [105]. The AGE–RAGE axis in endothelial cells provokes the expres-
sion of genes such as p22phox and gp91phox, which are reduced forms of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase and cause endothelial cell dysfunc-
tion. The prostacyclin in endothelial cells is inhibited by the AGE–RAGE system and
promotes the de novo synthesis of PAI-1, thereby inhibiting fibrinolytic activity and then
contributing to stabilization of the thrombus [106]. Therefore, therapeutic targets in this
pathway have been studied, including blockade of RAGE, which reduces the development
of atherosclerosis [107].

AGEs have a role in endothelial cell production of VEGF, which is involved in the
development of atheroma. As aforementioned in DR and AGEs, the NF–kB–TNF–α–VEGF
signaling cascade is activated by the AGE–RAGE system. The NF-kB pathway increases
VEGR secretion, preventing the repair of endothelial lesions and inducing atherogenesis.
Moreover, activated VEGF simulates differentiation from monocyte to macrophage in
vasculatures and the accumulation of oxidized LDL, leading to foam cell formation [102].
Therefore, the AGE–RAGE system also activates pathologic inflammation in plaques and
atheromas [105].
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Clinical Studies on Macrovascular Complications and AGEs

Clinical studies on the association between AGEs (and RAGE) and CVD in T2DM
have recently been published (Table 2). Higher CML and AGEs levels showed an increased
prevalence in PVD. Therefore, there has been evidence for a role of AGEs in diabetic
complications. Koska et al. found an association between CVD risk and AGEs in a
subgroup from the ACCORD trial. De la Cruz-Ares et al. assessed the difference in AGE
levels between patients with CVD and established type 2 DM versus those with CVD and
newly diagnosed type 2 DM [108]. Surprisingly, established type 2 DM patients showed
higher levels of AGEs. However, previous studies could not prove a causal relationship.
Stirban et al. demonstrated that nutritional AGEs showed direct detrimental effects on
the vasculature [109]. In contrast to Stirban et al.’s result, Linkens et al. could not find a
correlation between high AGE levels and vascular complications [110].

Table 2. Clinical studies—an association between macrovascular complications and AGEs/RAGE in
type 2 DM; Investigation of recent research within 10 years.

No Authors Year Country Subjects/Study Design Finding

1. Stirban A., Kotsi P., Franke
K. et al. [109] 2013 Germany 19 subjects/randomized-controlled study

Administration of a single
AGE-modified protein impaired

macrovascular function

2. Chawla D., Bansal S,
Banerjee B.D. et al. [46] 2014 India 75 subjects/cohort study

Serum AGEs levels were
significantly higher in DM with

vascular complications as compared
to T2DM without complications

3. De Vos L.C., Mulder D.J.,
Smit A.J. et al. [111] 2014 Netherlands 252 subjects/prospective cohort study

AGEs level measured by skin
autofluorescence was significantly
correlated with all-cause mortality

and peripheral vascular disease

4. Yozgatli K., Lefrandt J.D.,
Noordzij M.J. et al. [80] 2018 Netherlands 563 subjects in multicenter

/cohort study

AGEs were associated with the
development of

macrovascular events

5. Koska J., Saremi A, Howell
S. et al. [20] 2018 USA 445 subjects from VADT and 271 subjects

from the ACCORD study

Higher levels of select AGEs were
associated with an increased

incidence of CVD

6. Ninomiya H., Katakami N.,
Sato I. et al. [112] 2018 Japan 115 type 2 DM and 25 type 2 DM

subjects/prospective cohort study
AGEs can be utilized as a screening

marker of atherosclerosis

7.
De la Cruz-Ares S., Cardelo

M.P., Gutiérrez-Mariscal
F.M. et al. [108]

2020 Spain 540 subjects/cross-sectional study

AGEs levels and intima-media
thickness of the common carotid

arteries were higher in patients with
CVD and type 2 DM

8. Linkens A.M., Houben A.J.,
Niessen P.M. et al. [110] 2022 Netherlands 82 subjects/randomized-controlled study A 4-week diet low or high in AGEs

had no effect on vascular function

AGEs, advanced glycation end products; CVD, cardiovascular disease; DM, diabetes mellitus.

5. Summary

The pathophysiology of AGEs is closely related to glucose, lipid, and protein metabolism.
Their metabolism is intricately entangled with oxidative stress and inflammatory reactiva-
tion according to chronic hyperglycemia. It is natural that AGEs are the crucial contributing
factor to the progression of diabetic complications. Clinical and experimental research on
the pathologic complications of DM has focused on AGEs as new biomarkers or therapeutic
targets for several decades. Several clinical studies have determined that AGEs and RAGE
are risk factors for vascular complications in type 2 DM. Nevertheless, the effects of AGEs
and RAGE or other interactions on vascular complications among type 2 DM patients are
not consistent in various studies due to the nature of the cross-sectional design or cohorts
with a small number of samples. Therefore, there is a need for larger and longitudinally de-
signed studies with validated detection tools for AGEs to make progress in the prevention
of diabetic complications in the real world.
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