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Abstract: African swine fever (ASF) is a hemorrhagic disease of swine characterized by massive
lymphocyte depletion in lymphoid tissues due to the apoptosis of B and T cells, a process likely
triggered by factors released or secreted by infected macrophages. ASFV CD2v (EP402R) has been
implicated in viral virulence and immunomodulation in vitro; however, its actual function(s) remains
unknown. We found that CD2v expression in swine PK15 cells induces NF-κB-dependent IFN-β
and ISGs transcription and an antiviral state. Similar results were observed for CD2v protein treated
swine PBMCs and macrophages, the major ASFV target cell. Notably, treatment of swine PBMCs and
macrophages with CD2v protein induced apoptosis. Immunoprecipitation and colocalization studies
revealed that CD2v interacts with CD58, the natural host CD2 ligand. Additionally, CD58 knockdown
in cells or treatment of cells with an NF-κB inhibitor significantly reduced CD2v-mediated NF-κB
activation and IFN-β induction. Further, antibodies directed against CD2v inhibited CD2v-induced
NF-κB activation and IFN-β transcription in cells. Overall, results indicate that ASFV CD2v activates
NF-κB, which induces IFN signaling and apoptosis in swine lymphocytes/macrophages. We propose
that CD2v released from infected macrophages may be a significant factor in lymphocyte apoptosis
observed in lymphoid tissue during ASFV infection in pigs.

Keywords: African swine fever virus; CD2v; interferon-β; NF-κB; CD58; lymphocyte; macrophage;
apoptosis; pathogenesis

1. Introduction

African swine fever (ASF) is an acute viral hemorrhagic disease of domestic swine with
mortality rates approaching 100%. Devastating ASF outbreaks and continuing epidemics
starting in the Caucasus region and now in the Russia Federation, Europe, China and other
parts of Southeast Asia (2007 to date) highlight its significance.

ASFV, the sole member of the Asfarviridae (Asfar, African swine fever, and related
viruses), is a large, enveloped and genetically complex virus containing a double-stranded
DNA genome of approximately 190 kilobase pairs, which encodes for over 170 proteins.
Aspects of genome structure and replication strategy are shared between ASFV and other
large dsDNA viruses, most notably poxviruses [1].

ASFV is the only known DNA arbovirus. In sub-Saharan Africa, the virus is main-
tained in a sylvatic cycle between wild swine (warthogs and bushpigs) and argasid ticks
of the genus Ornithodoros. Unlike domestic swine, wild swine infected with ASFV are
generally asymptomatic and show low viremias. Most adult warthogs in ASFV enzootic
areas are seropositive and persistently infected. ASFV persistently infects ticks from which
ASFV can be isolated years post-infection [1].

ASF in domestic pigs occurs in several forms, ranging from highly lethal (100%
mortality) to subclinical. Hemostatic and hemodynamic changes (hemorrhage, edema,
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ascites and shock) resulting from intravascular activation of coagulation are observed in
pigs infected with highly virulent ASFV strains [2–4]. ASFV infects cells of the mononuclear-
phagocytic system, including highly differentiated fixed-tissue macrophages and specific
lineages of reticular cells, and highly virulent strains induce extensive damage in affected
tissues [5,6]. The ability of ASFV to replicate and induce marked cytopathology in these cell
types in vivo appears to be a critical factor in ASFV virulence. A characteristic of acute ASF
is the severe lymphoid tissue destruction and massive lymphocyte depletion observed in
infected pigs. As lymphocytes do not support ASFV replication, factors released or secreted
by infected macrophages have been implicated in triggering lymphocyte apoptosis [7–11].
However, viral and host factors responsible are poorly understood.

Macrophages play a central role in development of both innate and adaptive immune
responses [12]. ASFV infection of monocytes and macrophages has been shown to alter
the expression and secretion of various cytokines, including IFNs, TNF, IL-1 and TGF-β,
and modulate apoptosis [5,10,11,13–16]. Uncharacterized soluble factors released by ASFV-
infected macrophages inhibit proliferation of swine lymphocytes in response to lectins
in vitro [17].

ASFV CD2v (EP402R) is a glycoprotein with homology to host the adhesion molecule,
CD2, which is expressed on T and NK cells [18–20] and involved in host immunomodula-
tion, virulence and induction of protective immune responses [21–23]. The role of CD2v in
ASFV virulence is not clearly understood. Infection of pigs with a CD2v deletion mutant
virus resulted in different infection phenotypes depending on the parental virus strain.
CD2v deletion in the European isolate BA71 resulted in virus attenuation [22]. Additionally,
CD2v gene mutations have been observed in other attenuated ASFV strains [24] further
suggesting a role of CD2v in virus virulence. In contrast, deletion of CD2v from virulent
strains Malawi and Georgia 2007, while affecting aspects of viral pathogenesis, did not
significantly affect viral virulence [21,25]. Although non-essential for viral replication in
pigs, CD2v is necessary for virus replication in the tick midgut and for generalization of
infection in the tick [26,27].

The ASFV CD2v contains all the domains present in cellular CD2 and some of the
residues involved in binding to its natural ligand, the cell adhesion molecule CD58/LFA-
3 [18,19]. Interaction of CD58 with CD2 initiates cellular kinase signaling [28–37]. Previous
studies have described the involvement of soluble factor/s in the inhibition of lympho-
cyte proliferation in peripheral blood mononuclear cells (PBMCs) infected with ASFV
or incubated with cell extracts/supernatants free of virus [17,21] and have defined an
immunomodulatory role of CD2v in inhibition of mitogen-induced proliferation of lym-
phocytes in vitro [21]. We hypothesized that soluble CD2v could be mimicking host CD2 by
interacting with CD58, thus leading to induction of kinase signaling, and other downstream
cellular events.

Here, we show ASFV CD2v induces NF-κB-mediated IFN expression through interac-
tion with CD58. Treatment of swine PBMCs with purified CD2v leads to IFN-β induction,
NF-κB-p65 nuclear translocation, and apoptosis thus providing a potential mechanism for
CD2v-induced lymphocyte apoptosis. We propose that CD2v may be a significant viral
factor in the bystander lymphocyte depletion observed during ASFV infection in pigs.

2. Materials and Methods
2.1. Cells

Porcine kidney cells (PK15) and monkey kidney cells (Vero) were obtained from the
American Type Culture Collection (ATCC) and maintained at 37 ◦C with 5% CO2 in mini-
mal essential medium (MEM) supplemented with 10% fetal bovine serum (FBS) (Atlanta
Biologicals, Flowery Branch, GA, USA), 2 mM L-glutamine, gentamicin (50 µg/mL), peni-
cillin (100 IU/mL) and streptomycin (100 µg/mL). Human embryonic kidney (HEK 293T)
cells were maintained in the Dulbecco’s modified essential medium (DMEM) supplemented
as above.
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Swine PBMCs were obtained from swine whole blood through density gradient
centrifugation using Sepmate15 (STEMCELL technologies, Vancouver, BC, Canada) and
lymphocyte separation media (Corning, NY, USA) and frozen in freezing media (50%
RPMI-1640, 40% FBS and 10% DMSO) as described elsewhere [38,39]. Swine PBMCs were
maintained at 37 ◦C with 5% CO2 in RPMI 1640 medium (Corning, NY, USA) supple-
mented with 10% FBS, 2 mM L-glutamine, gentamicin (50 µg/mL), penicillin (100 IU/mL),
streptomycin (100 µg/mL) and sodium pyruvate (1 mM).

Primary swine macrophage cells were prepared from swine whole blood as described
previously [40]. Swine PBMCs were isolated as described above and examined at 24 h to
confirm adherence to the substrate. Adherent primary macrophages were maintained at
37 ◦C with 5% CO2 in RPMI 1640 medium (Corning, NY, USA) supplemented with 20%
fetal bovine serum (FBS) (Atlanta Biologicals, Flowery Branch, GA, USA), 30% L929 media,
2 mM L-glutamine, gentamicin (50 µg/mL), penicillin (100 IU/mL) and streptomycin
(100 µg/mL). Primary macrophages were detached from cell culture plates using 10 mM
EDTA in phosphate-buffered saline (PBS) and plated for experiments.

2.2. Plasmids and Transfection

The ASFV Congo strain CD2v gene was synthesized, cloned into pUC57 (Genscript,
Piscataway, NJ, USA) and amplified with primers CD2v-Fw (EcoRI) (5′-TAAGGCCTCTGAA
TTCGCCACCATGATAATTAACTTATTTTTTTAATATG-3′) and CD2v-Rv (KpnI) (5′-CAGA
ATTCGCGGTACCAATAATTCTATCT ACATGAATAAGCG-3′). The virulent Congo K-49
is a HAI serogroup 2 virus isolated in Congo in 1949 and present in the Federal Research
Center for Virology and Microbiology (FRCVM) ASFV strain repository [23,41]. The am-
plified full length CD2v gene was cloned into EcoRI and KpnI sites of pCMV-HA vector
(Clontech, Mountain View, CA, USA) to produce pCD2v-HA, which express C-terminally
HA-tagged CD2v protein (CD2v-HA). To enhance translation efficiency, a Kozak sequence
(GCCACC) was placed in front of the CD2v gene. The final construct was sequenced to
confirm sequence integrity and fidelity.

To construct expression plasmids pORFV120-Flag and pORFV113-Flag, ORFV120 and
ORFV113 coding sequences were PCR-amplified from the orf virus strain OV-IA82 genome
and cloned into the p3xFlag-CMV-10 vector (pFlag) (Clontech, Mountain View, CA, USA).

For transfection of cells, Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) and
plasmid DNA were separately diluted in the Opti-MEM medium (Gibco, MA, USA) and
incubated for 5 min. Diluted DNA and lipofectamine 2000 were mixed (1:1 ratio) and
incubated for 20 min. Finally, the DNA–lipid complex was added to cells for a 5 h incubation
then, the Opti-MEM medium was replaced with 10% complete growth media.

2.3. Hemadsorption Assay

PK15 cells grown in 6-well plates were mock transfected or transfected with plasmid
pCD2v-HA. At 24 h post-transfection (pt), culture media was removed and rinsed two
times with PBS. Transfected cultures were incubated with PBS-washed 1% swine RBC
overnight and rosette formation was scored with a microscope (×100).

2.4. CD2v Purification and Quantification

For CD2v protein purification, 293T cells were transfected with pCD2v-HA or pEmpty-
HA control vector for 30 h. Cell lysates were harvested using the mammalian protein
extraction reagent (MPER) (Thermo Scientific, Waltham, MA, USA) and incubated with
anti-HA resin overnight using spin columns (Thermo Scientific, Waltham, MA, USA).
Purified CD2v or purified control were eluted using HA peptides (1 mg/mL) (Thermo
Scientific, Waltham, MA, USA) in Tris-buffer saline (TBS; Corning, NY, USA).

Quantification of purified CD2v was performed based on comparative densitomet-
ric analysis. Purified CD2v and purified control samples and bovine serum albumin
(BSA) samples of known concentrations were run by SDS-PAGE, the gel was stained with
Coomassie and the bands imaged with FluorChem R (Protein Simple, San Jose, CA, USA).
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Densitometric analysis was performed using ImageJ software and a standard curve was
drawn. The concentration of purified CD2v obtained was approximately 3.5 ng/µL and
100 µL of CD2v preparation was used in individual experiments.

2.5. Monoclonal Antibodies against CD2v

PK15 cells transfected with pCD2v-HA were lysed at 30 h pt and lysates incubated
overnight with the anti-HA antibody (Cell Signaling Technology, Danvers, MA, USA) at
4 ◦C, and immunoprecipitated using 50 µL of protein G agarose bead slurry (Millipore,
Burlington, MA, USA). Monoclonal antibodies recognizing CD2v-HA were generated
by immunizing BALB/c mice with immunoprecipitated CD2v-HA on agarose beads. To
generate hybridomas, splenocytes from immunized mice were harvested and processed fol-
lowing the manufacturer’s protocols (STEMCELL technologies/ClonalCell-HY Hybridoma
Cloning Kit, Vancouver, BC, Canada). Clones were screened for reactivity against CD2v-HA
by immunofluorescence assay (IFA) using CD2v-HA-transfected PK15 cultures.

2.6. Western Blot

Fifty micrograms of whole cell protein extracts or 50 µL of the cleared culture super-
natant were resolved by SDS-PAGE, blotted to nitrocellulose or PVDF membranes and
probed with primary antibody against HA (2367; Cell Signaling Technology, Danvers, MA,
USA), caspase-3 (9662S; Cell Signaling Technology, Danvers, MA, USA), PARP1 (sc-53643;
Santa Cruz, CA, USA) or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (sc-25778;
Santa Cruz, CA, USA). The blots were developed with appropriate HRP-conjugated sec-
ondary antibodies and chemiluminescent reagents (Thermo Scientific, Waltham, MA, USA)
and imaged with FluorChem R (Protein Simple, San Jose, CA, USA). Densitometric analysis
was performed using ImageJ software and all readings were normalized to GAPDH values.

2.7. Immunoprecipitation

293T cells or primary swine macrophages were transfected with pCD2v-HA and su-
pernatants (at 24 h pt) and cell lysates (30 h pt) were collected in MPER lysis buffer (Thermo
Scientific, Waltham, MA, USA). Supernatants and lysates were incubated overnight with
the anti-CD2v monoclonal antibody mix or anti-HA antibody (3724; Cell Signaling Technol-
ogy, Danvers, MA, USA). Pull down products were obtained by eluting in Laemmli buffer
(Bio-Rad, Hercules, CA, USA) and analyzed by Western blot using the anti-HA antibody
(2367; Cell Signaling Technology, Danvers, MA, USA).

2.8. CD58 siRNA Knockdown

To investigate involvement of CD58-CD2v interaction in CD2v-mediated IFN-β induc-
tion, siRNA knockdown experiments were performed using CD58 sense (S) (CUUCCA-
GAGCCAGAACUAU) and antisense (AS) (AUAGUUCUGGCUCUG GAAG) siRNA du-
plex (Sigma Aldrich, MA, USA). PK15 cultures were transfected with CD58 siRNA (15 nM)
and mission siRNA transfection reagent (Sigma Aldrich, MA, USA) following the manufac-
turer’s protocol and transfected 24 h later with pCD2v-HA or control pEmpty-HA for 6 h.
CD58 knockdown was assessed by comparing transcript levels between cultures transfected
with one MISSION siRNA Universal Negative control (Sigma Aldrich, MA, USA) and CD58
siRNA-transfected cultures using RT-PCR. SYBR primers for swine CD58 were sCD58 FW
5′-ACTTAAACACTGGGTCGGGC-3′ and sCD58 RV 5′-AAGCTGCAAGGATCAGGCAT-3′.

2.9. Real-Time PCR

Interferon-β (IFN-β) and interferon stimulated gene (ISG) transcription were assessed
in PK15 cells or primary swine macrophages transfected with pCD2v-HA or control plas-
mids and in swine PBMCs or primary swine macrophages treated with purified CD2v or
purified control. Total RNA was harvested at various times post transfection/treatment
with the RNA-extraction kit (Zymo, Irvine, CA, USA) and reverse transcribed with MLV-RT
(Invitrogen, Carlsbad, CA, USA) as previously described [42]. IFN-β and ISGs mRNAs
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were quantified using ABI and the QuantStudio-3 Real time PCR system, Power SYBR
Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) and primers sIFNβFw
(5′-AGTGCATCCTCCAAATCGCT-3′) and sIFNβRv (5′-GCTCATGGAAAGAGCT GTGGT-
3′) for IFN-β mRNA and sMX1Fw (5′-GGCGTGGGAATCAGTCATG-3′), sMX1Rv (5′-
AGGAAGGTCTATGAGGGTCAGATCT-3′), sOAS1Fw (5′-GAGCTGCAGCGAGACTT
CCT-3′) and sOAS1Rv (5′-TGCTTGACAAGGCGGATGA-3′) for ISGs MX1 and OAS. Fold
changes were calculated by comparison to Empty-HA or purified control for each time
point. Individual experiments were conducted with biological triplicates and at least three
technical replicates.

2.10. NF-κB-p65 Nuclear Translocation Assay

NF-κB activation was assessed by NF-κB-p65 nuclear translocation assays in (1) PK15
cells transfected with pCD2v-HA or control plasmids pORFV120-Flag and pORFV113-Flag,
(2) swine PBMCs treated with purified CD2v or purified control and (3) swine macrophage
treated with purified CD2v or purified control. At various times pts or protein treatments,
cells were fixed with 2–4% paraformaldehyde (PFA) for 15 min and permeabilized with 0.2%
triton ×100 (10 min). PK15 cells were incubated overnight at 4 ◦C with a primary antibody
against HA (2367S; Cell Signaling Technology, Danvers, MA, USA), control Flag (A00187;
Genscript, Piscataway, NJ, USA) and total NF-κB-p65 (8242; Cell Signaling Technology,
Danvers, MA, USA). Likewise, PBMCs and swine macrophages were incubated with an
antibody against total NF-κB-p65. PK15 cells were washed with PBS and incubated with
secondary antibodies goat anti-mouse Alexa fluor 488 (A11029; Thermo Scientific, Waltham,
MA, USA) to detect CD2v, ORFV120 and ORFV113 and goat anti-rabbit Alexa fluor 594
(A11012; Thermo Scientific, Waltham, MA, USA) to detect total NF-κB-p65. For PBMCs
and swine macrophages the secondary antibody used to detect total NF-κB-p65 was goat
anti-rabbit Alexa fluor 488 (A11008; Thermo Scientific, Waltham, MA, USA). PBMCs were
deposited on slides using the Shandon cytospin 2 centrifuge (1500 rpm, 1 min). Nuclei were
counterstained with DAPI and images obtained with an A1 Nikon confocal microscope.
The number of cells exhibiting nuclear NF-κB-p65 staining was determined in randomly
selected fields and results were expressed as a percentage of NF-κB-p65 expressing cells.

For inhibition of the NF-κB-p65 nuclear translocation experiment, PK15 cells were
pretreated with the NF-κB inhibitor parthenolide (InvivoGen, San Diego, CA, USA) at a
1 µM final concentration or vehicle control (DMSO) for one hour and transfected with
pCD2v-HA in the presence or absence of parthenolide (1 µM). At 3 h pt, cultures were
fixed and treated as above.

The role of the CD2v–CD58 interaction in the induction of NF-κB-p65 nuclear translo-
cation was examined by transfecting PK15 cells with CD58 siRNA or siRNA universal
negative control and 24 h later with pCD2v-HA. Cultures were fixed 3 h later, permeabilized
and processed for HA and total NF-κB-p65 staining as described above. The percentage
of cells containing nuclear NF-κB-p65 in CD2v-expressing cells in CD58 knockdown cells
was determined.

To investigate the effect of the anti-CD2v monoclonal antibody mix on CD2v-induced
NF-κB-p65 activation in swine PBMCs, purified CD2v or purified control was incubated
overnight at 4 ◦C with anti-CD2v monoclonal antibodies or anti-ORFV086 antibody or
anti-IgG mouse isotype antibody control. PBMCs grown in 96-well plates were treated with
preincubated CD2v or CD2v control (not preincubated with CD2v monoclonal antibodies),
for 1.5 h and processed as above for NF-κB-p65 nuclear translocation. Randomly selected
fields were scored for the mean percentage of cells containing nuclear NF-κB-p65.

2.11. Interferon Bioassay

To investigate whether CD2v induced IFN-β and ISGs expression results in an antiviral
state, an IFN bioassay was used. PK15 cells were transfected with pCD2v-HA or control
plasmids pEmpty-HA or pORFV120-Flag, infected at 12 h, 24 h and 30 h pt with reporter
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vesicular stomatitis virus expressing GFP (VSVGFP; 50 PFU/well), fixed with 4% PFA at
16 h post infection and examined by IFA.

Supernatant obtained from PK15 cultures transfected with pCD2v-HA or control
plasmids pEmpty-HA, pORFV120-Flag or Poly I:C (+control) were serially diluted and
used to treat PK15 cells. At 30 h post-treatment, cultures were infected with VSVGFP

(50 PFU/well) and virus replication was assessed by IFA at 16 h post-infection.
To assess the antiviral activity in swine PBMCs treated with CD2v, swine PBMCs were

treated with purified CD2v or purified control for 24 h and supernatants collected. Serially
diluted PBMCs supernatants were then used to treat PK15 cells. To assess the antiviral
activity PK15 cells were infected with VSVGFP (50 PFU/well) 24 h post treatment, and virus
replication was examined 16 h post infection by IFA.

2.12. Flow Cytometry

PK15 cells were transfected with pCD2v-HA or control plasmids and then infected
with VSVGFP at 12 h, 24 h and 30 h pt. At 16 h post infection, cells were trypsinized, fixed
with 2% PFA and washed with PBS. GFP mean fluorescence intensity (MFI) was measured
using the Cytek Aurora flow cytometer (Cytek Biosciences, Fremont, CA, USA).

CD2V-mediated activation of the NF-κB pathway was further examined using the flow
cytometry assay to detect phosphorylated pNF-κB-p65 (S536). PK15 cells were transfected
with pCD2v-HA or pORFV113-Flag, fixed with 2% PFA at 3 h pt, permeabilized with
0.2% Triton-X100 and incubated with anti-HA (2367S; Cell Signaling Technology, Danvers,
MA, USA), anti-Flag (A00187; Genscript, Piscataway, NJ, USA) or antiphosphorylated
NF-κB-p65 (S536) (3033S; Cell Signaling Technology, Danvers, MA, USA) for 45 min on
ice. Secondary antibodies were goat anti-rabbit Alexa fluor 488 (A11008; Thermo Scientific,
Waltham, MA, USA) for pNF-kB (S536) and goat anti-mouse Alexa fluor 647 (A21236;
Thermo Scientific, Waltham, MA, USA) for CD2v and ORFV113. pNF-κB-p65 (S536) mean
fluorescence intensity (MFI) was examined in cells expressing CD2v or ORFV113.

2.13. Coimmunoprecipitation

To study the interaction between CD2v and CD58, PK15 cells were cotransfected
with pEmpty-HA and pCD58-Flag or pCD2v-HA and pCD58-Flag. Whole cell extracts
were prepared at 8 h pt using the RIPA lysis buffer (Thermo Scientific, Waltham, MA,
USA). Reciprocal coimmunoprecipitations were performed using the active motif Co-IP
kit (IP High buffer) (Active Motif, Carlsbad, CA, USA) and protease inhibitor cocktail
(Sigma Aldrich, MA, USA) following the manufacturer’s protocol. Whole cell extracts
were incubated with anti-HA (3724S; Cell Signaling Technology, Danvers, MA, USA) and
anti-Flag (A00187; Genscript, Piscataway, NJ, USA) antibodies overnight at 4 ◦C and then
incubated with prewashed protein G agarose bead slurry (50 µL) (Millipore, Burlington,
MA, USA) at 4 ◦C for 2 h. Beads were washed four times with IP high buffer and bound
proteins eluted in the Laemmli buffer. Whole cell protein extracts and immunoprecipitated
products were examined by SDS-PAGE-Western blot with the appropriate antibodies.

Interaction of CD2v with endogenous human CD58 was evaluated in 293T cells trans-
fected with pCD2v-HA. Reciprocal coimmunoprecipitation was performed using anti-HA
(3724S; Cell Signaling Technology, MA, USA) and hu-CD58 (sc20009; Santa Cruz, CA, USA)
antibodies following the manufacturer’s protocol (Active motif Co-IP kit, Carlsbad, CA,
USA). Immunoprecipitated products were resolved by SDS-PAGE, blotted to PVDF mem-
branes and probed with primary antibody against HA (3724S; Cell Signaling Technology,
Danvers, MA, USA) and hu-CD58 (sc20009; Santa Cruz, CA, USA) antibodies. Blots were
developed with appropriate HRP-conjugated secondary antibodies (7074; Cell Signaling
Technology, 7076; Cell Signaling Technology) and imaged with FluorChem R.

2.14. CD2v–CD58 Colocalization Assay

PK15 cells were cotransfected with pCD2v-HA and swine pCD58-Flag, fixed with
4% PFA 24 h pt, permeabilized with 0.2% Tritron-X 100 and treated with anti-HA (3724S;
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Cell Signaling Technology, MA, USA) or anti-Flag (A00187; Genscript, Piscataway, NJ,
USA) primary antibodies. Cells were then washed with PBS and incubated with goat
anti-rabbit Alexa fluor 594 (A11012; Cell signaling Technology, Danvers, MA, USA) and
goat anti-mouse Alexa fluor 488 (A11029; Cell Signaling Technology, Danvers, MA, USA)
secondary antibodies for 1 h. Nuclei were stained with DAPI and images obtained using
the A1 Nikon confocal microscope. Colocalization of CD2v with endogenous human
CD58 was investigated in 293T cells. Cells were transfected with pCD2v-HA and IFA
was performed using anti-HA (3724S; Cell Signaling Technology, Danvers, MA, USA) and
anti-CD58 (sc20009; Santa Cruz, CA, USA) primary antibodies, and goat anti-rabbit Alexa
fluor 594 (A11012; Cell Signaling Technology, MA, USA) and goat anti-mouse Alexa fluor
488 (A11029) secondary antibodies.

2.15. TUNEL Assay

To investigate the effect of soluble CD2v on swine PBMC apoptosis. (1) Swine PBMCs
treated with purified CD2v, purified control or staurosporine and (2) swine macrophages
treated with purified CD2v, purified control or staurosporine were fixed at 18 h post-
treatment, permeabilized as described above and stained for TUNEL following the man-
ufacturer’s protocol (C10617; Thermo Scientific, Waltham, MA, USA). PBMCs were de-
posited on slides using Shandon cytospin 2 centrifuge (1500 rpm, 1 min). Nuclei were
counterstained with DAPI and images obtained with an A1 Nikon confocal microscope.
The number of cell nuclei exhibiting TUNEL staining were counted in randomly selected
fields. Results were expressed as a percentage of TUNEL positive cells.

2.16. Statistics

All statistical analyses were performed using Student’s t test. Statistically significant
differences were indicated as * p < 0.05; ** p < 0.01 and NS, not significant.

3. Results
3.1. ASFV CD2v Localizes in the Perinuclear Region, Cytoplasm and Cell Membrane of PK15
Cells and Is Present in the Culture Supernatant

CD2v is an ASFV structural transmembrane glycoprotein of 360–407 amino acids with
a predicted molecular weight of approximately 42–46 kDa and that is expressed on the
surface of ASFV-infected macrophages [18,19]. CD2v mediates hemadsorption of swine
red blood cells (RBCs) [18,19] and, together with viral C-type lectin, has a role in serotype
specificity as defined by hemadsorption inhibition (HAI) [43].

To examine the subcellular localization and expression kinetics of CD2v, PK15 cells
were mock transfected or transfected with pCMV plasmid expressing C-terminally HA-
tagged CD2v (CD2v-HA) and examined at various times post-transfection (pt) by confocal
microscopy. CD2v was observed adjacent to the nucleus at 2 h pt and in the cell membrane,
perinuclear area and cytoplasmic vesicles at later times (Figure 1A). To confirm that CD2v
expressed by PK15 cells is membrane localized and capable of mediating hemadsorption,
PK15 cells were transfected with pEmpty-HA (control plasmid) or pCD2v-HA for 24 h,
incubated with swine red blood cells (RBCs) overnight and scored for rosette formation.
PK15 transfected with pCD2v-HA but not with control plasmid hemadsorbed swine RBCs
as evidenced by rosette formation (Figure 1B, arrowheads).
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Figure 1. Subcellular localization and expression kinetics of ASFV CD2v. (A) PK15 cells were mock transfected or transfected
with pCD2v-HA, fixed at various times pt, incubated with anti-HA primary antibody, sequentially stained with Alexa
fluor 488-labeled secondary antibody and DAPI and examined by confocal microscopy. (B) CD2v-HA-expressing PK15
cells hemadsorbed swine red blood cells (RBCs). PK15 cells were transfected with plasmid pCD2v-HA for 24 h, incubated
with swine RBCs overnight and examined using light microscopy (×100). CD2v-dependent rosetting is indicated by the
arrowheads. (C) PK15 cells mock transfected or transfected with pCD2v-HA were harvested at the indicated times pt and
total cell protein extracts were resolved by SDS-PAGE, blotted and incubated with antibodies against HA. (D) Detection
of CD2v in the culture supernatant. PK15 cells were transfected as above and supernatants harvested at various times pt.
Cleared supernatants (50 µL) were resolved by SDS-PAGE and analyzed by Western blot using antibodies against HA.
* denotes the non-specific background band due to serum proteins in the supernatant. (E) Primary swine macrophages were
mock transfected or transfected with a pCD2v-HA, fixed at 24 h pt, incubated with anti-HA primary antibody, sequentially
stained with Alexa fluor 594-labeled secondary antibody and DAPI and examined by confocal microscopy. (F) Detection of
CD2v in the culture supernatant of primary swine macrophages transiently expressing CD2v. Cells were transfected as
above, incubated for 24 h and supernatants were immunoprecipitated with anti-HA antibody, resolved in SDS-PAGE and
probed with the anti-HA antibody. Results for (A–F) are representative of two independent experiments.
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The expression kinetics of CD2v was assessed by Western blot after transfection of
PK15 cells with pCD2v-HA. Two major protein species of approximately 100 kDa and
25 kDa and a less-abundant 15 kDa species were detected at 6 h pt, with increasing protein
levels observed at later time points (Figure 1C). A similar expression pattern was observed
in 293T cells and Vero cells at 24 h pt (Figure S1A,B). The observed molecular weight of the
full length protein was approximately 58 kDa higher than that predicted from the primary
sequence. A major band of 42 kDa and a weaker band of 15 kDa were detected when
CD2v was expressed in the presence of tunicamycin, an inhibitor of N-linked glycosylation,
confirming that the protein is heavily modified through N-linked glycosylation (Figure S1C).
The absence of the 25 kDa species in the presence of tunicamycin suggests the 25 kDa
protein product might result from processing of the full length protein in the endoplasmic
reticulum. It has been shown that CD2v is cleaved in the endoplasmic reticulum or Golgi
compartments of virus-infected cells [20]. A faint 100 kDa and a predominant 25 kDa CD2v
band were detected in the culture supernatant of PK15 cells 24 h post transfection with
pCD2v-HA, indicating that CD2v is present in the culture supernatant (Figure 1D).

The subcellular localization of CD2v in primary swine macrophages was examined
after mock transfection or transfection with pCD2v-HA at 24 h pt by confocal microscopy.
Consistent with results in PK15 cells, CD2v was observed in the perinuclear area, cyto-
plasm and cell membrane of macrophages (Figure 1E). CD2v expression in primary swine
macrophages was assessed by Western blot (WB) after transfection with pCD2v-HA. CD2v
species of 75–100 kDa were detected in cell lysates at 24 h pt (Figure S1D). Although not
evident in the WB, the 25 kDa CD2v band was detected by immunoprecipitation (IP) of the
culture supernatant (Figure 1F).

These results are in agreement with previous studies on CD2v expression in ASFV-
infected cells [18,20,44,45]. Notably, the study by Ruiz-Gonzalvo identified a soluble
hemagglutinin in the media of ASFV infected macrophage cell cultures [45]. This soluble
hemagglutinin may represent the soluble CD2v described here.

3.2. Expression of ASFV CD2v Induces IFN-β and ISG Transcription in PK15 Cells and
Swine Macrophages

Preliminary RNA-Seq experiments were conducted to examine the effect of soluble
CD2v on cellular gene transcription. PK15 cells were incubated with a CD2v-containing
supernatant (1:2 dilution) or supernatant from cells transfected with pEmpty-HA (control
plasmid) and total RNA was collected at 1 h, 2 h and 3 h post-treatment. RNA-Seq
analysis showed upregulation of several interferon-stimulated genes (ISGs), including
MX1, OAS1 and IRF9 at 2 h post treatment with a further increase at 3 h, suggesting a
potential role of CD2v in IFN-β signaling. To assess the effect of CD2v expression on IFN-β
and ISG transcription, PK15 cells were transfected with pCD2v-HA or control plasmids
pEmpty-HA and pORFV120-Flag, the latter encoding for Orf virus protein ORFV120 and
IFN-β transcription was assessed by RT-PCR. Compared to controls, cells transfected with
pCD2v-HA plasmid showed significant upregulation of IFN-β (5.6-fold) as early as 6 h
pt with similar upregulation observed at all subsequent time points sampled (Figure 2A).
Consistent with upregulation of IFN-β, significant increases of ISGs MX1 (17.7-fold) and
OAS1 (12.8-fold) transcription was observed at 30 h pt with pCD2v-HA plasmid compared
to controls (Figure 2B,C).
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Figure 2. Induction of IFN-β, ISGs and the antiviral state in CD2v-expressing cells. PK15 cells were transfected with
plasmids pCD2v-HA or controls pEmpty-HA and pORFV120-Flag (an unrelated viral transmembrane protein control) and
transcription of IFN- β and selected ISGs was assessed by real-time PCR. (A) Shown are fold changes of IFN-β levels in
cells transfected with pCD2v-HA relative to pEmpty-HA and pORFV120-Flag at various times pt. Results are the average
mRNA levels from three independent experiments with p-values relative to controls < 0.05 at 3–30 h times pt. (B,C) Shown
are fold changes of ISG mRNA levels at 12 h, 24 h and 30 h pt. Results are the average mRNA levels from three independent
experiments. p-values relative to Empty-HA and ORFV120 at 30 h pt were 0.02 and 0.018 for MX1 (B) and 0.04 and 0.037 for
OAS1 (C). * and # denote statistical significance compared to Empty-HA and ORFV120, respectively. (D,E) PK15 cells were
transfected with pCD2v-HA, pEmpty-HA or control plasmids (pORFV120-Flag or pORFV113-Flag). At 12 h, 24 h or 30 h pt,
cultures were infected with vesicular stomatitis virus expressing GFP (VSVGFP, 50 PFU/well). (D) Mean GFP fluorescence
measured by flow cytometry at 16 h post infection. Results are the mean values of four independent experiments. p-values
relative to transfection with control plasmids were < 0.05 at all times examined. *, # and ∆ denote statistical significance
compared to Empty-HA, ORFV120 and ORFV113, respectively. (E) Fluorescence microscopy images taken at 16 h post
infection with VSVGFP. Note decreased VSV replication in cells transfected with pCD2v-HA relative to controls. Results
are representative of four independent experiments. Exp. denotes the experimental replicates. (F) Fold changes of IFN-β
levels in swine macrophages transfected with pCD2v-HA relative to pEmpty-HA at 6 h pt. Results are the average from five
independent experiments. p-value relative to Empty-HA was 0.008 for CD2v-HA. (G) Fold changes of ISG mRNA levels at
12 h pt. Results are the average from four independent experiments. p-values for CD2v-HA relative to Empty-HA were
0.014 for MX1 and 0.03 for OAS1, respectively (*, p < 0.05; **, p < 0.01).
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To investigate the functional significance of IFN-β and ISGs induction by CD2v, the
antiviral state of cells was examined using an IFN bioassay. PK15 cells were transfected
with pCD2v-HA or control plasmids (Empty-HA vector or plasmids expressing Orf virus
proteins ORFV120 and ORFV113) and then infected at various times pt with reporter
vesicular stomatitis virus expressing GFP (VSVGFP, 50 PFU/well). PK15 cells transfected
with pCD2v-HA but not with control plasmids showed an inhibition of VSVGFP replication
as determined by both flow cytometry and fluorescent microscopy at 12 h, 24 h and 30 h pt
(Figure 2D,E). Inhibition of VSVGFP replication was also observed when PK15 cell cultures
were treated with CD2v containing supernatants (up to 1:4 dilution) but not with control
supernatants (Figure S1E). These data indicate that CD2v expression in PK15 cells leads to
the induction of IFN-β, ISGs and an antiviral state.

To examine the effect of CD2v on IFN-β and ISG transcription on macrophages,
primary swine macrophage cell cultures were transfected with pCD2v-HA or pEmpty-HA
or Poly I:C and IFN-β transcription was assessed by RT-PCR. Compared to pEmpty-
HA control, significant upregulation of IFN-β was observed in macrophages transfected
with pCD2v-HA plasmid (1.8-fold) and the positive control Poly I:C (2.4-fold) at 6 h pt
(Figure 2F). Consistent with upregulation of IFN-β, a significant increase of ISGs MX1
(1.3-fold) and OAS1 (1.3-fold) transcription was observed at 12 h pt with the pCD2v-HA
plasmid compared to the pEmpty-HA control (Figure 2G).

3.3. Induction of IFN-β by ASFV CD2v Is Dependent on NF-κB Activation

NF-κB and IRF3 are two important transcription factors involved in IFN-β induction
that translocate to the nucleus upon activation [46–50]. To assess whether CD2v expres-
sion affects NF-κB-p65 and IRF3 nuclear translocation, PK15 cells were transfected with
pCD2v-HA or control plasmids (pORFV120-Flag and pORFV113-Flag) and examined by
indirect immunofluorescence assay (IFA) at various times pt. Enhanced NF-κB-p65 nu-
clear translocation was observed in CD2v expressing cells at all times pt compared to
controls (Figure 3A,B). In contrast, IRF3 nuclear translocation was not observed. To confirm
the activation of the NF-κB pathway, PK15 cultures were transfected with pCD2v-HA or
pORFV113-Flag (control) and the mean fluorescence intensity (MFI) of phosphorylated
NF-κB (pNF-κB S536) was examined at 3 h pt by flow cytometry. Consistent with the
nuclear translocation results, significantly increased MFI values (1.8-fold) were observed
in CD2v-expressing cells compared to the control (Figure 3C). Inhibition of NF-κB acti-
vation with parthenolide, a NF-κB inhibitor, resulted in reduced nuclear translocation of
NF-κB-p65 in CD2v-expressing cells (Figure 3D and Figure S1F).

To investigate the effect of NF-κB inhibition on CD2v-mediated IFN-β induction,
PK15 cells were pretreated for one hour with parthenolide (1 µM) or DMSO (vehicle
control), transfected with pCD2v-HA or pEmpty-HA (control) for 6 h in the presence of
parthenolide (1 µM) or DMSO vehicle and assessed for IFN-β transcription by RT-PCR.
Significant reduction in IFN-β transcription was observed in cells transiently expressing
CD2v in the presence of parthenolide (1.5-fold) compared to cells expressing CD2v in the
presence of the vehicle alone (2.6-fold) (Figure 3E). Together, the results above indicate that
induction of IFN-β by ASFV CD2v was mediated by NF-κB activation.
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Figure 3. Expression of CD2v in PK15 cells induces IFN-β transcription in a NF-κB dependent manner. PK15 cells were
transfected with pCD2v-HA or controls (pORFV120-Flag, pORFV113-Flag or Poly I:C), processed for immunofluorescence
using primary antibodies against HA, Flag or NF-κB-p65 and secondary antibodies Alexa fluor 488 to detect CD2v,
ORFV120 or ORFV113 and Alexa fluor 594 to detect NF-κB-p65 and counterstained with DAPI. Approximately 100 cells
were counted/slide and results are shown as the mean values from three independent experiments. (A) Percentage of NF-
κB-p65 nuclear translocation following the different treatments. p-values relative to controls ORFV120 and ORFV113 were
0.056 and 0.009 (3 h); 0.01 and 0.0006 (6 h); 0.019 and 0.02 (12 h); 0.005 and 0.004 (20 h); 0.016 and 0.009 (24 h), respectively.
* and # denote statistical significance compared to ORFV120 and ORFV113, respectively. (B) Confocal microscopy images
showing NF-κB-p65 nuclear translocation at 3 h pt (arrows). Green, CD2v or ORFV120 or ORFV113; Red, NF-κB-p65;
Blue, DAPI. (C) Mean fluorescence intensity (MFI) of phosphorylated NF-κB (S536) measured by flow cytometry in CD2v
and ORFV113 expressing cells at 3 h pt. Results are representative of three independent experiments. p-value relative
to ORFV113 is 0.008. (D) PK15 cells pretreated with the NF-κB inhibitor parthenolide (1 µM) or DMSO (vehicle control)
for one hour were transfected with pCD2v-HA or Poly I:C, fixed at 3 h pt and processed for immunofluorescence with
antibodies against HA and NF-κB-p65. Approximately 100 cells were counted/slide and results are shown as mean values
from three independent experiments (p = 0.001). (E) PK15 cells treated with parthenolide (1 µM) or DMSO for one hour were
transfected with pCD2v-HA or pEmpty-HA in the presence or absence of parthenolide and IFN- β transcription assessed by
RT-PCR at 6 h pt. Fold changes relative to Empty-HA and data are means from four independent experiments (p = 0.008).
(*, p < 0.05; **, p < 0.01.)
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3.4. CD2v–CD58 Interaction Mediates NF-κB Activation and IFN-β Transcription

CD2v contains all the domains present in cellular CD2 and some of the residues
involved in binding to the CD58, the natural CD2 ligand [18,19]. To study the potential
interaction between CD2v and CD58, PK15 cells were cotransfected with the pEmpty-HA
vector or pCD2v-HA and porcine pCD58-Flag and cell lysates were prepared at 8 h pt for
reciprocal coimmunoprecipitation with anti-Flag or anti-HA antibodies as described in
Materials and Methods. Figure 4A shows that CD2v and porcine CD58 reciprocally coim-
munoprecipitate.

To confirm CD2v–CD58 interaction, PK15 cells were cotransfected with pCD2v-HA
and pCD58-Flag and localization of proteins was examined using confocal microscopy. A
strong overlap of signals indicative of colocalization was observed (Figure 4B). Recipro-
cal coimmunoprecipitation and colocalization of CD2v with endogenous human CD58
was also observed at the plasma membrane of 293T cells transfected with pCD2v-HA
(Figure 4C,D). Given that the host CD2–CD58 interaction activates downstream cellular
kinases [28–37], we examined the involvement of the CD2v–CD58 interaction in CD2v-
mediated NF-κB activation and IFN-β activation.

To evaluate the effect of CD58 downregulation on CD2v-mediated NF-κB activation,
PK15 cells were transfected with siRNAs targeting porcine CD58 or control siRNA as
described in Materials and Methods. CD58 transcript reduction of approximately 55%
was routinely obtained in PK15 CD58 knockdown cells compared to the negative control
(Figure 5A). Twenty-four hours following siRNA treatment, cells were transfected with
pCD2v-HA for 3 h, and NF-κB-p65 nuclear translocation was assessed by confocal mi-
croscopy. A significant reduction in NF-κB-p65 nuclear translocation (60%) in PK15 CD58
knockdown cells was observed compared to control values (Figure 5B and Figure S2A).

To investigate the involvement of CD2v–CD58 interaction in CD2v-mediated IFN-
β induction, siRNA knockdown experiments and CD2v-HA/control transfections were
performed as described above. Significant reduction of IFN-β transcription was observed
6 h pt with CD2v-HA in PK15 cells with reduced CD58 transcript levels (1.6-fold) compared
to the control (2.3-fold) (Figure 5C).

To examine the functional interaction between soluble CD2v and CD58 expressed on
PK15 cells in CD2v-mediated NF-κB activation, PK15 cells were transfected with siRNAs
targeting porcine CD58 or control siRNA. CD58 transcript knockdown of approximately
52% was obtained in PK15 CD58 knockdown cells compared to the negative control
(Figure 5D). Twenty-four hours post siRNA treatment, cells were treated with purified
CD2v protein for 2 h and NF-κB-p65 nuclear translocation was assessed by confocal
microscopy. Significant reduction in NF-κB-p65 nuclear translocation (39.5%) in purified
CD2v treated cells was observed in PK15 CD58 knockdown cells compared to the control
(Figure 5E,F).
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Figure 4. Interaction between CD2v and CD58. (A,B) Interaction between CD2v and porcine CD58. (A) PK15 cells were
cotransfected with plasmids pCD58-Flag and pCD2v-HA or pCD58-Flag and pEmpty-HA (control) and harvested at 8 h pt.
Whole cell lysates (left) and extracts immunoprecipitated with anti-Flag antibodies or anti-HA were examined by Western
blotting with antibodies directed against proteins indicated on the right. (B) PK15 cells were cotransfected with pCD58-Flag
and pCD2v-HA, fixed at 24 h pt, incubated with mouse anti-Flag and rabbit anti-HA primary antibodies, washed and
incubated with secondary antibodies (Alexa-fluor 488-labeled anti-mouse and Alexa-fluor 594-labeled anti-rabbit). Cells
were counterstained with DAPI and examined with the confocal microscope. Insets show magnified areas of the field.
(C) 293T cells were transfected with pCD2v-HA or pEmpty-HA (control) and harvested at 8 h pt. Whole cell lysates (left)
and extracts immunoprecipitated with mouse anti-huCD58 antibodies or anti-HA were examined by Western blotting with
antibodies directed against proteins indicated on the right. (D) 293T cells were transfected with pCD2v-HA, fixed at 24 h
pt, incubated with mouse anti-huCD58 and rabbit anti-HA primary antibodies, washed and incubated with Alexa-fluor
488-labeled anti-mouse and Alexa-fluor 594-labeled anti-rabbit secondary antibodies. Cells were counter stained with DAPI
and examined with the confocal microscope. Insets show magnified areas of the field. Results for (A–D) are representative
of three independent experiments.
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Figure 5. CD2v–CD58 interaction affects CD2v-mediated NF-kB-p65 nuclear translocation and IFN-β induction. (A) siRNA
knockdown of CD58. PK15 cells were transfected with CD58 siRNA or siRNA universal negative control, total RNA was
extracted at 24 h pt, cDNA prepared and CD58 transcription assessed by RT-PCR. Results are the mean of five independent
experiments (p = 0.0002). (B) PK15 cells were sequentially transfected with CD58 siRNA or siRNA universal negative
control and pCD2v-HA or pEmpty-HA, fixed at 3 h pt and processed for NF-κB-p65 detection by immunofluorescence.
Approximately 100 cells were counted/slide and results are shown as mean values from three independent experiments
(p = 0.002). (C) IFN-β induction. PK15 cells were sequentially transfected with CD58 siRNA or siRNA universal negative
control and pCD2v-HA or pEmpty-HA. Total RNA was extracted at 6 h pt, cDNA prepared and IFN-β transcription
assessed by RT-PCR. Fold changes are relative to Empty-HA and data are the mean mRNA levels from eight independent
experiments (p = 0.025). (D) siRNA knockdown of CD58. PK15 cells were mock transfected or transfected with CD58 siRNA
or siRNA universal negative control, total RNA was extracted at 24 h pt, cDNA prepared and CD58 transcription assessed
by RT-PCR. Results are the mean of three independent experiments (p = 0.035). (E,F) NF-κB-p65 nuclear translocation
following treatment with the purified CD2v protein. PK15 cells were sequentially mock transfected or transfected with
CD58 siRNA or siRNA universal negative control and treated with purified CD2v protein, fixed at 2 h pt and processed for
detection of NF-κB-p65 by immunofluorescence. Approximately 1000 cells were counted/slide and results are shown as
mean values from three independent experiments (E). p-value for reduced CD58 transcript cultures relative to the siRNA
negative control was 0.037. (F) Representative images of NF-κB-p65 nuclear translocation under conditions outlined above.
Green, NF-κB-p65; Blue, DAPI. Arrows indicate nuclear NF-κB-p65. (*, p < 0.05 and **, p < 0.0.)
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3.5. Purified CD2v Induces NF-κB-p65 Nuclear Translocation and IFN-β Transcription in Swine
PBMCs and Macrophage Cultures

Uncharacterized soluble factors released by ASFV-infected macrophages were shown
to inhibit proliferation of swine lymphocytes in response to lectins [17] and CD2v was
shown to be involved in the inhibition of mitogen-induced proliferation of bystander lym-
phocytes in virus-infected swine PBMC cultures [21]. This and the observation that CD2v
is present in the supernatant of transfected cells (Figure 1D,F) and that cells treated with/or
expressing CD2v (Figure 2) upregulate IFN-β and ISGs, leading us to hypothesize that (1)
released CD2v induces IFN-β and ISGs expression in lymphocytes and macrophages and
(2) induction involves the activation of the NF-κB-p65 signaling pathway.

To examine NF-κB-p65 nuclear translocation in swine lymphocytes, swine PBMCs
were treated with purified CD2v or purified control for 1.5 or 2 h, processed for IFA
and deposited onto glass slides with a cytospin. Confocal microscopy analysis showed
enhanced NF-κB-p65 nuclear translocation in swine PBMCs treated with purified CD2v
(2.8-fold at 1.5 h; 1.6-fold at 2 h) compared to the control treatment (Figure 6A,B).

To investigate whether IFN-β transcription in lymphocytes is affected by CD2v, swine
PBMCs were treated as above and assessed for IFN-β transcription by RT-PCR at various
times post-treatment. We found that IFN-β transcription was significantly induced in
CD2v-treated PBMCs at 4 h (3.3-fold) and 6 h (3.2-fold) post treatment compared to the
purified control (Figure 6C).

NF-κB-p65 nuclear translocation in macrophages was examined after the treatment of
primary swine macrophages with purified CD2v or purified control for 2 h and processed
for IFA. Confocal microscopy analysis showed enhanced NF-κB-p65 nuclear translocation
in swine macrophages treated with purified CD2v at 2 h (5.4-fold) compared to the con-
trol treatment (Figure 6D,E). Additionally, macrophages treated with the CD2v protein
exhibited increased IFN-β transcription (4.7-fold) at 6 h post treatment (Figure 6F).

3.6. Antibodies against ASFV CD2v Inhibit CD2v-Induced NF-κB Activation and IFN-β
Transcription in Swine PBMC Cultures

Monoclonal antibodies against ASFV CD2v were generated and screened as described
in Materials and Methods. Four anti-CD2v antibodies (A4, C4, C3 and F2) were pooled
and used to examine their reactivity against CD2v. The antibody mixture detected the full
length 100 kDa CD2v species in Western blot (Figure S2B). To confirm the reactivity of
antibodies, lysates from 293T cells transfected with pCD2v-HA were incubated overnight
with the anti-CD2v monoclonal antibodies. Immunoprecipitation products were assessed
by Western blot using anti-HA antibodies. Both 100 kDa and 25 kDa CD2v species were
observed in CD2v- but not in control-transfected cells (Figure S2C).

To investigate the effect of the anti-CD2v antibodies on CD2v-induced NF-κB activa-
tion in swine PBMCs, purified CD2v or purified control were incubated overnight with the
monoclonal antibody mix, control anti-ORFV086 monoclonal antibody or anti-IgG mouse
isotype antibody control. Swine PBMCs were then treated with purified CD2v or purified
control preincubated with the various antibodies and assessed for NF-κB-p65 nuclear
translocation as above. As a control, purified CD2v or the purified control without preincu-
bation with antibodies was used. Significant inhibition of NF-κB-p65 nuclear translocation
(approximately 50% reduction) was observed in PBMCs treated with CD2v previously
incubated with anti-CD2v monoclonal antibodies compared to controls (Figure 7A,B). This
result show that anti-CD2v antibodies interfered with the ability of soluble CD2v to induce
NF-κB-p65 nuclear translocation in swine PBMCs.
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Figure 6. Purified CD2v protein induces NF-kB-p65 nuclear translocation and IFN-β transcription in swine PBMCs
and macrophages. (A) NF-kB-p65 nuclear translocation in swine PBMCs. Swine PBMCs were treated with purified
CD2v or purified control, fixed at 1.5 h and 2 h post treatment and assessed for NF-κB-p65 nuclear translocation by
immunofluorescence as described in Materials and Methods. Approximately 2000 cells were counted/slide and results
are shown as mean values from four independent experiments (1.5 h, p = 0.01; 2 h, p = 0.01). (B) Representative confocal
images of NF-κB-p65 nuclear translocation. Green, NF-κB-p65; Blue, DAPI. Insets show magnified areas of the field. Arrows
indicate nuclear NF-κB-p65. (C) IFN-β transcription. Cells were treated as in A, total RNA harvested at 4 h, 6 h and 8 h
post treatment and IFN-β transcription assessed by RT-PCR. Fold changes are relative to purified control and data are the
mean mRNA levels of seven independent experiments (4 h, p = 0.016; 6 h, p = 0.002). (D) NF-κB-p65 nuclear translocation in
macrophages. Primary swine macrophages were treated with purified CD2v or purified control, fixed at 2 h post treatment
and assessed for NF-κB-p65 nuclear translocation as in A. Approximately 300 cells were counted/slide and results are
shown as the mean values from three independent experiments (for purified CD2v, p = 0.002). (E) Representative images
of NF-κB-p65 nuclear translocation in macrophages. Green, NF-κB-p65; Blue, DAPI. Insets show magnified areas of the
field. Arrows indicate nuclear NF-κB-p65. (F) CD2v-mediated induction of IFN-β in swine macrophages. Primary swine
macrophages were treated with purified CD2v or purified control, the total RNA was harvested at 6 h post treatment and
IFN-β transcription was assessed by RT-PCR. Fold changes are relative to the purified control and data are the mean mRNA
levels of three independent experiments (for purified CD2v, p = 0.034). (*, p < 0.05 and **, p < 0.01).



Viruses 2021, 13, 1480 18 of 27

Figure 7. Monoclonal antibodies against ASFV CD2v inhibit CD2v-induced NF-κB activation and IFN-β transcription in
swine PBMC cultures. (A,B) NF-κB-p65 nuclear translocation in PBMCs. Swine PBMCs were treated for 1.5 h with purified
CD2v or purified control preincubated with the anti-CD2v monoclonal antibody mix, anti-ORFV086 antibody or isotype
control antibody, and cells were processed for NF-κB-p65 staining as described in Materials and Methods. Control cells were
treated with CD2v or the purified control that have not been preincubated with antibodies. (A) Representative confocal
images of NF-κB-p65 nuclear translocation. Green, NF-κB-p65; Blue, DAPI. Arrows indicate nuclear NF-κB-p65. Insets show
magnified areas of the field. (B) Approximately 2500 cells were counted/slide and results are shown as the mean values
from three independent experiments (for % nuclear NF-κB-p65 for the anti-CD2v antibody mix relative to anti-ORFV086,
p = 0.01; without preincubation, p = 0.03 and for the isotype control, p = 0.03). (C) IFN-β transcription in PBMCs. Swine
PBMCs were treated as in A, total RNA harvested at 6 h pt and IFN-β transcription assessed by RT-PCR. Fold changes
are relative to the purified control and data are mean values from five independent experiments. p-value for IFN-β fold
induction for anti-CD2v antibody mix compared to anti-ORFV086 is 0.014 and without preincubation is 0.028. (D) Swine
PBMCs were treated with the purified CD2v protein or purified control and supernatants collected 24 h post treatment. The
supernatant collected from PK15 cells transfected with Poly I:C served as a positive control. PK15 grown in 96 well plates
were treated with different dilutions of PBMCs supernatants for 24 h and subsequently infected with VSVGFP (50 PFU/well)
for 16 h. Intensity (mean gray value) was measured by ImageJ. Fold changes are relative to the purified control and data are
the mean of four independent experiments. p-values relative to purified control for undiluted, 1:2 diluted and 1:4 diluted
supernatants were 0.014, 0.033 and 0.017, respectively. (*, p < 0.05 and **, p < 0.01.)
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The effect of the anti-CD2v monoclonal antibodies on CD2v-induced IFN-β expression
in swine PBMCs was investigated by preincubating purified CD2v or purified control with
the antibodies described above, followed by treatment of PBMCs. As a control, purified
CD2v or purified control without preincubation with antibodies was used to treat swine
PBMCs. Total RNA was extracted 6 h post treatment and IFN-β transcription was assessed
by RT-PCR. Significant inhibition in IFN-β transcription was observed when swine PBMCs
were treated with purified CD2v preincubated with the anti-CD2v antibody mix (1-fold)
as compared to purified CD2v preincubated with the anti-ORFV086 monoclonal antibody
(1.5-fold) or without preincubation (1.8-fold) (Figure 7C). These results confirm a role for
soluble CD2v in the induction of IFN-β transcription in swine PBMCs.

3.7. Supernatants from CD2v-Treated Swine PBMCs Exhibit Antiviral Activity

To determine whether the induction of IFN-β by CD2v is associated with antiviral
activity in PBMCs, swine PBMCs were treated with purified CD2v or purified control for
24 h and the supernatants collected, diluted and used to treat fresh PK15 cells. Twenty-
four hours after treatment the cells were infected with VSVGFP and examined for virus
replication at 16 h post infection by IFA. The supernatant collected from the PK15 cell
culture transfected with Poly I:C was used as a positive control. Significant inhibition
of VSVGFP replication was observed in PK15 cells treated with the supernatant from
CD2v treated PBMCs. We observed 32.1%, 24.4% and 28.1% inhibition with undiluted
supernatant, 1:2 dilution and 1:4 dilution, respectively (Figure 7D and Figure S3A).

3.8. CD2v Induces Apoptosis in Swine PBMCs and Macrophage Cultures

ASF is characterized by severe destruction of lymphoid tissue and massive lymphocyte
depletion due to apoptosis [7–9,51,52]. An explanation for this critical pathogenic event
is lacking. ASFV replicates in cells of the monocyte lineage, most notably macrophages,
but not in lymphocytes, thus apoptosis in bystander lymphocytes is most likely due to
proteins or factors released by infected macrophages. Based on our data, we hypothesized
that CD2v released by infected macrophages in lymphoid tissues induces IFN expression
in bystander lymphocytes and macrophages leading to apoptosis.

To investigate the effect of CD2v on PBMCs apoptosis, swine PBMC cultures were
treated with purified CD2v, purified control or staurosporine (positive control) and caspase-
3 and PARP1 cleavage assessed by WB at various times post treatment as described in
the Materials and Methods. As shown in Figure 8A–C, treatment of swine PBMCs with
purified CD2v led to significant induction of caspase-3 activation at 18 h post treatment
(1.9-fold) and PARP1 cleavage at 18 h (1.9-fold) and 24 h (1.6-fold) post treatment compared
to the purified control.

Additionally, induction of apoptosis in swine PBMCs by the CD2v treatment was
assessed by the TUNEL assay. Treatment of swine PBMCs with purified CD2v led to a
significant increase in the percentage of TUNEL positive lymphocyte nuclei (1.5-fold) and
TUNEL positive macrophages/monocytes nuclei (2.8-fold) at 18 h post treatment compared
to the purified control (Figure 8D–F and Figure S3B). These results indicate that CD2v
induced apoptosis in swine PBMCs and macrophages.
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Figure 8. Purified CD2v protein induces apoptosis in swine PBMCs. (A) Caspase-3 and PARP1 cleavage. Swine PBMCs
were treated with purified CD2v, purified control or staurosporine (positive control) and whole cell lysates were obtained
at various times post treatment, resolved by SDS-PAGE, blotted and probed with antibodies against Caspase-3, PARP1
and GAPDH (loading control). (B) Densitometric analysis showing the fold change in caspase-3 activation relative to the
purified control treatment. The caspase-3 results are the mean values of six independent experiments (18 h, p = 0.042).
(C) Densitometric analysis showing fold changes in PARP1 cleavage relative to the purified control treatment. Results are
the mean values of six independent experiments (18 h, p = 0.026; 24 h, p = 0.018). (D) TUNEL assay in lymphocytes. Swine
PBMCs treated as in A were fixed at 18 h post treatment and processed for the TUNEL assay as described in Materials and
Methods. Approximately 5000 lymphocytes (6–9 µm in diameter) were counted/slide and results are shown as mean values
from three independent experiments. p-values for purified CD2v relative to the purified control and mock were 0.004 and
0.006, respectively. (E) TUNEL assay in macrophages. Swine macrophages (16–23 µm in diameter) treated as in (A) were
fixed at 18 h post treatment and processed for the TUNEL assay as described in Materials and Methods. Approximately
1600 cells/slide were counted and results are mean values of three independent experiments. p-values for purified CD2v
relative to the purified control and mock were 0.004 and 0.003, respectively. (F) Representative confocal images of the
TUNEL assay under conditions outlined in (E). Green, TUNEL; Blue, DAPI. (*, p < 0.05 and **, p < 0.01.)
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4. Discussion

A hallmark of acute ASF is the severe lymphoid tissue destruction and massive lym-
phocyte depletion in infected pigs, which occurs as a result of bystander lymphocyte
apoptosis [4,8,52]. Since lymphocytes do not support ASFV replication, factors released or
secreted by infected macrophages have been implicated in triggering lymphocyte apop-
tosis [7–11]. CD2v, an ASFV glycoprotein, has been shown to be involved in host im-
munomodulation, virulence and induction of protective immune responses [21–23]. We
observed that treatment of swine PBMCs and macrophages with purified CD2v leads to
significant NF-κB activation, IFN-β induction, (Figure 6A–F) and lymphocyte/macrophage
apoptosis (Figure 8A–F and Figure S3B). These findings had important implications for
ASFV pathogenesis.

Nearly all cell types produce type I IFNs when host pathogen recognition receptors
(PRRs) bind different pathogen-associated molecular patterns (PAMPs) [53]. IFN signaling
leads to transcriptional induction of interferon stimulated genes (ISGs), which mediate most
antiviral, antiproliferative, proapoptotic and immunomodulatory functions of IFN [54].
The proapoptotic IFN-β function occurs through the activation of either the intrinsic or
extrinsic apoptotic pathway and ISGs such as OAS proteins have been shown to play a role
in the induction of apoptosis [55–62]. Here, AFSV CD2v induced IFN-β/ISGs transcription,
including OAS1 transcription, suggesting a mechanism for apoptosis in swine PBMCs
and macrophages.

IFN-β induction is mediated by two major groups of transcription factors, nuclear
factor-kB (NF-κB) and IFN-regulatory factors (IRFs) [46–50]. Due to the central role of
NF-κB in various antiviral responses, viruses target multiple steps of the NF-κB activation
pathway, from PRR recognition to NF-κB mediated gene transcription [63]. Results here
implicate CD2v activation of NF-κB, but not IRF3, in the induction of IFN-β (Figure 3A–E,
Figure 6A–F and data not shown). IFN induction of NF-κB has been observed for other
viruses [47,48,64,65].

The relationship between ASFV infection and the IFN system is complex. ASFV
has evolved multiple strategies to modulate activation of the IFN and NF-κB signaling
pathways [66–69]. The ASFV genome encodes several genes that function to interfere
with NF-κB and IFN pathways in macrophages. For example, genes of the multi-gene
family 360 and 505 (MGF360/MGF505) suppress IFN induction through yet unidentified
mechanisms, while DP96, A238L and I239L use different strategies to inhibit NF-κB [66–69].
In vitro infection of porcine macrophages with low virulence ASFV strains led to enhanced
and sustained IFN production compared to virulent strains [13,14,70–73]. In vivo acute
ASFV infection of pigs with highly virulent virus strains is characterized by elevated
levels of systemic IFN and cytokine (TNFα, IL-1α, IL-1β and IL-6) production [8–11,74,75],
suggesting a potential role/s of IFNs in ASF pathogenesis. Our data suggest that CD2v
may upregulate IFN levels in lymphoid tissues and this response may be involved in the
elevated IFN levels observed during acute infection.

CD58/LFA-3 is the natural ligand for host CD2 protein and CD2–CD58 interaction
initiates cellular kinase signaling [28–34]. CD2 has been shown to activate T cells through
tyrosine kinase ZAP-70 and protein kinase C (PKC) [35–37]. CD2 costimulation was shown
to trigger strong MEK/ERK1/2 phosphorylation and weak NF-κB phosphorylation in
T cells [37]. There are two isoforms of CD58: type-I transmembrane and glycosylphos-
phatidylinositol (GPI)-anchored forms and both forms are associated with protein ki-
nases [76,77]. CD58 signaling induces phosphorylation of PLCγ, SYK and BLINK and
activates AKT and ERK transcription factors [78]. In addition, treatment of cells with
antibodies against CD58 also activates CD58 signaling [79–81].

CD59 and CD48 are additional CD2 ligands, which binds to CD2 with low-affinity [82–85].
CD59 and CD58 binding regions in CD2 are overlapping but not completely identical
whereas CD48 and CD58 both binds to the T11 region on CD2 [84,86]. Although the
CD2–CD59 interaction alone was not sufficient to cause T-cell activation, it was shown
to promote CD58-mediated T-cell activation and IL-production [87]. CD48 is a murine
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homolog of human CD58 [85,88,89]. CD58 is suspected to have originated by gene duplica-
tion from CD48, evolving into a major CD2 interactor, during mammalian evolution after
divergence from the mouse [89]. Given that CD2 can interact with CD59 and CD48, we
cannot exclude the possibility that ASFV CD2v also might interact with these molecules.
However, we clearly show that swine CD58 interacts with CD2v and that the interaction
results in NF-κB activation and IFN-β induction (Figures 4 and 5). Since viral glycoproteins
can also induce IFN-β through TLR-4/TLR-2 [90–93], involvement of these receptors in the
results shown here cannot be formally excluded.

In ASFV-infected macrophages, CD2v is processed and thought to be released [20,45].
Here, we show that CD2v is present in the supernatant of CD2v-expressing cells (Fig-
ure 1D,F). The mechanism responsible for this is yet to be determined. The membrane-
associated protein may be secreted or leave the cell by membrane blebbing or via exosomes.
Notably, Yang et al. recently have shown that a CD2v C-terminal 88 amino acid fragment is
able to enter cells when present in the culture supernatant [94]. However, the effect is lost
on the removal of CD2v C-terminal repeat sequences ([KPCPPP]3) [94]. Interestingly, these
sequences are conserved in ASFV isolates and present in all of the CD2v species (100 kDa,
25 kDa and 15 kDa) described here. Conceivably, this mechanism could be involved with
the protein entry and/or egress from the cell. CD2v processing or interaction with the ER
and trans-Golgi network AP-1 factor and actin-binding adaptor protein SH3P7 has been
described and may also be involved in some manner [20,44,95].

Previous studies have described the involvement of soluble factor/s in the inhibi-
tion of lymphocyte proliferation in PBMCs infected with ASFV or incubated with cell
extracts/supernatants free of virus [17,21] and have defined an immunomodulatory role
of CD2v in the inhibition of mitogen-induced proliferation of lymphocytes [21]. CD2v
may represent the soluble hemagglutinin previously described in supernatants of ASFV
infected macrophages [45].

The ASFV CD2v protein has been implicated as a protective antigen (PA) for ASFV.
CD2v gene orthologues are among the most divergent between genome sequences of
ASFV isolates [1,96], providing antigens of potential significance in serogroup-specific
immunity [97]. Although available data support a role for both humoral and cellular
immune responses in protection, definitive immune correlates of protection are lacking [98].
However, the protection afforded by passive transfer of ASFV antibodies provides com-
pelling evidence for antiviral antibodies in protective immunity [99–101]. Pigs immunized
with CD2v developed hemadsorption inhibiting (HAI) and monocyte infection-inhibiting
(M-II) antibodies that recognized a 75 kDa virion protein and they were partially pro-
tected from challenge with the homologous virulent virus strain [45,102]. Our observation
that anti-CD2v antibodies inhibit CD2v-dependent NF-κB activation and IFN-β induction
(Figure 7A–C) suggests that neutralization of CD2v by anti-CD2v antibodies may be an
important antibody-mediated protective immune mechanism.

In conclusion, our data indicate a previously undescribed role for CD2v and sug-
gests that protein is a contributing factor to the lymphoid tissue damage and lymphocyte
depletion observed during acute ASFV infection (Figure 9).
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Figure 9. Proposed mechanism of action of ASFV CD2v. CD2v present on infected cell membranes
and/or released from ASFV-infected macrophages interacts with surrounding lymphocytes and
macrophages via CD58. This interaction promotes NF-κB activation and induction of IFN-β and
ISGs, which lead to the apoptosis of lymphocytes and macrophages. A dashed arrow indicates that
the mechanism responsible for CD2v presence in the supernatant is yet to be determined.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081480/s1, Figure S1: (A,B) Expression of CD2v in 293T and Vero cells, (C) CD2v expression
in presence of tunicamycin, (D) Expression of CD2v in primary swine macrophages, (E) Induction of
antiviral state, (F) Representative confocal images of NF-κB-p65 nuclear translocation in PK15 cells
under conditions outlined in Figure 3D, Figure S2: (A) Effect of CD58 knock-down on CD2v-induced
NF-κB-p65 nuclear translocation, (B) Monoclonal antibodies generated against ASFV CD2v identifies
CD2v in Western blots, (C) Immunoprecipitation with anti-CD2v monoclonal antibodies, Figure S3:
(A) Antiviral activity of supernatants from CD2v -treated swine PBMCs, (B) Representative confocal
images of TUNEL assay in swine PBMCs under conditions outlined in Figure 8D.

Author Contributions: Conceptualization, S.C., G.A.D., S.K. and D.L.R.; Methodology, S.C., G.A.D.,
S.K. and D.L.R.; Software, S.C. and D.L.R., Validation, S.C., G.A.D., S.K. and D.L.R.; Formal Analysis,
S.C., G.A.D., S.K. and D.L.R.; Investigation, S.C., G.A.D., S.K. and D.L.R.; Resources, D.L.R., Data
Curation, S.C., G.A.D., S.K. and D.L.R.; Writing—Original Draft Preparation, S.C., G.A.D., S.K. and
D.L.R.; Review and Editing, S.C., G.A.D., S.K. and D.L.R.; Visualizations, S.C., G.A.D., S.K. and
D.L.R.; Supervision, G.A.D. and D.L.R.; Project Administration, D.L.R.; Funding Acquisition, D.L.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Pork Board (grant 13-102 and 19-157) and by the
USDA National Institute of Food and Agriculture (grant 2013-67015-21335).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting the reported results are available in this article and in
the Supplementary Materials.

Acknowledgments: We thank Hiep Vu (Nebraska Center for Virology, University of Nebraska-
Lincoln) for his advice and assistance in generating monoclonal antibodies, Fernando A. Osorio
(Nebraska Center for Virology, University of Nebraska-Lincoln) for laboratory support, G. Risatti and
Manuel Borca (Plum Island Animal Disease Center), James F. Lowe (College of Veterinary medicine at
University of Illinois at Urbana-Champaign) and Anna Carol Dilger (Department of Animal Sciences
at University of Illinois at Urbana-Champaign) for providing L929 media and swine blood.

https://www.mdpi.com/article/10.3390/v13081480/s1
https://www.mdpi.com/article/10.3390/v13081480/s1


Viruses 2021, 13, 1480 24 of 27

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tulman, E.R.; Delhon, G.; Ku, B.; Rock, D.L. Asfarviruses. In Lesser Known Big DNA Viruses. In Current Topics in Microbiology

and Immunology; Van Etten, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2009.
2. Montgomery, R.E. On A Form of Swine Fever Occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 1921, 34, 159–191.

[CrossRef]
3. Detray, D. Persistence of viremia and immunity in African swine fever. Am. J. Vet. Res. 1957, 18, 811–816.
4. Oura, C.A.; Powell, P.P.; Anderson, E.; Parkhouse, R.M. The pathogenesis of African swine fever in the resistant bushpig. J. Gen.

Virol. 1998, 79, 1439–1443. [CrossRef]
5. Gomez-Villamandos, J.C.; Bautista, M.J.; Sanchez-Cordon, P.J.; Carrasco, L. Pathology of African swine fever: The role of

monocyte-macrophage. Virus Res. 2013, 173, 140–149. [CrossRef]
6. Moulton, J.; Coggins, L. Comparison of lesions in acute and chronic African swine fever. Cornell Vet. 1968, 58, 364–388. [PubMed]
7. Carrasco, L.; Chacon-M de Lara, F.; Martin de las Mulas, J.; Gomez-Villamandos, J.C.; Perez, J.; Wilkinson, P.J.; Sierra, M.A.

Apoptosis in lymph nodes in acute African swine fever. J. Comp. Pathol. 1996, 115, 415–428. [CrossRef]
8. Salguero, F.J.; Sanchez-Cordon, P.J.; Nunez, A.; Fernandez de Marco, M.; Gomez-Villamandos, J.C. Proinflammatory cytokines

induce lymphocyte apoptosis in acute African swine fever infection. J. Comp. Pathol. 2005, 132, 289–302. [CrossRef] [PubMed]
9. Gomez-Villamandos, J.C.; Hervas, J.; Mendez, A.; Carrasco, L.; De las Mulas, J.M.; Villeda, C.J.; Wilkinson, P.J.; Sierra, M.A.

Experimental African swine fever: Apoptosis of lymphocytes and virus replication in other cells. J. Gen. Virol. 1995, 76, 2399–2405.
[CrossRef] [PubMed]

10. Gomez del Moral, M.; Ortuno, E.; Fernandez-Zapatero, P.; Alonso, F.; Alonso, C.; Ezquerra, A.; Dominguez, J. African swine
fever virus infection induces tumor necrosis factor alpha production: Implications in pathogenesis. J. Virol. 1999, 73, 2173–2180.
[CrossRef]

11. Salguero, F.J.; Ruiz-Villamor, E.; Bautista, M.J.; Sanchez-Cordon, P.J.; Carrasco, L.; Gomez-Villamandos, J.C. Changes in
macrophages in spleen and lymph nodes during acute African swine fever: Expression of cytokines. Vet. Immunol. Immunopathol.
2002, 90, 11–22. [CrossRef]

12. Hume, D. The many faces of macrophage activation. Front. Immunol. 2015, 6, 370. [CrossRef]
13. Gil, S.; Sepulveda, N.; Albina, E.; Leitao, A.; Martins, C. The low-virulent African swine fever virus (ASFV/NH/P68) induces

enhanced expression and production of relevant regulatory cytokines (IFNα, TNFα and IL12p40) on porcine macrophages in
comparison to the highly virulent ASFV/L60. Arch. Virol. 2008, 153, 1845–1854. [CrossRef]

14. Zhang, F.; Hopwood, P.; Abrams, C.C.; Downing, A.; Murray, F.; Talbot, R.; Archibald, A.; Lowden, S.; Dixon, L.K. Macrophage
transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J. Virol. 2006, 80,
10514–10521. [CrossRef]

15. Portugal, R.; Leitao, A.; Martins, C. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV)
strains with different virulence. Arch. Virol. 2009, 154, 1441–1450. [CrossRef] [PubMed]

16. Franzoni, G.; Dei Giudici, S.; Oggiano, A. Infection, modulation and responses of antigen-presenting cells to African swine fever
viruses. Virus Res. 2018, 258, 73–80. [CrossRef]

17. Gonzalez, S.; Mendoza, C.; Sanchez-Vizcaino, J.M.; Alonso, F. Inhibitory effect of African swine fever virus on lectin-dependent
swine lymphocyte proliferation. Vet. Immunol. Immunopathol. 1990, 26, 71–80. [CrossRef]

18. Rodriguez, J.M.; Yanez, R.J.; Almazan, F.; Vinuela, E.; Rodriguez, J.F. African swine fever virus encodes a CD2 homolog responsible
for the adhesion of erythrocytes to infected cells. J. Virol. 1993, 67, 5312–5320. [CrossRef]

19. Borca, M.V.; Kutish, G.F.; Afonso, C.L.; Irusta, P.; Carrillo, C.; Brun, A.; Sussman, M.; Rock, D.L. An African Swine Fever Virus
Gene with Similarity to the T-Lymphocyte Surface Antigen CD2 Mediates Hemadsorption. Virology 1994, 199, 463–468. [CrossRef]
[PubMed]

20. Goatley, L.C.; Dixon, L.K. Processing and Localization of the African Swine Fever Virus CD2v Transmembrane Protein. J. Virol.
2011, 85, 3294–3305. [CrossRef] [PubMed]

21. Borca, M.V.; Carrillo, C.; Zsak, L.; Laegreid, W.W.; Kutish, G.F.; Neilan, J.G.; Burrage, T.G.; Rock, D.L. Deletion of a CD2-like gene,
8-DR, from African swine fever virus affects viral infection in domestic swine. J. Virol. 1998, 72, 2881–2889. [CrossRef] [PubMed]

22. Monteagudo, P.L.; Lacasta, A.; Lopez, E.; Bosch, L.; Collado, J.; Pina-pedrero, S.; Correa-fiz, F.; Accensi, F. A71∆CD2: A New
Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J. Virol. 2017, 91, 1–17. [CrossRef]

23. Burmakina, G.; Malogolovkin, A.; Tulman, E.R.; Zsak, L.; Delhon, G.; Diel, D.G.; Shobogorov, N.M.; Morgunov, Y.P.; Morgunov,
S.Y.; Kutish, G.F.; et al. African swine fever virus serotype-specific proteins are significant protective antigens for African swine
fever. J. Gen. Virol. 2016, 97, 1670–1675. [CrossRef] [PubMed]

24. Chapman, D.A.G.; Tcherepanov, V.; Upton, C.; Dixon, L.K. Comparison of the genome sequences of non-pathogenic and
pathogenic African swine fever virus isolates. J. Gen. Virol. 2008, 89, 397–408. [CrossRef]

25. Borca, M.V.; O’Donnell, V.; Holinka, L.G.; Risatti, G.R.; Ramirez-Medina, E.; Vuono, E.A.; Shi, J.; Pruitt, S.; Rai, A.; Silva, E.; et al.
Deletion of CD2-like gene from the genome of African swine fever virus strain Georgia does not attenuate virulence in swine. Sci.
Rep. 2020, 10, 1–8. [CrossRef]

http://doi.org/10.1016/S0368-1742(21)80031-4
http://doi.org/10.1099/0022-1317-79-6-1439
http://doi.org/10.1016/j.virusres.2013.01.017
http://www.ncbi.nlm.nih.gov/pubmed/4297621
http://doi.org/10.1016/S0021-9975(96)80075-2
http://doi.org/10.1016/j.jcpa.2004.11.004
http://www.ncbi.nlm.nih.gov/pubmed/15893987
http://doi.org/10.1099/0022-1317-76-9-2399
http://www.ncbi.nlm.nih.gov/pubmed/7561784
http://doi.org/10.1128/JVI.73.3.2173-2180.1999
http://doi.org/10.1016/S0165-2427(02)00225-8
http://doi.org/10.3389/fimmu.2015.00370
http://doi.org/10.1007/s00705-008-0196-5
http://doi.org/10.1128/JVI.00485-06
http://doi.org/10.1007/s00705-009-0466-x
http://www.ncbi.nlm.nih.gov/pubmed/19657705
http://doi.org/10.1016/j.virusres.2018.10.007
http://doi.org/10.1016/0165-2427(90)90133-D
http://doi.org/10.1128/jvi.67.9.5312-5320.1993
http://doi.org/10.1006/viro.1994.1146
http://www.ncbi.nlm.nih.gov/pubmed/7907198
http://doi.org/10.1128/JVI.01994-10
http://www.ncbi.nlm.nih.gov/pubmed/21248037
http://doi.org/10.1128/JVI.72.4.2881-2889.1998
http://www.ncbi.nlm.nih.gov/pubmed/9525608
http://doi.org/10.1128/JVI.01058-17
http://doi.org/10.1099/jgv.0.000490
http://www.ncbi.nlm.nih.gov/pubmed/27114233
http://doi.org/10.1099/vir.0.83343-0
http://doi.org/10.1038/s41598-020-57455-3


Viruses 2021, 13, 1480 25 of 27

26. Rowlands, R.J.; Duarte, M.M.; Boinas, F.; Hutchings, G.; Dixon, L.K. The CD2v protein enhances African swine fever virus
replication in the tick vector, Ornithodoros erraticus. Virology 2009, 393, 319–328. [CrossRef] [PubMed]

27. Kleiboeker, S.B.; Burrage, T.G.; Scoles, G.A.; Fish, D.; Rock, D.L. African swine fever virus infection in the argasid host,
Ornithodoros porcinus porcinus. J. Virol. 1998, 72, 1711–1724. [CrossRef]

28. Bockenstedt, L.K.; Goldsmith, M.A.; Dustin, M.; Olive, D.; Springer, T.A.; Weiss, A. The CD2 ligand LFA-3 activates T cells but
depends on the expression and function of the antigen receptor. J. Immunol. 1988, 141, 1904–1911. [PubMed]

29. Satiimul, T. Accessory Cell-Dependent T-Cell Activation via Involvement of CD2-LFA-3 Interaetions. Scand. J. Immunol. 1988, 28,
277–284.

30. Karmann, K.; Hughes, C.C.W.; Fanslow, W.C.; Pober, J.S. Endothelial cells augment the expression of CD40 ligand on newly
activated human CD4+T cells through a CD2/LFA-3 signaling pathway. Eur. J. Immunol. 1996, 26, 610–617. [CrossRef]

31. Diaz-Sanchez, D.; Chegini, S.; Zhang, K.; Saxon, A. CD58 (LFA-3) stimulation provides a signal for human isotype switching and
IgE production distinct from CD40. J. Immunol. 2018, 153, 10–20.

32. King, P.D.; Sadra, A.; Han, A.; Liu, X.R.; Sunder-Plassmann, R.; Reinherz, E.L.; Dupont, B. CD2 signaling in T cells involves
tyrosine phosphorylation and activation of the Tec family kinase, EMT/ITK/TSK. Int. Immunol. 1996, 8, 1707–1714. [CrossRef]

33. Lin, H.; Hutchcroft, J.E.; Andoniou, C.E.; Kamoun, M.; Band, H.; Bierer, B.E. Association of p59 fyn with the T Lymphocyte
Costimulatory Receptor CD2. Binding of the Fyn Src homology (SH)3 domain is regulated by the Fyn SH2 domain. J. Biol. Chem.
1998, 273, 19914–19921. [CrossRef] [PubMed]

34. Le Guiner, S.; Le Drean, E.; Labarriere, N.; Fonteneau, J.F.; Viret, C.; Diez, E.; Jotereau, F. LFA-3 co-stimulates cytokine secretion by
cytotoxic T lymphocytes by providing a TCR-independent activation signal. Eur. J. Immunol. 1998, 28, 1322–1331. [CrossRef]

35. Meinl, E.; Lengenfelder, D.; Blank, N.; Pirzer, R.; Barata, L.; Hivroz, C. Differential Requirement of ZAP-70 for CD2-Mediated
Activation Pathways of Mature Human T Cells. J. Immunol. 2000, 165, 3578–3583. [CrossRef]

36. Bagnasco, M.; Nunes, J.; Lopez, M.; Cerdan, C.; Pierres, A.; Mawas, C.; Olive, D. T cell activation via the CD2 molecule is
associated with protein kinase C translocation from the cytosol to the plasma membrane. Eur. J. Immunol. 1989, 19, 823–827.
[CrossRef] [PubMed]

37. Skanland, S.S.; Moltu, K.; Berge, T.; Aandahl, E.M.; Tasken, K. T-cell co-stimulation through the CD2 and CD28 co-receptors
induces distinct signalling responses. Biochem. J. 2014, 460, 399–410. [CrossRef] [PubMed]

38. Meier, W.A.; Galeota, J.; Osorio, F.A.; Husmann, R.J.; Schnitzlein, W.M.; Zuckermann, F.A. Gradual development of the interferon-
γ response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination. Virology 2003, 309, 18–31.
[CrossRef]

39. Parida, R.; Choi, I.S.; Peterson, D.A.; Pattnaik, A.K.; Laegreid, W.; Zuckermann, F.A.; Osorio, F.A. Location of T-cell epitopes
in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Res. 2012, 169, 13–21.
[CrossRef] [PubMed]

40. Zsak, L.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. An African swine fever virus virulence-associated gene NL-S with similarity
to the herpes simplex virus ICP34. 5 gene. J. Virol. 1996, 70, 8865–8871. [CrossRef]

41. Burmakina, G.; Malogolovkin, A.; Tulman, E.R.; Xu, W.; Delhon, G.; Kolbasov, D.; Rock, D.L. Identification of T-cell epitopes in
African swine fever virus CD2v and C-type lectin proteins. J. Gen. Virol. 2019, 100, 259–265. [CrossRef]

42. Diel, D.G.; Delhon, G.; Luo, S.; Flores, E.F.; Rock, D.L. A Novel Inhibitor of the NF-κB Signaling Pathway Encoded by the
Parapoxvirus Orf Virus. J. Virol. 2010, 84, 3962–3973. [CrossRef]

43. Malogolovkin, A.; Burmakina, G.; Tulman, E.R.; Delhon, G.; Diel, D.G.; Salnikov, N.; Kutish, G.F.; Kolbasov, D.; Rock, D.L. African
swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. J. Gen. Virol. 2015, 96, 866–873. [CrossRef]

44. Kay-Jackson, P.C.; Goatley, L.C.; Cox, L.; Miskin, J.E.; Parkhouse, R.M.; Wienands, J.; Dixon, L.K. The CD2v protein of African
swine fever virus interacts with the actin-binding adaptor protein SH3P7. J. Gen. Virol. 2004, 85, 119–130. [CrossRef]

45. Ruiz-Gonzalvo, F.; Coll, J.M. Characterization of a soluble hemagglutinin induced in African swine fever virus-infected cells.
Virology 1993, 196, 769–777. [CrossRef] [PubMed]

46. Kim, T.K.; Maniatis, T. The mechanism of transcriptional synergy of an in vitro assembled interferon-β enhanceosome. Mol. Cell
1997, 1, 119–129. [CrossRef]

47. Lenardo, M.J.; Fan, C.M.; Maniatis, T.; Baltimore, D. The involvement of NF-κB in β-interferon gene regulation reveals its role as
widely inducible mediator of signal transduction. Cell 1989, 57, 287–294. [CrossRef]

48. Thanos, D.; Maniatis, T. Identification of the rel family members required for virus induction of the human beta interferon gene.
Mol. Cell. Biol. 1995, 15, 152–164. [CrossRef]

49. Sato, M.; Suemori, H.; Hata, N.; Asagiri, M.; Ogasawara, K.; Nakao, K.; Nakaya, T.; Katsuki, M.; Noguchi, S.; Tanaka, N.; et al.
Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity
2000, 13, 539–548. [CrossRef]

50. Honda, K.; Takaoka, A.; Taniguchi, T. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription
Factors. Immunity 2006, 25, 349–360. [CrossRef] [PubMed]

51. Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013, 173,
122–130. [CrossRef] [PubMed]

52. Ramiro-Ibanez, F.; Ortega, A.; Brun, A.; Escribano, J.M.; Alonso, C. Apoptosis: A mechanism of cell killing and lymphoid organ
impairment during acute African swine fever virus infection. J. Gen. Virol. 1996, 77, 2209–2219. [CrossRef]

http://doi.org/10.1016/j.virol.2009.07.040
http://www.ncbi.nlm.nih.gov/pubmed/19729182
http://doi.org/10.1128/JVI.72.3.1711-1724.1998
http://www.ncbi.nlm.nih.gov/pubmed/2459194
http://doi.org/10.1002/eji.1830260316
http://doi.org/10.1093/intimm/8.11.1707
http://doi.org/10.1074/jbc.273.31.19914
http://www.ncbi.nlm.nih.gov/pubmed/9677430
http://doi.org/10.1002/(SICI)1521-4141(199804)28:04&lt;1322::AID-IMMU1322&gt;3.0.CO;2-I
http://doi.org/10.4049/jimmunol.165.7.3578
http://doi.org/10.1002/eji.1830190507
http://www.ncbi.nlm.nih.gov/pubmed/2567674
http://doi.org/10.1042/BJ20140040
http://www.ncbi.nlm.nih.gov/pubmed/24665965
http://doi.org/10.1016/S0042-6822(03)00009-6
http://doi.org/10.1016/j.virusres.2012.06.024
http://www.ncbi.nlm.nih.gov/pubmed/22771938
http://doi.org/10.1128/jvi.70.12.8865-8871.1996
http://doi.org/10.1099/jgv.0.001195
http://doi.org/10.1128/JVI.02291-09
http://doi.org/10.1099/jgv.0.000024
http://doi.org/10.1099/vir.0.19435-0
http://doi.org/10.1006/viro.1993.1534
http://www.ncbi.nlm.nih.gov/pubmed/8372447
http://doi.org/10.1016/S1097-2765(00)80013-1
http://doi.org/10.1016/0092-8674(89)90966-5
http://doi.org/10.1128/MCB.15.1.152
http://doi.org/10.1016/S1074-7613(00)00053-4
http://doi.org/10.1016/j.immuni.2006.08.009
http://www.ncbi.nlm.nih.gov/pubmed/16979567
http://doi.org/10.1016/j.virusres.2012.10.026
http://www.ncbi.nlm.nih.gov/pubmed/23137735
http://doi.org/10.1099/0022-1317-77-9-2209


Viruses 2021, 13, 1480 26 of 27

53. Fensterl, V.; Sen, G.C. Interferons and viral infections. BioFactors 2009, 35, 14–20. [CrossRef]
54. Fensterl, V.; Chattopadhyay, S.; Sen, G.C. No Love Lost Between Viruses and Interferons. Annu. Rev. Virol. 2015, 2, 549–572.

[CrossRef]
55. Yen, J.H.; Ganea, D. Interferon β induces mature dendritic cell apoptosis through caspase-11/caspase-3 activation. Blood 2009,

114, 1344–1354. [CrossRef] [PubMed]
56. Dedoni, S.; Olianas, M.C.; Onali, P. Interferon-β induces apoptosis in human SH-SY5Y neuroblastoma cells through activation of

JAK–STAT signaling and down-regulation of PI3K/Akt pathway. J. Neurochem. 2010, 115, 1421–1433. [CrossRef]
57. Makowska, A.; Wahab, L.; Braunschweig, T.; Kapetanakis, N.I.; Vokuhl, C.; Denecke, B.; Shen, L.; Busson, P.; Kontny, U. Interferon

beta induces apoptosis in nasopharyngeal carcinoma cells via the TRAIL-signaling pathway. Oncotarget 2018, 9, 14228. [CrossRef]
[PubMed]

58. Chawla-Sarkar, M.; Lindner, D.J.; Liu, Y.F.; Williams, B.R.; Sen, G.C.; Silverman, R.H.; Borden, E.C. Apoptosis and interferons:
Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003, 8, 237–249. [CrossRef] [PubMed]

59. Dong, B.; Silverman, R.H. 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J. Biol. Chem. 1995, 270,
4133–4137. [CrossRef] [PubMed]

60. Castelli, J.; Wood, K.A.; Youle, R.J. The 2-5A system in viral infection and apoptosis. Biomed. Pharmacother. 1998, 52, 386–390.
[CrossRef]

61. Castelli, J.C.; Hassel, B.A.; Maran, A.; Paranjape, J.; Hewitt, J.A.; Li, X.L.; Hsu, Y.T.; Silverman, R.H.; Youle, R.J. The role of 2′-5′

oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ. 1998, 5, 313–320. [CrossRef]
62. Diaz-Guerra, M.; Rivas, C.; Esteban, M. Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells. Virology

1997, 236, 354–363. [CrossRef]
63. Zhao, J.; He, S.; Minassian, A.; Li, J.; Feng, P. Recent advances on viral manipulation of NF-κB signaling pathway. Curr. Opin.

Virol. 2015, 15, 103–111. [CrossRef]
64. Wang, X.; Li, M.; Zheng, H.; Muster, T.; Palese, P.; Beg, A.A.; Garcia-Sastre, A. Influenza A virus NS1 protein prevents activation

of NF-κB and induction of alpha/beta interferon. J. Virol. 2000, 74, 11566–11573. [CrossRef] [PubMed]
65. Thanos, D.; Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 1995,

83, 1091–1100. [CrossRef]
66. De Oliveira, V.L.; Almeida, S.C.P.; Soares, H.R.; Crespo, A.; Marshall-Clarke, S.; Parkhouse, R.M. A novel TLR3 inhibitor encoded

by African swine fever virus (ASFV). Arch. Virol. 2011, 156, 597–609. [CrossRef] [PubMed]
67. Correia, S.; Ventura, S.; Parkhouse, R.M. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus

Res. 2013, 173, 87–100. [CrossRef]
68. Wang, X.; Wu, J.; Wu, Y.; Chen, H.; Zhang, S.; Li, J.; Xin, T.; Jia, H.; Hou, S.; Jiang, Y.; et al. Inhibition of cGAS-STING-TBK1

signaling pathway by DP96R of ASFV China 2018/1. Biochem. Biophys. Res. Commun. 2018, 506, 437–443. [CrossRef]
69. Revilla, Y.; Callejo, M.; Rodrı, J.M.; Culebras, E.; Nogal, L.; Salas, L.; Vin, E.; Fresno, M. Inhibition of nuclear factor kappaB

activation by a virus-encoded IkappaB-like protein. J. Biol. Chem. 1998, 273, 5405–5411. [CrossRef]
70. Afonso, C.L.; Piccone, M.E.; Zaffuto, K.M.; Neilan, J.; Kutish, G.F.; Lu, Z.; Balinsky, C.A.; Gibb, T.R.; Bean, T.J.; Zsak, L.; et al.

African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 2004, 78, 1858–1864.
[CrossRef]

71. Garcia-Belmonte, R.; Perez-Nunez, D.; Pittau, M.; Richt, J.A.; Revilla, Y. African Swine Fever Virus Armenia/07 Virulent Strain
Controls Interferon Beta Production through the cGAS-STING Pathway. J. Virol. 2019, 93, 1–17. [CrossRef]

72. Portugal, R.; Leitao, A.; Martins, C. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different
virulence L60 and NHV in macrophage host cells. Vet. Microbiol. 2018, 216, 132–141. [CrossRef]

73. Reis, A.L.; Abrams, C.C.; Goatley, L.C.; Netherton, C.; Chapman, D.G.; Sanchez-Cordon, P.; Dixon, L.K. Deletion of African swine
fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective
response. Vaccine 2016, 34, 4698–4705. [CrossRef]

74. Karalyan, Z.; Zakaryan, H.; Sargsyan, K.; Voskanyan, H.; Arzumanyan, H.; Avagyan, H.; Karalova, E. Interferon status and white
blood cells during infection with African swine fever virus in vivo. Vet. Immunol. Immunopathol. 2012, 145, 551–555. [CrossRef]

75. Golding, J.P.; Goatley, L.; Goodbourn, S.; Dixon, L.K.; Taylor, G.; Netherton, C.L. Sensitivity of African swine fever virus to type I
interferon is linked to genes within multigene families 360 and 505. Virology 2016, 493, 154–161. [CrossRef] [PubMed]

76. Itzhaky, D.; Raz, N.; Hollander, N. The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58
associate with protein kinases. J. Immunol. 1998, 160, 4361–4366.

77. Ariel, O.; Kukulansky, T.; Raz, N.; Hollander, N. Distinct membrane localization and kinase association of the two isoforms of
CD58. Cell. Signal. 2004, 16, 667–673. [CrossRef] [PubMed]

78. Ariel, O.; Levi, Y.; Hollander, N. Signal transduction by CD58: The transmembrane isoform transmits signals outside lipid rafts
independently of the GPI-anchored isoform. Cell. Signal. 2009, 21, 1100–1108. [CrossRef]

79. Le, P.T.; Vollger, L.W.; Haynes, B.F.; Singer, K.H. Ligand binding to the LFA-3 cell adhesion molecule induces IL-1 production by
human thymic epithelial cells. J. Immunol. 1990, 144, 4541–4547. [PubMed]

80. Carrera, A.C.; Rincon, M.; Sanchez-Madrid, F.; Lopez-Botet, M.; de Landaźuri, M.O. Triggering of co-mitogenic signals in T cell
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